Publication

Journal papers, Talks, Conference papers, Books, Technical notes

Search

Conference Paper

Theoretical Performance Analysis of GNSS Tracking Loops

Authors: Labsir Samy, Pages Gaël, Ortega Espluga Lorenzo, Vilà-Valls Jordi and Chaumette Eric

In Proc. IEEE/Institute of Navigation (ION) Positioning, Location, and Navigation Symposium (PLANS), Monterey, California-USA. April 24-28, 2023.

Download document

This paper aims to characterize the estimation precision at the output of the GNSS receiver tracking stage. We define an original statistical modelling of the GNSS tracking loop, which can then be exploited by an optimal linear Kalman Filter (KF) in order to obtain an analytical expression of the steady-state regime. The latter is designed to encompass dynamic information of the GNSS receiver. Two observation models are of interest: the first one considers the propagation delay and Doppler parameters, and the second one also including the Doppler rate, i.e., the acceleration, which is known to be relevant for high dynamics scenarios and can easily be included into the acquisition step. Within this context, the steady-state asymptotic performance of the tracking stage is obtained by solving an algebraic discrete Riccati equation. In both cases, simulation results are provided to show the validity of the proposed approach and the resulting steady-state performance.

Read more

Signal and image processing / Localization and navigation and Space communication systems

GNSS L5/E5 Maximum Likelihood Synchronization Performance Degradation under DME Interferences

Authors: Ortega Espluga Lorenzo, Lubeigt Corentin, Vilà-Valls Jordi and Chaumette Eric

In Proc. IEEE/Institute of Navigation (ION) Positioning, Location, and Navigation Symposium (PLANS), Monterey, California-USA. April 24-28, 2023.

Download document

Global Navigation Satellite Systems (GNSS) are a key player in a plethora of applications. For navigation purposes, interference scenarios are among the most challenging operation conditions, which clearly impact the maximum likelihood estimates (MLE) of the signal synchronization parameters. While several interference mitigation techniques exist, a theoretical analysis on the GNSS MLE performance degradation under interference, being fundamental for system/receiver design, is a missing tool. The main goal of this contribution is to introduce a mathematical tool to evalute the effect of any type of interference on any GNSS signal. Regarding such tool, we provide closedform expressions of the misspecified Cram´er-Rao (MCRB) bound and estimation bias, for a generic GNSS signal corrupted by an interference. The proposed expressions are used to analyze the GNSS performance degradation induced by the distance measuring equipment (DME) system.

Read more

Signal and image processing / Localization and navigation and Space communication systems

A simple and robust K-factor computation method for GNSS integrity needs

Authors: Mimouni Kin, Maliet Odile and Antic Julie

In Proc. 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 399-407, Monterey, CA, USA, 24-27 April 2023.

Download document

The aviation Minimum Operational Performance Standard defines the SBAS protection levels as the product of the estimated standard deviation of the positioning error and a scaling factor called K-factor. The K-factor depends on the time window of interest and on the correlation between errors in the time window. The K-factors defined in aviation are difficult to generalize to other specifications in other domains, such as rail and maritime applications. This article presents a simple formula to calculate the K-factor for any value of integrity risk and time interval. The resulting K-factor is shown to be mathematically rigorous under the hypothesis of Gaussian error distribution but without any assumption on the correlation structure of the successive position estimates. The Gaussian assumption can be relaxed and replaced by overbounding with a Gaussian distribution with a very good approximation. This formula can be used in any GNSS application where integrity is needed.

Read more

Signal and image processing / Localization and navigation

Journal Paper

On the accuracy limits of misspecified delay-Doppler estimation

Authors: Mc Phee Hamish Scott, Ortega Espluga Lorenzo, Vilà-Valls Jordi and Chaumette Eric

Signal Processing, article 108872, vol. 205, April, 2023.

