
Scalable Syndrome-based Neural Decoders for
Bit-Interleaved Coded Modulations

Gastón De Boni Rovella∗ †, Meryem Benammar†, Tarik Benaddi‡ , Hugo Meric§
∗TéSA Laboratory, Toulouse, France

†ISAE-SUPAERO, Université de Toulouse, France
‡Thales Alenia Space, Toulouse, France

§Centre National d’Études Spatiales, Toulouse, France
Email: {gaston.de-boni-rovella, meryem.benammar}@isae-supaero.fr

Abstract—In this work, we introduce a framework that enables
the use of Syndrome-Based Neural Decoders (SBND) for high-
order Bit-Interleaved Coded Modulations (BICM). To this end,
we extend the previous results on SBND, for which the validity
is limited to Binary Phase-Shift Keying (BPSK), by means of a
theoretical channel modeling of the bit Log-Likelihood Ratio (bit-
LLR) induced outputs. We implement the proposed SBND system
for two polar codes (64, 32) and (128, 64), using a Recurrent
Neural Network (RNN) and a Transformer-based architecture.
Both implementations are compared in Bit Error Rate (BER)
performance and computational complexity.

I. INTRODUCTION

With the recent introduction of 5G and beyond technologies,
the interest in fast and reliable communication systems has
increased in an unprecedented manner. At the same time, the
ever-growing computational power has given machine learning
a crucial role in future communication systems as a fast and
robust alternative to some classical physical layer solutions
like channel demodulation and decoding.

Early works in channel decoding [1], [2] promptly faced the
curse of dimensionality, where the space of valid codewords
was too large for a common Deep Neural Network (DNN)
to explore and learn. To tackle this problem, two main scal-
able alternatives were proposed: model-based solutions, that
directly exploit the structure of the code [3]–[5], and model-
free solutions, that do not depend on the code and allow the
integration of more sophisticated machine learning techniques
[6]–[8]. Model-based solutions are often neural extensions of
the Belief Propagation (BP) algorithm that help tackle the
negative impact of short cycles in BP decoding. However,
implementations for semi-dense or dense codes, such as BCH
or Polar codes [9], remain subpar.

A model-free approach, which we denote as Syndrome-
Based Neural Decoder (SBND), was introduced more recently
by Bennatan et al. [6], and has since been implemented using
different deep learning techniques [7], [8], [10], [11]. The main
idea behind the SBND is to produce a symmetric decoder that
does not depend on the codeword and can thus be trained
with a unique codeword. Although this provides us with a
very promising framework, these works rely extensively on
the properties of Binary Phase-Shift Keying (BPSK) and can
be easily extended to Quadrature Phase-Shift Keying (QPSK).
However, in order to allow for practical implementations,

SBND has to be extended to higher-order modulations such as
M -Quadrature Amplitude Modulation (QAM) and M -Phase-
Shift Keying (PSK) for arbitrary M . In this work, we propose a
decoder that can be directly applied to such linear modulation
techniques. More particularly, we focus on Bit-Interleaved
Coded Modulations (BICM) [12], [13] which, unlike classical
coded modulation schemes, present the advantages of allow-
ing the usage of any Forward Error Correction (FEC) code
designed for memoryless channels, and of being more robust
to burst errors.

The main difference between higher-order modulations and
BPSK/QPSK is that the decoder is not directly fed with the
channel output, but rather, with bit Log-Likelihood Ratios (bit-
LLR) produced by the soft demodulator. Hence, in order to
design an SBND for the BICM, we first start by characterizing
the channel induced by bit-LLRs for two common modulation
schemes. Next, we propose an SBND that extends that of [7],
[8], [10], [11] to the case of high-order BICM. Finally, we
analyze the performance of two main architectures for the
neural-based decoders, namely, RNN-based and transformer-
based, and compare their respective complexities. Finally,
Section V concludes the work.

