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ABSTRACT
Since time-delay and phase estimation is a fundamental task in a
plethora of engineering fields, several CRB and MLE expressions
have been derived for the past decades. In all these previous works,
a common hypothesis is that the wave transmission process intro-
duces an unknown phase which prevents from estimating both delay
and transmission phase components. By revisiting this problem, in-
cluding the derivation of the MLE and the associated CRB, we show
that this well-admitted assertion is not true strictly: both informa-
tions can be estimated, but generally with a sub-optimal achievable
MSE in the asymptotic region. Moreover, since practical problems
exist where the transmission phase can be estimated apart, adding
this additionnal measure to the observation model provides a set-
ting allowing to explore the contribution of each signal component
(carrier frequency, baseband signal and transmission phase measure)
to the achievable MSE of time-delay and phase estimation in the
asymptotic region.

Index Terms— Cramér-Rao bound, time-delay and phase esti-
mation, band-limited signals.

1. INTRODUCTION
Time-delay and Doppler estimation appear in a plethora of engi-

neering fields such as navigation, radar, reflectometry, sonar or com-
munications, to name a few [1–9], being the estimation of such pa-
rameters a key first stage of the receiver [5, 8, 9]. For any of these
applications, when designing and assessing estimation techniques, it
is of fundamental importance to know the ultimate achievable per-
formance in the mean squared error (MSE) sense, an information
which can be brought by the Cramér-Rao bounds (CRB) [10], the
most popular lower bound on the MSE, mainly due to its simplicity
of calculation for various problems (see [4, §8.4] and [11, Part III]).
In addition, the CRB gives an accurate estimation of the MSE of
the maximum likelihood estimator (MLE), in the asymptotic region
of operation and under certain conditions, i.e., in the large sample
regime and/or high signal-to-noise (SNR) regime of the Gaussian
conditional signal model (CSM) [12,13]. So, it is not surprising that
several CRB expressions for the delay-Doppler estimation problem
have been derived for the past decades, for finite narrow-band sig-
nals [2, 14–22], finite wideband signals [14, 17, 20, 23–26] or infi-
nite [27] bandwidth signals. In all these previous works, a common
hypothesis is that the wave transmission process introduces an un-
known phase component which prevents from exploiting the delay
phase component from the carrier. This unknown phase component
arises from the common hypothesis of an imperfect knowledge of
the transmitter and/or receiver antenna (imperfect knowledge of the
center of phase and/or the hyper-frequency electronics) and/or of the
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radio-frequency electronics of transmitter and/or receiver. In such
studies, all the phase components are grouped and combined with
the amplitude component leading to an unknown complex ampli-
tude. This is likely the reason why a thorough treatment of the case
where such an unknown phase component does not exist seems to
have been overlooked in the open literature. Hence the purpose of
this communication, which provides a derivation of the MLE for
the CSM (different from the commonly used one) and the associ-
ated CRB for the standard narrow-band signal model, which allows
to explore the contribution of each signal component (carrier fre-
quency and baseband signal) to the achievable MSE of time-delay
and Doppler estimation in the asymptotic region. For such a sce-
nario to occur, it is enough to consider a ground-based navigation
scenario where the transmitter is static (an anchor) and the receiver
(a tag) plans to move from a known location to another known loca-
tion (way-points). At each known location, the receiver can estimate
the phase component due to the transmission process and compen-
sate for it during its motion towards the next known location.

The contents of the study have been structured in four sections.
Section 2 presents the signal model and the associated MLE. The
signal model employed is an instance of the CSM, which is known
to be asymptotically efficient as the number of samples or the signal-
to-noise ratio (SNR) increase [13]. Section 3 derives the CRB ex-
pressions for the proposed signal model, starting from the Slepian-
Bangs formula [10]. Then, the Nyquist-Shannon theorem is applied
under the assumption of a band-limited signal, which give way to a
closed-form version of the CRB. The obtained CRB and Maximum-
Likelihood Estimator equations are validated in Section 4 via Monte
Carlo simulations. Next, the convergence of the MLE’s MSE to
the derived CRB is shown for certain SNR regimes, referred to as
”Threshold”. Finally, the key observations and contributions of the
paper are collected in Section 5.