Download document

This work derives compact closed-form expressions of the misspecified Cramér–Rao bound and pseudo-true parameters of time-delay and Doppler for a high dynamics signal model. Those expressions are validated by analyzing the mean square error (MSE) of the misspecified maximum likelihood estimator. A noteworthy outcome of these MSE results is that, for some magnitudes of acceleration and signal-to-noise ratios, neglecting the acceleration is beneficial in the MSE sense. The variance performance improvement is obtained at the cost of a systematic error in the true parameter estimation. This can be seen as a specific case of the trade-off between bias and variance. Neglecting the acceleration can improve the Doppler estimation when the error induced on the misspecified model is less than the variance increase due to including an extra parameter to estimate. Then, for some non-zero acceleration magnitudes and short integration times, the Doppler estimation using a misspecified model outperforms a correctly specified model in the MSE sense.

Read more

Signal and image processing / Localization and navigation and Space communication systems

Untangling first and second order statistics contributions in multipath scenarios

Authors: Lubeigt Corentin, Ortega Espluga Lorenzo, Vilà-Valls Jordi and Chaumette Eric

Signal Processing, vol. 205, Art. no 108868, April, 2023.

Download document

In ranging-based applications, ignoring the presence of multipath often leads to a bias upon the estimated range, which actually originates from misspecified estimation problem because the assumed data signal model, here without multipath, is not equal to the true one. Such misspecification also results in an error covariance matrix around the biased estimates, so-called pseudotrue parameters, that differs from the Cramér–Rao bound applied to the true model. This error covariance matrix can be lower bounded by a misspecified Cramér–Rao bound (MCRB). In this work, a closed-form expression of the MCRB under multipath conditions is proposed, which only depends on the baseband signal samples and both delay, Doppler and complex amplitude pseudotrue parameters. These MCRB expressions are fundamental (i) to understand and characterize the impact of multipath conditions when not taken into account, (ii) for system/signal design, and (iii) to derive new robust estimators. The proposed MCRBs are validated for a representative navigation signal, comparing the resulting bounds with the mean square error obtained by the misspecified maximum likelihood estimator with respect to the pseudotrue parameters.

Read more

Signal and image processing / Localization and navigation

PhD Defense Slides

LEO/GEO congestion control mechanism based on the contribution of artificial intelligence.

Author:

Defended on March 16, 2023.

Download document

This thesis focuses on the problem to compute an optimal sending rate as a function of the network state. The challenge is to assess which kind of sensing is needed to achieve this goal. Historically, this job was done by the TCP congestion control mechanism. However, we do not restrict this thesis to TCP but to any kind of protocol that needs to adapt its sending rate whatever the service is (i.e., reliable with retransmissions or not). Most congestion control variants are used to monitor the delay and the losses to compute their sending rate (for instance, within a congestion window for TCP; a rate control for BBR [7] or certain multimedia applications such as Skype [11]). Both metrics (i.e., delay and loss event) have shown to be under-exploited [46] or too limited when considering only the loss ratio. In this thesis, we seek to rethink these metrics and how they can be better used to compute the optimal sending rate. In this context, we propose to investigate the use of a Deep Learning (DL) algorithm that seems particularly relevant for congestion control tasks. We also focused on improving this DL algorithm to ease its deployment and usage in real-life scenarios.

Read more

Networking / Space communication systems

PhD Thesis

LEO/GEO congestion control mechanism based on the contribution of artificial intelligence.

Author: Perrier Victor

Defended on March 16, 2023.

Download document

Cette thèse se concentre sur le problème du calcul d’un taux d’envoi optimal en fonction de l’état du réseau. Historiquement, ce travail a été effectué par le mécanisme de contrôle de congestion TCP. La plupart des variantes de contrôle de congestion sont utilisées pour surveiller le retard et les pertes afin de calculer leur taux d’envoi. Dans cette thèse, nous cherchons à repenser ces métriques et comment elles peuvent être mieux utilisées pour calculer le taux d’envoi optimal. Dans ce contexte, nous proposons d'étudier l’utilisation d’un algorithme de Deep Learning qui semble particulièrement pertinent pour les tâches de contrôle de congestion. Nous nous sommes également concentrés sur l’amélioration de cet algorithme de Deep Learning afin de faciliter son déploiement et son utilisation dans des scénarios réels.