The remainder of this work is organized as follows. Section
II introduces the system model and some preliminaries on
channel modeling for BICM. In Section III, we describe
the proposed decoding framework. Then, Section IV presents
two possible implementations for the deep learning-based
portion of the decoder, compares experimentally their BER
performances and analyzes their complexity.
Notations: Capital italic letters (e.g. X and X) represent
random variables and vectors whereas Roman and bold letters
(e.g. x and x) denote their respective realizations. Matrices are
represented by non-italic capital letters (e.g. H) and In denotes
the n × n identity matrix. The Hadamard product between
vectors is represented by (.). Sets are denoted by calligraphic
letters X , and for finite sets, |X | denotes the cardinality. PX(x)
(resp. PX|Y (x|y)) represents the probability distribution (resp.
conditional) evaluated in x (resp. (x, y)). Markov chains are
denoted X ↔ Y ↔ Z to mean PZ|Y,X = PZ|Y . P (resp. 1)
denotes the generic probability (resp. indicator) of an event.
[1 : n] denotes the set of integers from 1 to n and ⌊·⌋ represents
the floor function. The xor operation is noted ⊕.

II. SYSTEM MODEL AND PRELIMINARIES

A. Bit-Interleaved Coded Modulations (BICM)

Fig. 1: General system model.

Let us consider a BICM communication setting as depicted
in Figure 1. In such a setting, an input binary message U of k
bits, assumed to be independent and uniformly distributed, is
first mapped through an (n, k) linear block FEC encoder into a
codeword C of n bits. Let us denote the parity check matrix
of this code as H. Then, a perfectly random interleaver Π,
assumed to be known to the receiver as well, shuffles the bits
of C into an n-bit sequence C̃, which is then passed through
a modulator. The complex-valued constellation is denoted by
X and is assumed to be of order m (i.e. M = 2m states). The
sequence of n′ = n/m symbols X is then fed to an Additive
White Gaussian Noise (AGWN). Its output can be modeled as

Y = X +W , s.t. W i.i.d∼ CN (0, σ2In′). (1)

The demodulator, upon reception of the channel output Y ,
computes the bit-Log Likelihood Ratios (bit-LLR) associated
with each bit C given the corresponding received signal Y .
The resulting bit-LLRs L̃ are then de-interleaved back to the
original bit order. Based on the obtained bit-LLRs L, the FEC
decoder g(·) produces an estimate û of the k transmitted bits
given by Û = g(L).

In this work, we investigate the design of decoders that
minimize the Bit-Error Probability (BEP) defined by

Pe(g) ≜
1

k

k∑
i=1

P(Ûi ̸= Ui). (2)

B. BICM equivalent channel models

The main advantage of the BICM communication setting,
as opposed to standard (non-interleaved) coded modulation
schemes, is that a perfectly random interleaver maps every
bit in C evenly to each one of the m bit positions in the
constellation mapping. Hence, throughout the transmission, all
bits in the sequence C end up experiencing the same channel,
which is averaged out over all bit positions.

An equivalent channel model for BICM was introduced in
[12] and is given in Figure 2, where P s

Y |C denotes the effective
channel distribution experienced by a bit transmitted over a
position s in the constellation mapping, fs(·) denotes the bit-
LLRs function (depending on the bit position) and is given for
all y ∈ C and s ∈ [1 : m] by

fs(y) ≜ log
(
P s
Y |C(y|0)

)
− log

(
P s
Y |C(y|1)

)
, (3)

and the last operation is simply a decomposition into a hard
decision Lb ≜ 1(L < 0) and a reliability measure |L|.

In order to motivate our proposed decoder of Section III,
we need to characterize three channel distributions PLb|C . To

Fig. 2: BICM channel model extended to bit-LLRs.

this end, we will recall the results on PY |C and PL|C , and
extend them to model the channel PLb|C .

1) Channel distributions PY |C and PL|C: Let us recall the
equivalent channel models as of the BICM in Figure 2.