2. SIGNAL MODEL AND MLE
To define the signal model of interest, consider the line of sight

of a band-limited signal s(t) with bandwidth B over a carrier with
frequency fc from a transmitter T at position P T (t) to a receiver R
at position PR(t). The distance travelled by the transmitted signal is
P TR = ∥P T (t−τ0(t))−PR(t)∥≈ (PT−PR)

c
+ v

c
t, that is, a first

order approximation where we can redefine τ = (PT−PR)
c

, b = v
c

and with v the radial velocity. The narrowband received signal at the
output of the Hilbert filter can be expressed as [28, 29]

x (t) = αa (t− τ) e−j2πfc(τ+b(t−τ)) + n (t) , (1)

x(t) = αa (t;η) ejφ(t;η) + n(t), (2)

with n(t) a complex circular white Gaussian noise with unknown
variance σ2

n, α a real positive value which represents the amplitude,



φ(η) = −2πfc(τ+b(t−τ)) and η = [τ , b]T . Note that this model
differs from [28] since α is a real positive value and τ is included
in the phase. Considering the acquisition of N = N2 − N1 + 1
samples at the sampling frequency Fs = B = 1/Ts, The discrete
vector signal model yields to

x = αa (η) ejφ(η) + n (3)

with ϵ = (σ2
n, ζ)

T and ζ = (α,η)T the vectors of unknown pa-
rameters. Note that this is a particular instantiation of the general
conditionnal signal model (CSM) [30]. In the following, we denote
a′(η) = a(η)ejφ(η) and the following rearrangement is considered

a′ (η) =
(
ℜ
{
a′(η)

}
,ℑ

{
a′(η)

})T
, (4)

∂a′ (η)

∂η
=

(
∂

∂η
ℜ
{
a′(η)

}
,
∂

∂η
ℑ
{
a′(η)

})T

, (5)

where ℜ{·} and ℑ{·} represent the real and imaginary part of a
complex number.

2.1. MLE with inequality constraint

The MLE is derived from the well known mean-squared error
minimization procedure. To begin with, since∥∥x− a′ (η)α

∥∥2
=

∥∥x− a′ (η)α
∥∥2

=
∥∥Πa′(η)

(
x− a′ (η)α

)∥∥2
+

∥∥∥Π⊥
a′(η)

(
x− a′ (η)α

)∥∥∥2

=
∥∥a′ (η) (α̂u (η)− α)

∥∥2
+

∥∥∥Π⊥
a′(η)x

∥∥∥2

, (6)

where ΠA = A(AHA)−1AH and Π⊥
A = I −ΠA are the orthog-

onal projectors over S and S⊥, respectively. S = span(A), with
A a matrix, is the linear span of the set of its column vectors. In
addition,

α̂u (η) =
a′ (η)T x

a′ (η)T a′ (τ)
=

ℜ
{
a′ (η)H x

}
a′ (η)H a′ (η)

,

denotes the unconstrained estimator of α [30], when the condition
α > 0 does not apply. The minimisation of the cost function in (6),
yields(

η̂
α̂

)
= arg min

η,α≥0

{
(α̂u (η)− α)2

∥∥a′ (η)
∥∥2

+
∥∥∥Π⊥

a′(η)x
∥∥∥2

}
.

(7)

Since
∥∥Π⊥

a′(η)x
∥∥2

= ∥x∥2 −
∥∥Πa′(η)x

∥∥2, (7) leads to(
η̂
α̂

)
= arg min

η,α≥0

{
∥x∥2 + (α− α̂u (η))2

∥∥a′ (η)
∥∥2

−ℜ

{(
a′ (η)

∥a′ (η)∥

)H

x

}2}
. (8)

Since d(α−α̂u(η))
2/dα = 2(α−α̂u(η)), the following conditions

apply for any given η

• if α̂u (η) > 0 then

{
min
α≥0

{
(α− α̂u (η))2

}
= 0

α̂ (η) = α̂u (η)

and (α̂ (η)− α̂u (η))2 ∥a′ (η)∥2 = 0.