Read more

Networking / Space communication systems

Non-Coherent Detection of Continuous Phase Modulation for Low Earth Orbit Satellite IoT Communications Affected by Doppler Shift

Author: Jerbi Anouar

Defended on March 14, 2023.

Download document

L’internet des objets (IoT) est un concept dans lequel de nombreux objets sont dotés de capacités de transmissions ou de communications via une connexion au réseau internet. Desservies essentiellement par des réseaux terrestres, des applications IoT peuvent également concerner les opérateurs satellites, par exemple dans les zones peu couvertes, ce qui ouvre ainsi des problématiques intéressantes au niveau de la couche physique de ces objets communicants. L’approche qui nous intéresse dans le but d’avoir une couverture globale du réseau IoT est le Direct-to-Satellite IoT [1]. Il s’agit d’une approche où aucune passerelle terrestre intermédiaire n’est requise, ce qui facilite et accélère le déploiement du réseau. Dans ce cadre, le satellite collecte directement les données des objets communicants et les traite. Il devrait également être capable de communiquer avec l’objet si une liaison descendante est envisagée. Cette approche pose certains problèmes en termes de couche physique. Le grand défi ici est de pouvoir créer une liaison de communication longue portée fiable ayant des ressources limitées à la fois dans le satellite et dans l’objet communicant tout en faisant face aux problèmes d’une liaison satellite. Cela peut être réalisé soit en révisant et en adaptant des technologies IoT existantes pour prendre en charge les communications directes avec un satellite, soit en fournissant de nouvelles couches MAC et physiques spécifiquement dédiées à cette application. Nous nous focalisons plutôt sur la deuxième approche. Lors du choix d’une forme d’onde pour n’importe quelle application de communication sans fil, trois éléments majeurs doivent être étudiés ; performances, complexité et bande passante. En général, la forme d’onde choisie est celle qui offre le meilleur compromis entre ces trois éléments. Pour les applications de communication par satellites en orbites basses, plusieurs dégradations majeures affectant les performances doivent être prises en compte. Les instabilités de phase, le décalage Doppler élevé, les interférences dans un scénario multi-utilisateurs, les amplificateurs non linéaires généralement utilisés des deux côtés de la transmission, au niveau des objets communicants et à bord du satellite, etc. En termes de complexité, il est important qu’elle soit la plus faible possible car dans l’application visée, les objets communicants utilisent de petites piles et le satellite n’est pas qu’un simple relais, mais au contraire, il effectue une partie du traitement et compte tenu des ressources limitées à bord, la complexité est une contrainte majeure. La bande passante dans l’application ciblée peut également être un problème. Que ce soit des bandes de fréquences sous licence ou non, la bande passante disponible est limitée. La modulation de phase continue (CPM) est une classe de modulation qui englobe plusieurs familles de formes d’onde de modulation de phase. Elle possède différents paramètres qui peuvent être ajustés pour répondre aux besoins de l’application. Les travaux de recherche portant sur la conception de formes d’onde CPM avec des systèmes de communication par satellites pour obtenir de bonnes performances du point de vue spectre et énergie ont montré des résultats prometteurs. Le problème de l’efficacité énergétique a été discuté dans [2] et [3]. Une étude sur la manière de choisir des schémas CPM spectralement efficaces a été présentée dans [4]. L’interférence du canal adjacent (ACI) a également été évaluée dans [5] et la possibilité d’utiliser des schémas de codage pour résoudre certains des problèmes mentionnés en utilisant la bande de fréquence Ka peut être trouvée dans [6]. Bien que les travaux cités ne s’appliquent peut-être pas spécifiquement à l’application Satellite IoT, ils fournissent cependant de bonnes bases fondatrices pour dériver des solutions adaptées à notre problème. Certains standards basés sur les communications par satellite utilisent déjà un format CPM. On peut citer le standard de diffusion vidéo numérique DVB-RCS2 [7] qui a été éditée par le consortium international DVB project. Plus récemment, un schéma GFSK a également été adopté par Semtech comme candidat pour la technique Long Range Frequency Hopping Spread Spectrum (LR-FHSS) [8]. Compte tenu de tous ces détails, nous avons choisi de nous concentrer sur la forme d’onde CPM dans ce travail pour exploiter son potentiel dans l’application considérée et nous avons particulièrement étudié sa réception du point de vue du satellite (lien montant).