Lemma 1 (BICM classical channel models [12], [13]). An
equivalent channel distribution of a classical BICM setting is
given for all y ∈ Cn′

, l ∈ Rn, and c ∈ {0, 1}n by

PY |C(y|c)=
n∏

i=1

PY |C(y⌊i/m⌋|ci) , PL|C(l|c)=
n∏

i=1

PL|C(li|ci)

where, the distributions PY |C andPL|C are given by

PY |C(y|c) =
1

m|X s
c |

m∑
s=1

∑
x∈X s

c

PY |X(y|x), (4)

PL|C(l|c) =
1

m|X s
c |

m∑
s=1

∑
x∈X s

c

P s
L|X(l|x), (5)

and X s
c is the set of symbols for which the s-th bit equals c.

Proof. The proofs can be found in [13, Section 3.4].

Note that the distributions P s
L|X , for s ∈ [1 : m], can be

easily obtained for BPSK and QPSK modulations; however,
they are very challenging to obtain analytically for higher-
order more generic modulation schemes. In this work, we do
not seek to characterize these distributions in a closed form,
but rather, will use them to derive an equivalent binary channel
model for the hard decisions on the bit-LLRs.

2) Bit-LLRs binary channel distribution PLb|C: In order to
motivate the structure of the decoder developed in this work,
we need to characterize the channel distribution PLb|C . To
this end, let us consider, for instance, the 16-QAM and 8-PSK
constellations with Gray labeling shown in Figures 5 and 6.

Theorem 1 (Bit-LLRs binary channel model). For all lb, c ∈
{0, 1}n, the following equation holds:

PLb|C(lb|c) =
n∏

i=1

PLb|C(l
b
i |ci). (6)

Besides, for the 8-PSK and 16-QAM under Gray labeling, the
channel PLb|C can be approximated by

Lb = C ⊕W b s.t. W b i.i.d∼ Bern(q), (7)

where W b is independent of C and q ≜
1

m

m∑
s=1

P s
Lb|C(1|0).

Proof. The proof is relegated to Appendix A.

The present Theorem states that for the 8-PSK constellation
under Gray labeling, the channel PLb|C is in fact a memoryless
stationary Binary Symmetric Channel (BSC), as described in
(7). As for the 16-QAM channel, we show that this channel
model is valid for a wide range of Signal-to-Noise Ratios
(SNR), i.e., except for very low SNR. Although we prove this
theorem for only these two constellations, which are the most
common in practice, the result can be extended to M-PSK and
M-QAM constellations following the same lines of the proof.

III. PROPOSED SYSTEM: SBND FOR BICM

In what follows, we start by stating a result on Maximum A
Posteriori (MAP) decoding, then we review existing literature
on SBND for the BPSK and QPSK modulations and introduce
our proposed solution.

A. Decoding as a binary noise detection problem

The decoder architecture introduced in this section stems
from a first result on the equivalence between decoding and
denoising. First, let us recall that, given the channel model in
Figure 1, the optimal decoding rule g(·) is the MAP rule, and
is given by

û = g(l) ≜ argmax
u∈{0,1}k

PU |L(u|l). (8)

Let us consider the result of Theorem 1 in (7), and let us define
the pseudo-inverse function of the FEC encoder as pinv(·),
i.e., u = pinv(c). Then exploiting the linearity of pinv(·),
we can show that there exists a binary noise sequence W b

u

independent from U such that

pinv(L
b) = U ⊕W b

u. (9)

Hence, we rewrite the MAP decoding rule as

argmax
u∈{0,1}k

PU |L(u|l) = pinv(l
b)⊕ argmax

w∈{0,1}k

PW b
u|L(w|l). (10)

Hence, MAP decoding of U amounts to MAP detection of the
binary noise –or bit-flip– sequence W b

u.

