Publication

Journal papers, Talks, Conference papers, Books, Technical notes

Search

Conference Paper

Division réseau équitable dans les essaims de nanosatellites

Authors: Akopyan Evelyne, Dhaou Riadh, Lochin Emmanuel, Pontet Bernard and Sombrin Jacques B.

In Proc. CoRes 2024: 9{\`e}mes Rencontres Francophones sur la Conception de Protocoles, l'Evaluation de Performance et l'Expérimentation des Réseaux de Communication, Saint Briac sur Mer, France, May, 2024.

Nous proposons de partitionner l’architecture d’un réseau ad-hoc mobile en plusieurs groupes, afin de re-distribuer équitablement la charge entre les membres du réseau. Notre étude porte sur un essaim de nanosatellites fonctionnant comme un télescope spatial distribué, placé en orbite lunaire. Chaque nanosatellite de l’essaim collecte des données d’observation de l’espace, puis les échange avec les autres membres de l’essaim. Les données recueillies sont ensuite combinées localement afin de produire l’image globale observée par l’essaim. Cependant, un système fondé sur ce mode opératoire est particulièrement sensible aux pertes de paquets et aux pannes d’énergie. En effet, la transmission simultanée d’un important volume de données peut entraîner des problèmes de communication, notamment en surchargeant le canal radio ou en augmentant le risque de collisions, menant dans les deux cas `a des pertes de paquets. La consommation énergétique totale de l’essaim est également proportionnelle au nombre de paquets transmis : il faut alors trouver une solution pour limiter le nombre de transmissions afin d’économiser l’énergie des nanosatellites. La principale contribution de ce papier est de proposer une approche basée sur la division équitable du réseau en plusieurs groupes de nanosatellites. Nous comparons les performances de trois algorithmes de division de graphe : Random Node Division (RND), Multiple Independent Random Walks (MIRW), et Forest Fire Division (FFD). Nos résultats montrent que MIRW obtient les meilleurs scores en termes d’équité, peu importe le nombre de groupes produit.

Read more

Networking / Space communication systems

Scalable Syndrome-based Neural Decoders for Bit-Interleaved Coded Modulations

Authors: De Boni Rovella Gastón, Benammar Meryem, Benaddi Tarik and Meric Hugo

In Proc. IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN 2024), Stockholm, Sweden, May 5-8, 2024.

Download document

In this work, we introduce a framework that enables the use of Syndrome-Based Neural Decoders (SBND) for highorder Bit-Interleaved Coded Modulations (BICM). To this end, we extend the previous results on SBND, for which the validity is limited to Binary Phase-Shift Keying (BPSK), by means of a theoretical channel modeling of the bit Log-Likelihood Ratio (bit-LLR) induced outputs.We implement the proposed SBND system for two polar codes (64, 32) and (128, 64), using a Recurrent Neural Network (RNN) and a Transformer-based architecture. Both implementations are compared in Bit Error Rate (BER) performance and computational complexity.

Read more

Digital communications / Space communication systems and Other

Misspecified Time-Delay and Doppler Estimation over Non Gaussian Scenarios

Authors: Ortega Espluga Lorenzo and Fortunati Stefano

In Proc. ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 9346-9350, Seoul, Korea, Republic of, 14-19 April 2024.

Time-delay and Doppler estimation is an operation performed in a plethora of engineering applications. A common hypothesis underlying most of the existing works is that the noise of the true and assumed signal model follows a centered complex normal distribution. However, everyday practice shows that the true signal model may differ from the nominal case and should be modeled by a non Gaussian distribution. In this paper, we analyse the asymptotic performance of the time-delay and Doppler estimation for the non-nominal scenario where the true noise model follows a centered complex elliptically symmetric (CES) distribution and the receiver assumed that the noise model follows a centered complex normal distribution. It turns out that performance bound under the misspecified model is equal to the one obtained for the well specified Gaussian scenario. In order to validate the theoretical outcomes, Monte Carlo simulations have been carried out.

Read more

Signal and image processing / Localization and navigation and Space communication systems

Talk

On hybrid and Modified Lower bounds for Discrete-time Markovian Dynamic systems

Authors: El Bouch Sara, Labsir Samy, Vilà-Valls Jordi and Chaumette Eric

Seminar of TeSA, Toulouse, April, 2024.

Download document

In this talk, I will introduce a method for sequentially estimating both random and deterministic parameters within linear Gaussian discrete-time state space models. Following that, the performance of the obtained joint Maximum-a-posteriori Maximum likelihood estimator is assessed using hybrid Cramér-Rao bounds on two illustrative examples. Moving forward, I will exhibit the link between the Modified Cramér-Rao bound, a ubiquitous bound in non-standard estimation problems, and the hybrid Cramér-Rao bound under a mild constraint. Leveraging this link enables us to derive a recursive estimation scheme of the Modified Cramér-Rao bound (under constraint) for Markovian Dynamic Systems. Finally, I will discuss the extension of the Modified Cramér-Rao bound to matrix Lie groups.

Read more

Signal and image processing / Localization and navigation and Other

Journal Paper

On the asymptotic performance of time-delay and Doppler estimation with a carrier modulated by a band-limited signal

Authors: Bernabeu Frias Joan Miguel, Ortega Espluga Lorenzo, Blais Antoine, Gregoire Yoan and Chaumette Eric

EURASIP Journal on Advances in Signal Processing, vol. 2024 (1), pp. 47, April, 2024.