• if α̂u (η) ≤ 0 then

{
min
α≥0

{
(α− α̂u (η))2

}
= α̂2

u (η)

α̂ (η) = 0

and (α̂ (η)− α̂u (η))2 ∥a′ (η)∥2 = ℜ
{

a′(η)Hx
∥a′(η)∥

}2

. Hence, ∀η the
minimization of (8) w.r.t. α becomes

min
α≥0

{∥∥x− a′ (η)α
∥∥2

}
=

∥x∥2 −ℜ
{
a′ (η)H x

∥a′ (η)∥

}2

|ℜ{a′(η)Hx}>0, (9)

where 1D is the indicator function of subset D of R, and the solution
of (8) w.r.t. (η, α ≥ 0) is then given by

η̂ = arg min
{η|ℜ{a′(η)Hx}>0}

{
∥x∥2 −ℜ

{
a′ (η)H x

∥a′ (η)∥

}2
}
,

(10)

or equivalently,

η̂ = arg max
{η|ℜ{a′(η)Hx}>0}

{
ℜ
{
a′ (η)H x

∥a′ (η)∥

}2
}
, (11)

which for (3) becomes

η̂ = arg max
{η|ℜ{e−jφ(η)(a(η)Hx)}>0}

{
ℜ
{
e−jφ(η) a

H (η)x

∥a (η)∥

}2
}
.

(12)

3. CRAMÉR-RAO BOUND (CRB)

As shown in [31], in case of parameter inequality constraint the
CRB is unchanged at a regular point, that is for α > 0 the equality
constraint is not active and is obtained through the inversion of the
standard Fisher Information Matrix (FIM),

CRBϵ|ϵ
(
ϵ0
)
= F

(
ϵ0
)−1

. (13)

Given the gaussian properties of the signal model under study, the
FIM is derived from the Slepian-Bangs formula [10] where x ∼
N (mx (ϵ) ,Cx (ϵ)).

(F (ϵ))k,l =
∂mx (ϵ)

∂ϵk

T

C−1
x (ϵ)

∂mx (ϵ)

∂ϵl

+
1

2
tr

(
C−1

x ( ϵ)
∂Cx (ϵ)

∂ϵk
C−1

x (ϵ)
∂Cx (ϵ)

∂ϵl

)
. (14)

The current study focuses on the derivation of CRBη|ϵ (ϵ) =

F−1
η|ϵ(ϵ), which for the signal model proposed in (3) is given by [10]

Fη|ϵ(ϵ) =
2α2

σ2
n

Φ(η), Φ(η) =

(
∂a′ (η)

∂ηT

)T

Π⊥
a′(η)

∂a′ (η)

∂ηT

(15)



The term Φ(η) can be also expressed as a function of a′ with aim to
provide a closed-form expression for complex band-limited signals.
Since

Φ(η) =

(
∂a′(η)

∂ηT

)T
∂a′(η)

∂ηT
−

1

∥a(η)∥2

(
a′(η)T

∂a′(η)

∂ηT

)T(
a′(η)T

∂a′(η)

∂ηT

)
(16)

and

∂a′ (η)

∂ηT

T
∂a′ (η)

∂ηT
= ℜ

{
∂a′ (η)

∂ηT

H
∂a′ (η)

∂ηT

}
, (17)

a′ (η)T
∂a′ (η)

∂ηT
= ℜ

{
a′ (η)H

∂a′ (η)

∂ηT

}
. (18)

Equation (16) can be rewritten as

Φ(η) = ℜ

{(
∂a′(η)

∂ηT

)H
∂a′(η)

∂ηT

}

− 1

∥a′(η)∥ℜ
{
a′(η)H

∂a′(η)

∂ηT

}T

ℜ
{
a′(η)H

∂a′(η)

∂ηT

}
. (19)

The first element of (19) can be expanded as follows:

ℜ

{(
∂a′(η)

∂ηT

)H
∂a′(η)

∂ηT

}
= ℜ

{(
∂a(η)

∂ηT

)H
∂a(η)

∂ηT

}

+ ℜ

{(
a(η)

∂φ(η)

∂ηT

)H (
a(η)

∂φ(η)

∂ηT

)}

−ℑ
{
∂a(η)

∂ηT

H (
a(η)

∂φ(η)

∂ηT

)
−
(
∂a(η)

∂ηT

H (
a(η)

∂φ(η)

∂ηT

))H
}

(20)

Note that

ℜ
{
a′ (η)H

∂a′ (η)

∂ηT

}
= (21)

ℜ
{
a (η)H

∂a (η)