B. Previous works on SBND for BPSK and QPSK modulations

Previous work from Bennatan et al. [6] proved that, under
the assumption of a BPSK modulation and an AWGN channel,
there exists a noise sequence W such that

Y = X.W and Y b = C ⊕W b, (11)

where Y b and W b denote the binary hard decisions of Y and
W . From this, they showed that the knowledge of the received
signal’s module |Y | and the hard-decision syndrome HY b is
enough to estimate the codeword binary noise W b, i.e.,

PW b|Y (wb|y) = PW b| |Y |,HY b(wb| |y|,Hyb). (12)

Moreover, since |Y | = |W | and HY b = HW b, the posterior
distribution PW b|Y does not depend on the transmitted code-
word C. Hence, we can train a neural network to approximate

this posterior using only one codeword, as long as the noise
W remains random.

In a previous work from the authors [11], the result of [6]
was improved by directly estimating the bit-flips on the infor-
mation bits rather than on the codewords, for both systematic
and non-systematic codes. To this end, we showed that there
exists a binary noise sequence W b

u such that

pinv(Y
b) = U ⊕W b

u, (13)

and proved that the posterior can be written as

PW b
u|Y (wb

u|y) = PW b
u| |Y |,HY b(wb

u| |y|,Hyb). (14)

and is also independent of the message U , which still allows
single codeword training.

The extension of all these results to QPSK modulation is
straightforward. In this work, we seek to generalize syndrome-
based decoding to arbitrary higher-order modulations when the
decoder is fed with bit-LLRs rather than the channel output.

C. Proposed solution: SBND for BICM

In the following, we build on the results of [11] and on
Theorem 1 to suggest an SBND for higher-order modulations.
We start by proving that |L| and HLb are sufficient statistics
for the detection of W b

u.

Theorem 2 (Sufficient statistics). Considering the problem
setting and the result of Theorem 1, we have that

PW b
u|L(w

b
u|l) = PW b

u| |L|,HLb(wb
u| |l|,Hlb). (15)

Proof. Proof is relegated to Appendix B

This previous theorem allows us to state that |L|,HLb are
sufficient to compute the posterior distribution of W b

u. Hence,
we suggest an implementation of the SBND for higher-order
modulations as shown in Figure 3. Observe that, as opposed
to the BPSK and QPSK cases, the reliabilities |L| are not
independent of the transmitted symbols, and thus, one cannot
train using only one codeword (c = 0 for instance). This
imposes training over randomly generated codewords, in order
to ensure variability of the transmitted symbols.

Fig. 3: Suggested SBND for higher-order modulations

IV. EXPERIMENTS

In this section, we briefly introduce two possible imple-
mentations of the bit-flip estimator of Section III-C, test the
proposed decoder with both implementations, and compare
both their performances and computational complexities.

RNN α = 5 T = 5 dl = 5 batch size = 212

Transformer de = 128 dh = 8 N = 10 batch size = 28

TABLE I: Model and training parameters.

A. Possible architectures and training

Several DNN-based architectures can be considered for
the bit-flip estimator. Due to their favorable performances
and substantial differences in terms of complexity, the RNN
estimator of [6] and the transformer-based estimator of [7]
were implemented, employing the message-wise approach of
[11]. The main difference between these architectures lies in
the number of weights that comprise each network and the
number of operations needed to run each solution (see Section
IV-C). For a detailed description of these two solutions, refer
to [6], [7], [11].

Regarding the RNN-based estimator, it is a Gated Recurrent
Unit (GRU)-based RNN in which each GRU cell [14] is
composed of α(2n−k) GRU units, with α an arbitrary scaling
parameter. The RNN consists of dl layers –i.e. dl stacked
GRU cells– and each unit performs T time steps, with a final
dense layer with a linear activation that outputs ŵu of size k.
Training is carried out with a batch size of 212.

As for the transformer architecture, it is determined by three
hyperparameters: the embedding dimension de, the number
of heads dh in the multi-head attention mechanism, and the
number of encoder layers N that are connected before the
output dense layers. The large number of operations performed
in the forward pass of the transformer architecture imposes a
significantly smaller batch size, which is set to 28.

Both architectures have a final output dense layer with a
linear activation that produces ŵu, which is then thresholded
to obtain ŵb

u = 1(ŵu > 0). Training and testing were carried
out using Google’s TensorFlow library [15] and the Keras
API [16], using the Adam optimizer [17] with a learning rate
of µ = 10−3 and a binary cross-entropy loss function. For
both systems, codewords are generated using an AWGN of
normalized SNR Eb/N0 = 5dB. Important parameters are
reported in Table I.