Read more

Digital communications / Space communication systems

PhD Defense Slides

Non-Coherent Detection of Continuous Phase Modulation for Low Earth Orbit Satellite IoT Communications Affected by Doppler Shift

Author: Jerbi Anouar

Defended on March 14, 2023.

Download document

L’internet des objets (IoT) est un concept dans lequel de nombreux objets sont dotés de capacités de transmissions ou de communications via une connexion au réseau internet. Desservies essentiellement par des réseaux terrestres, des applications IoT peuvent également concerner les opérateurs satellites, par exemple dans les zones peu couvertes, ce qui ouvre ainsi des problématiques intéressantes au niveau de la couche physique de ces objets communicants. L’approche qui nous intéresse dans le but d’avoir une couverture globale du réseau IoT est le Direct-to-Satellite IoT [1]. Il s’agit d’une approche où aucune passerelle terrestre intermédiaire n’est requise, ce qui facilite et accélère le déploiement du réseau. Dans ce cadre, le satellite collecte directement les données des objets communicants et les traite. Il devrait également être capable de communiquer avec l’objet si une liaison descendante est envisagée. Cette approche pose certains problèmes en termes de couche physique. Le grand défi ici est de pouvoir créer une liaison de communication longue portée fiable ayant des ressources limitées à la fois dans le satellite et dans l’objet communicant tout en faisant face aux problèmes d’une liaison satellite. Cela peut être réalisé soit en révisant et en adaptant des technologies IoT existantes pour prendre en charge les communications directes avec un satellite, soit en fournissant de nouvelles couches MAC et physiques spécifiquement dédiées à cette application. Nous nous focalisons plutôt sur la deuxième approche. Lors du choix d’une forme d’onde pour n’importe quelle application de communication sans fil, trois éléments majeurs doivent être étudiés ; performances, complexité et bande passante. En général, la forme d’onde choisie est celle qui offre le meilleur compromis entre ces trois éléments. Pour les applications de communication par satellites en orbites basses, plusieurs dégradations majeures affectant les performances doivent être prises en compte. Les instabilités de phase, le décalage Doppler élevé, les interférences dans un scénario multi-utilisateurs, les amplificateurs non linéaires généralement utilisés des deux côtés de la transmission, au niveau des objets communicants et à bord du satellite, etc. En termes de complexité, il est important qu’elle soit la plus faible possible car dans l’application visée, les objets communicants utilisent de petites piles et le satellite n’est pas qu’un simple relais, mais au contraire, il effectue une partie du traitement et compte tenu des ressources limitées à bord, la complexité est une contrainte majeure. La bande passante dans l’application ciblée peut également être un problème. Que ce soit des bandes de fréquences sous licence ou non, la bande passante disponible est limitée. La modulation de phase continue (CPM) est une classe de modulation qui englobe plusieurs familles de formes d’onde de modulation de phase. Elle possède différents paramètres qui peuvent être ajustés pour répondre aux besoins de l’application. Les travaux de recherche portant sur la conception de formes d’onde CPM avec des systèmes de communication par satellites pour obtenir de bonnes performances du point de vue spectre et énergie ont montré des résultats prometteurs. Le problème de l’efficacité énergétique a été discuté dans [2] et [3]. Une étude sur la manière de choisir des schémas CPM spectralement efficaces a été présentée dans [4]. L’interférence du canal adjacent (ACI) a également été évaluée dans [5] et la possibilité d’utiliser des schémas de codage pour résoudre certains des problèmes mentionnés en utilisant la bande de fréquence Ka peut être trouvée dans [6]. Bien que les travaux cités ne s’appliquent peut-être pas spécifiquement à l’application Satellite IoT, ils fournissent cependant de bonnes bases fondatrices pour dériver des solutions adaptées à notre problème. Certains standards basés sur les communications par satellite utilisent déjà un format CPM. On peut citer le standard de diffusion vidéo numérique DVB-RCS2 [7] qui a été éditée par le consortium international DVB project. Plus récemment, un schéma GFSK a également été adopté par Semtech comme candidat pour la technique Long Range Frequency Hopping Spread Spectrum (LR-FHSS) [8]. Compte tenu de tous ces détails, nous avons choisi de nous concentrer sur la forme d’onde CPM dans ce travail pour exploiter son potentiel dans l’application considérée et nous avons particulièrement étudié sa réception du point de vue du satellite (lien montant).