Time-delay and Doppler estimation is crucial in various engineering fields, as estimating these parameters constitutes one of the key initial steps in the receiver’s operational sequence. Due to its importance, several expressions of the Cramér–Rao Bound (CRB) and Maximum Likelihood Estimation (MLE) have been derived over the years. Previous contributions started from the assumption that the transmission process introduces an unknown phase, which hindered the explicit consideration of the time-delay parameter in the carrier-phase component in theoretical derivations. However, this contribution takes into account this additional term under the assumption that such an unknown phase is inferred and compensated for. This new condition leads to the derivation of a novel MLE. Subsequently, a closed-form expression of the achievable Mean Squared Error (MSE) for the time-delay and Doppler parameters is provided for the asymptotic region, assuming the signal is band-limited. Both expressions are validated via Monte Carlo simulations. This analysis reveals five distinct regions of operation of the MLE, refining existing knowledge and providing valuable insights into time-delay estimation

Read more

Signal and image processing / Localization and navigation and Space communication systems

Rethinking LEO Constellations Routing

Authors: Grislain Paul, Auddino Alexia, Barraqué Anna, Lamothe François, Hotescu Oana, Lacan Jérôme, Radzik José and Lochin Emmanuel

International Journal of Satellite Communications and Networking, March, 2024.

Download document

This study investigates the Unsplittable Multi-Commodity Flow (UMCF) as a routing algorithm for LEO constellations. Usually, LEO routing schemes enable the Floyd-Warshall algorithm (Shortest Path) to minimize the end-to-end latency of the flows crossing the constellation. We propose to solve the UMCF problem associated with the system as a solution for routing over LEO. We use a heuristic algorithm based on randomized rounding known in the optimization literature to efficiently solve the UMCF problem. Furthermore, we explore the impact of choosing the first/last hop before entering/exiting the constellation. Using network simulation over Telesat constellation, we show that UMCF maximizes the end-to-end links usage, providing better routing while minimizing the delay and the congestion level, which is an issue today over new megaconstellations.

Read more

Networking / Space communication systems

Talk

Calcul Quantique : Graal de l’optimisation ou Mirage de la puissance ?

Author: Gondran Alexandre

Seminar of TeSA, Toulouse, February 9, 2024.

Download document

Read more

Networking / Other

Conference Paper

Discrimination between Noise and Distortion in EVM Measurements

Authors: Sombrin Jacques B., Ros Benjamin and Chaumet Aurélien

In Proc. 2024 102nd ARFTG Microwave Measurement Conference (ARFTG), pp. 1-4, San Antonio, TX, USA, 21-24 Jan. 2024.

Download document

EVM (Error Vector Measurement) is used to measure the end-to-end quality of digital communication links. It comes from noise, linear and non-linear distortion, and interference if any. I propose a method to discriminate between random noise that is independent of the signal and distortion that depends on the signal. Interference is more complex to discriminate as it is not random but can be either synchronous with the signal or not. Echoes such as multipath cause linear distortion if they are static. However, variable echoes, such as those created in a reverberation chamber must be treated specifically.

Read more

Signal and image processing / Space communication systems

Journal Paper

On the GNSS Synchronization Performance Degradation under Interference Scenarios: Bias and Misspecified CRB

Authors: Ortega Espluga Lorenzo, Lubeigt Corentin, Vilà-Valls Jordi and Chaumette Eric

Navigation-Journal of Navigation, doi: 10.33012/navi.606, December 2023.

Download document

Global navigation satellite systems (GNSS) are a key player in a plethora of applications, ranging from navigation and timing, to Earth observation or space weather characterization. For navigation purposes, interference scenarios are among the most challenging operation conditions, which clearly impact the maximum likelihood estimates (MLE) of the signal synchronization parameters. While several interference mitigation techniques exist, a theoretical analysis on the GNSS MLE performance degradation under interference, being fundamental for system/receiver design, is a missing tool. The main goal of this contribution is to provide such analysis, by deriving closed-form expressions of the misspecified Cramér-Rao (MCRB) bound and estimation bias, for a generic GNSS signal corrupted by an interference. The proposed bias and MCRB expressions are validated for a linear frequency modulation chirp signal interference.

Read more

Signal and image processing / Localization and navigation and Space communication systems

Conference Paper

Time-Delay and Doppler Estimation with a Carrier Modulated by a Band-Limited Signal

Authors: Bernabeu Frias Joan Miguel, Ortega Espluga Lorenzo, Blais Antoine, Gregoire Yoan and Chaumette Eric

In Proc. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Los Sueños, Costa Rica, December 10-13, 2023.

Download document

Since time-delay and phase estimation is a fundamental task in a plethora of engineering fields, several CRB and MLE expressions have been derived for the past decades. In all these previous works, a common hypothesis is that the wave transmission process introduces an unknown phase which prevents from estimating both delay and transmission phase components. By revisiting this problem, including the derivation of the MLE and the associated CRB, we show that this well-admitted assertion is not true strictly: both informations can be estimated, but generally with a sub-optimal achievable MSE in the asymptotic region. Moreover, since practical problems exist where the transmission phase can be estimated apart, adding this additionnal measure to the observation model provides a setting allowing to explore the contribution of each signal component (carrier frequency, baseband signal and transmission phase measure) to the achievable MSE of time-delay and phase estimation in the asymptotic region.

Read more

Signal and image processing / Aeronautical communication systems and Space communication systems

ADDRESS

7 boulevard de la Gare
31500 Toulouse
France

CONTACT


CNES
Thales Alenia Space
Collins Aerospace
Toulouse INP
ISEA-SUPAERO
IPSA
ENAC
IMT Atlantique