B. Results

Both of the considered architectures were applied to the
decoding of two rate-1/2 polar codes, namely the (128, 64) and
(64, 32) polar codes1. An Ordered Statistics Decoding (OSD)
algorithm is also added as a near-optimal decoding benchmark,
along with an ML bound that records an error only when the
OSD encounters a decoding failure and the obtained codeword
has a higher probability than the transmitted one.

The results are displayed in Figure 4. Regarding the (64, 32)
polar code, the RNN-based decoder presents a decoding
performance that is very close to the OSD, and surpasses
the transformer architecture for all the considered Eb/N0. A
similar conclusion can be drawn for the (128, 64) polar code,

1The parity-check matrices were taken from the channel code database in
https://rptu.de/en/channel-codes.

except this time, the gap between the neural-based and near-
optimal solutions is more significant, especially for low-to-
medium Eb/N0 regions. It is worth mentioning that for the
(128, 64) polar code, during training, both solutions have seen
at most 10−8% of valid codewords, proving that the models
are very much able to learn a proper decoding rule only by
seeing a very small fraction of the data.

In the next section, we analyze the complexity involved in
each solution and compare them accordingly.

C. Complexity analysis

In this section, we study the complexity of each of the RNN-
based and Transformer-based implementations of the decoder,
both at the training and inference.

As shown in [18], the number of parameters (or weights) in
a GRU unit –including biases, which were not included in the
original work [14]– is equal to 3(n2

o + nino + no), where ni

and no depict the number of inputs and outputs, respectively.
In the case of a dense layer, the number of weights is given
by nino +no. Applying these results to the RNN architecture
gives the expression for the total number of weights of the
RNN-based decoder for an (n, k) linear code:

WRNN = 3(2dl − 1)α2r2 + 3(r + dl + k/3)αr + k, (16)

where r ≜ 2n − k is the size of the input vector given by
[|l|,Hlb]. For the codes and hyperparameters selected, the
following approximation holds to within a 0.5% error margin,

WRNN ≈ 3((2dl − 1)α2 + α)r2, (17)

yielding a total number of weights that increases as O(r2) for
a fixed network depth dl and scaling factor α.

Regarding the transformer architecture, the number of
weights is computed with respect to the embedding dimension
de, the input size r, and the number of encoder layers N :

WT = 12Nd2e + (13N + r + 3)de + (r + 1)k + 1. (18)

Similarly to the previous case, an approximation can be made
to within an error margin of 2% for both studied codes:

WT ≈ 12Nd2e + 13Nde. (19)

Let us observe that, for the block sizes considered, the
dominant terms do not contain the code parameters (n, k),
producing a network structure that does not depend on the code
size as strongly as the RNN architecture. Observe, however,
that there is a hidden dependence on the block length if
we consider that larger codes may require larger embedding
spaces and potentially more encoder layers. These values were
kept the same throughout both implementations and hence, the
number of parameters was almost exactly the same.

The final number of weights for each decoder is included
in Fig. 4. The transformer solution has a clear advantage in
that the number of weights remains essentially the same as
the input size increases, due to the embedding layer of fixed
dimension de=128. However, the RNN is much more shallow
than the transformer: it is composed of dl=5 recurrent layers,
whereas the transformer has the embedding layer, N = 10

0 1 2 3 4 5 6 7 8 9 10

Eb/N0 (dB)

10−6

10−5

10−4

10−3

10−2

10−1

B
E
R

Uncoded

Transformer - 2M weights

RNN - 6M weights

OSD order 3

ML bound

0 1 2 3 4 5 6 7 8 9

Eb/N0 (dB)

10−6

10−5

10−4

10−3

10−2

10−1

B
E
R

Uncoded

Transformer - 2M weights

RNN - 25M weights

OSD order 3

ML bound

Fig. 4: Error rate studies for two rate 1/2 polar codes: (64, 32) (left) and (128, 64) (right).

encoders –each consisting of two batch normalization layers,
an attention layer and a dense layer– and two final dense layers
with batch normalization. Additionally, as shown in [19], each
self-attention mechanism entails a computational complexity
of O(r2de), which significantly increases the inference time
with respect to the RNN. Over several tests, the RNN decoded
approximately 8 times faster than the transformer for the
(64, 32) polar code and 25 times faster for the (128, 64) code2.