∂ηT

}
−ℑ

{
a(η)H

(
a(η)

∂φ(η)

∂ηT

)}
,

and (19) can be expressed as

Φ(η) = ℜ

{(
∂a(η)

∂ηT

)H
∂a(η)

∂ηT

}

+ ℜ

{(
a(η)

∂φ(η)

∂ηT

)H (
a(η)

∂φ(η)

∂ηT

)}

−ℑ

{
∂a(η)

∂ηT

H (
a(η)

∂φ(η)

∂ηT

)
−

(
∂a(η)

∂ηT

H (
a(η)

∂φ(η)

∂ηT

))H
}

+
1

∥a(η)∥2

(
ℜ
{
a(η)H

∂a(η)

∂ηT

}
−ℑ

{
a(η)H

(
a(η)

∂φ(η)

∂ηT

)})T

×
(
ℜ
{
a(η)H

∂a(η)

∂ηT

}
−ℑ

{
a(η)H

(
a(η)

∂φ(η)

∂ηT

)})
. (22)

Since φ(η) = −2πfc(τ + b(t− τ)) and a(η) = a(t− τ), we can
compute the following terms:( ∂a(η)

∂τ
∂a(η)
∂b

)
=

(
−a(1)(t− τ)

0

)
,

( ∂φ(η)
∂τ

∂φ(η)
∂b

)
= −

(
2πfc(1− b)
2πfc(t− τ)

)
,

(23)
with a(1)(t) = ∂a(t)

∂t
.

3.1. CRB for band-limited signals
”Assuming a band-limited signal, we derive a closed-form ex-

pression for (22). According to the Nyquist-Shannon theorem,

lim
(N′

1,N
′
2)→(−∞,+∞)

Ts

∥∥∥ ∂a(η)
∂τ

∥∥∥2

=
+∞∫
−∞

∣∣∣ ∂a(t−τ)
∂τ

∣∣∣2 dt = W3,3,

lim
(N′

1,N
′
2)→(−∞,+∞)

Ts ∥a (η)∥2 =
+∞∫
−∞

|a (t− τ)|2 dt = w1,

lim
(N′

1,N
′
2)→(−∞,+∞)

Tsa (η)
H ∂a(η)

∂τ
=

+∞∫
−∞

a (t− τ)∗ ∂a(t−τ)
∂τ

dt = w3,

lim
(N′

1,N
′
2)→(−∞,+∞)

Ts

(
a(η) ∂φ(η)

∂τ

)H (
a(η) ∂φ(η)

∂b

)
= (1− b)(2πfc)

2
+∞∫
−∞

(t− τ)|a (t− τ) |2dt = (1− b)(2πfc)
2w2,

lim
(N′

1,N
′
2)→(−∞,+∞)

Ts

(
a(η) ∂φ(η)

∂b

)H (
a(η) ∂φ(η)

∂b

)
= (2πfc)

2
+∞∫
−∞

(t− τ)2|a (t− τ) |2dt = (2πfc)
2W2,2,

lim
(N′

1,N
′
2)→(−∞,+∞)

Ts

(
∂a(η)
∂τ

)H (
a(η) ∂φ(η)

∂b

)
= (2πfc)

+∞∫
−∞

(t− τ) ∂a
∗(t−τ)
∂τ

a (t− τ) dt = (2πfc)ϖ
∗.

Then,

lim
(N′

1,N
′
2)→(−∞,∞)

Φ(η) = Fs

[
Φ1,1 Φ1,2

Φ2,1 Φ2,2

]
,

with

Φ1,1 = W3,3 + ℜ{w1} (1− b)2 w2
c

− ℜ{w3}2

w1
+ ℑ{w3} (1− b)2wc,

Φ1,2 = Φ∗
2,1 = ℜ{w2} (1− b)w2

c

− ℜ{w3}ℑ {w2}
w1

wc −ℑ{ϖ∗}wc,

Φ2,2 = W2,2w
2
c − ℑ{w2}2

w1
w2

c . (24)

and wc = 2πfc. After some algebraic manipulations, w1, w2,
w3, ϖ, W2,2 and W3,3 can be reformulated as follows for −N1 ≤
n, n′ ≤ N2,

w1 =
1

Fs
aHa, w2 =

1

F 2
s

aHDa, w3 = aHΛa,

W2,2 =
1

F 3
s

aHD2a, ϖ =
1

Fs
aHDΛa, W3,3 = Fsa

HVa,
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Fig. 1: CRBτ |η(ϵ) (22), CRBr
τ |η(ϵ) [28] and MLE (8) computed
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Fig. 2: CRBb|η(ϵ) (22) and MLE (8) computed for Fs = [1, 2, 5].