Read more

Networking / Space communication systems

Conference Paper

Improving AI Monitoring of Early Life Satellites Using Transfer Learning

Authors: Baron Audric, Lambert Pierre-Baptiste, Delande Pauline, Tourneret Jean-Yves, Lesouple Julien and Fabre Serge

In Proc. 17th International Conference on Space Operations (SpaceOps), Dubaï, United Arab Emirates, March 6-10, 2023.

Download document

In the last decades, many space domain actors such as the Centre National d’Etudes Spatiales (CNES) have begun to use Artificial Intelligence to monitor spacecraft housekeeping telemetry. These novel techniques are able to identify atypical behaviours and potential satellite anomalies that cannot be detected by more standard monitoring approaches. However, AI methods have an important drawback: they need a significant amount of data to be able to “learn” the nominal behaviour of a spacecraft and then detect novelties in new telemetry, which is not suitable for a satellite in the beginning of life where in-flight telemetry is very scarce. One way to bypass the scarcity of data is Transfer Learning (TL). Depending on the use case, operators may have already-available telemetry either from on-the-ground Assembly, Integration, and Test (AIT) of the spacecraft, from full-digital or hybrid simulators, or from in-flight telemetry of one or multiple “twin-spacecraft” in case of a constellation with already-launched units. This already-available telemetry is often close, but not perfectly similar, to in-flight telemetry of the newly-launched spacecraft to be monitored. The idea of TL is therefore to use this large and existing database (the source database), coupled with the first in-flight telemetry from the new spacecraft (the target database), to be able to mathematically-design a relevant AI learning model. In 2022, CNES and TéSA laboratory have worked together and have identified two TL methods to detect anomalies in telemetry of early life satellites with few data, by working directly on the telemetry dataset (the learning domain) or on the model learned from the target database. The first TL method consists in mathematically modifying the decision boundary estimated by a One-Class Support Vector Machine (OC-SVM) algorithm applied to the source database to match the target database. The second method based on “Domain Transfer” consists in building an “extended” learning domain made up with the relevant data from both the source and target databases, which is used to build a learning model. These two algorithms have been evaluated with real Earth Observation satellite telemetry. The preliminary outcomes of this research show promising results. Further work will consist in implementing these methods operationally so that AI monitoring methods can be used from the very beginning-of-life of CNES satellites. The main conclusion of this work is that TL can be an interesting tool to monitor spacecraft housekeeping telemetry during the first 6 months after the launch of a satellite.

Read more

Signal and image processing / Space communication systems

ADDRESS

7 boulevard de la Gare
31500 Toulouse
France

CONTACT


CNES
Thales Alenia Space
Collins Aerospace
Toulouse INP
ISEA-SUPAERO
IPSA
ENAC
IMT Atlantique