V. CONCLUSION

In this work, we have introduced a complete framework
for decoding linear block codes under a BICM setting. For
this purpose, we have deduced an equivalent bit-LLR bi-
nary channel model for the 8-PSK and 16-QAM modulation
techniques. Next, an SBND for higher-order modulation is
proposed, which takes as input the bit-LLRs instead of the
BPSK-modulated signal as previous works [6], [7]. Finally,
two possible architectures were implemented and compared,
both in terms of performance and computational complexity.

APPENDIX A
PROOF OF THEOREM 1

First, note that since that each Lb is a deterministic function
of L, and given that PL|C is a memoryless channel, then
so is PLb|C , i.e., for all lb, c ∈ {0, 1}n, PLb|C(lb|c) =∏n

i=1 PLb|C(l
b
i |ci).

To proceed with the proof, we will first prove that
PLb|C(0|0) = PLb|C(1|1). Consider the following result

PLb|C(0|0) =
1

m

m∑
s=1

PLb|C,S(0|0, s) (20)

(a)
=

1

m|X s
0 |

m∑
s=1

∑
x∈X s

0

PLb|X,S(0|x, s) (21)

=
1

m|X s
0 |

m∑
s=1

∑
x∈X s

0

∫
C

PLb,Y |X,S(0, y|x, s)dy (22)

2It must be factored in that empirical values are deeply reliant on the
software implementation, hardware characteristics, and its parallel computing
capabilities. Nonetheless, the obtained decoding latencies are consistent with
the expected results.

(b)
=

1

m|X s
0 |

m∑
s=1

∑
x∈X s

0

∫
Ys

0

PY |X,S(y|x, s)dy (23)

(c)
=

1

m|X s
0 |

m∑
s=1

∑
x∈X s

0

∫
Ys

0

PY |X(y|x)dy, (24)

where we define the decision region Ys
0 ≜ {y ∈ C, fs(y) >

0}, and where (a) follows the unformity of the constellation,
while (b) follows from the Markov chain C ↔ (X,S) ↔ Lb,
and (c) from the Markov chain S ↔ X ↔ Y .

Next, we use a common simplification of the bit-LLRs,
commonly known as approximate LLRs, to write that:

l = log

(∑
x∈X s

0

PY |X(y|x)
)
−log

(∑
x∈X s

1

PY |X(y|x))
)

(25)

≈ log

(
max
x∈X s

0

PY |X(y|x)
)
− log

(
max
x∈X s

1

PY |X(y|x)
)

(26)

=
1

σ2

(
min
x∈X s

1

||y − x||2 − min
x∈X s

0

||y − x||2
)
. (27)

Hence, we can write that for all y ∈ C and all s,

lb = 1
(
min
x∈X s

0

||y − x||2 ≥ min
x∈X s

1

||y − x||2
)
. (28)

Let us then consider the 8-PSK constellation with Gray
mapping of Figure 5. Taking into account the simplification
in (28), we give in Figure 5 the decision regions Ys

0 for
s ∈ [1 : 3]. Let us now consider the case s = 1. We have

Fig. 5: Decision regions of the 8-PSK constellation

that X 1
0 = (X 1

1)
⋆ and Y1

0 = (Y1
1)

⋆. Thus, by exploiting one of

the symmetries of the normal Gaussian probability distribution
PY |X(y|x) = PY |X(y⋆|x⋆), one can easily prove that∑

x∈X 1
0

∫
Y1

0

PY |X(y|x)dy =
∑
x∈X 1

1

∫
Y1

1

PY |X(y|x)dy. (29)

Similar results can be proved for s = 2 by noticing that
X 2

0 = −X 2
1 ,Y2

0 = −Y2
1 and using the property PY |X(−y|−x).