with D = diag(N1, . . . , N2) and

(Λ)n,n′ =

∣∣∣∣∣∣ n′ ̸= n : (−1)|n−n′|
n−n′

n′ = n : 0
,

(V)n,n′ =

∣∣∣∣∣∣ n′ ̸= n : (−1)|n−n′| 2
(n−n′)2

n′ = n : π2

3

4. SIMULATIONS

This section describes the simulation process to validate both the
MLE and CRB expressions of the time delay and Doppler derived in
sections 2.1 and 3, respectively. The goal is to illustrate the MSE of
the MLE as a function of the SNR at the output of the match filter
SNRout. Higher values of SNRout are expected to benefit the es-
timation performance of the MLE, up to an optimal value defined by
the CRB.
The testing setup employs one code period of a GPS L1 C/A sig-
nal [29], composed by a periodic BPSK Gold Code of 1023 chips,

with a time period of Tc = 1ms and a carrier frequency of fc =
1575.42MHz. We set a Doppler frequency of 500Hz and we set
the integration time to 1 ms. The SNR at the output of the MLE
estimator (a.k.a matched filter [10]) for the true parameter η0 can be
defined as follows:

SNRout =
ℜ
{

e−jφ(η)a(η)H

∥a(η)∥

(
α0a

(
η0

)
e−jφ(η0)

)}2

E

[
ℜ
{

e−jφ(η)a(η)Hn
∥a(η)∥

}2
]

∣∣∣∣∣∣∣∣
η=η0

=

(
α0

)2 ∥∥a (η0
)∥∥2

(σ0
n)

2

2

=
2 ∥a∥2

(σ0
n)

2

(
α0)2 . (25)

and (15) becomes Fη|ϵ(ϵ) =
SNRout

aHa
Φ(η).

Figs. 1 and 2, illustrate both time-delay and doppler MSE from
their MLEs, along with the CRB expressions derived in section 3.
Such equations are verified employing 1000 Monte-Carlo simula-
tions for Fs = 1, 2, 5 MHz. In addition, the CRB expression de-
rived in [28] is included as well (which we refer to as CRBr

τ |η(ϵ) )
for comparison. As a quick reminder, the signal model employed in
the present study leaves the signal’s carrier-phase component out of
α, as opposed to [28], since in this case it is of interest to assess its
effect on performance.

From Fig. 1, we can see that the MSE of the MLE for the time
delay converges asymptotically to the derived CRB, which validates
both the MLE and the closed-form CRBτ |η(ϵ) expressions pro-
vided. Similarly, in Fig. 2, it can be observed that the MSE of the
Doppler’s MSE converges to the derived CRBb|η(ϵ). In the case
of the time delay estimation, two interesting points can be drawn.
Firstly, it is observed that increasing the sampling frequency bene-
fits the system threshold. That is, increasing Fs reduces the amount
of SNRout required for convergence to the bound. Secondly, in the
region before the convergence, there is a SNRout interval in which
the derived MLE behaves as the classical unconstrained MLE, since
the MSE of the MLE converges to the bound derived in [28].

5. CONCLUSION
The goal of this paper was to define the optimal estimation per-

formance of the time delay and Doppler for a particular CSM, which
takes into account the carrier-phase of the signal. This assessment
was structured in four sections. Section 2 presents the signal model
employed, including the associated MLE for both time-delay and
Doppler parameters in subsection 2.1. Then, section 3 provides a
step-by-step derivation process of the CRB defining the theoretical
accuracy limits for both MLEs. Section 4 validates the previous ex-
pressions by running Montercarlo simulations using a GPS L1 C/A
signal, which showed the convergence of both MLEs to their respec-
tive CRBs and we compare the results with respect to other model
proposed in the state of the art. This contribution provides an esti-
mation tool which could be used to assess the optimal performance
limits in the estimation of the time-delay and Doppler for new oper-
ational systems based on phase measurements.
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