Finally, for s = 3, note that X 3
0 = X 3

1 e
jπ/2 and Y3

0 = Y3
1e

jπ/2

along with the symmetry PY |X(yejϕ|xejϕ) = PY |X(y⋆|x⋆)
for all ϕ yields the same result as (29). Hence, recalling that
|X s

0 | = |X s
1 |, it follows that

PLb|C(0|0) =
1

m|X s
0 |

m∑
s=1

∑
x∈X s

0

∫
Ys

0

PY |X(y|x)dy (30)

=
1

m|X s
1 |

m∑
s=1

∑
x∈X s

1

∫
Ys

1

PY |X(y|x)dy (31)

= PLb|C(1|1). (32)

Hence, for the 8-PSK, the channel PLb|C is a binary symmetric
channel, with crossover probability q given by

q = PLb|C(1|0) =
1

m

m∑
s=1

P s
Lb|C(1|0). (33)

Concerning the 16 QAM, we represent in Figure 6 the
decision regions Ys

1 for s ∈ [1 : 4]. It can be easily seen

Fig. 6: Decision regions of the 16-QAM constellation

that, for s = 1 and s = 3, using the symmetries of X s
c and of

the Gaussian distribution, one can write that∑
x∈X s

0

∫
Ys

0

PY |X(y|x)dy =
∑
x∈X s

1

∫
Ys

1

PY |X(y|x)dy. (34)

However, for s = 2 and s = 4, the previous equality does not
hold in the sense that the integration over Ys

1 entails a larger
clipping of the Gaussian distribution than the integration over
Ys
0 . However, if the SNR is not too low, SNR ≥ 0 dB for

a normalized 16-QAM constellation, one can show that both
integrations yield the same probability. The proof follows then
similarly to the 8-PSK case.

APPENDIX B
PROOF OF THEOREM 2

Let us start with two properties of an (n, k) block code. i)
The pseudo-inverse of a code pinv(·) is defined by a k × n
matrix A such that Ac = u; ii) the matrix B = [HT ,AT],
where H is the parity matrix of the code, is full rank, thus,
invertible.

Next, we can write for wb
u ∈ {0, 1}k and l ∈ Rn

PW b
u|L(w

b
u|l) = PW b

u| |L|,Lb(wb
u| |l|, l

b) (35)

= PW b
u| |L|,HLb,ALb(wb

u| |l|,Hlb,Alb), (36)

where we have used the fact that B = [HT ,AT] is invertible.
Next, recalling the result of Theorem 1 in (7), we have that

ALb = AC ⊕W b
u = U ⊕W b

u. (37)

Since, U is i.i.d following a Bern(0.5) distribution, and since
W b

u is independent of U , then ALb is Bern(0.5) and is
independent of W b

u. Hence, it follows that

PW b
u||L|,HLb,ALb(wb

u||l|,Hlb,Alb)=PW b
u||L|,HLb(wb

u||l|,Hlb)

which completes the proof.

REFERENCES

[1] T. Gruber, S. Cammerer, J. Hoydis, and S. ten Brink, “On Deep
Learning-Based Channel Decoding,” in 2017 51st Annual Conference
on Information Sciences and Systems (CISS). IEEE, mar 2017.

[2] T. O’Shea and J. Hoydis, “An Introduction to Deep Learning for the
Physical Layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563–575, dec 2017.

[3] E. Nachmani, Y. Be'ery, and D. Burshtein, “Learning to Decode Linear
Codes Using Deep Learning,” in 2016 54th Annual Allerton Conference
on Communication, Control, and Computing (Allerton). IEEE, sep
2016.

[4] E. Nachmani and L. Wolf, “Autoregressive Belief Propagation for
Decoding Block Codes,” 2021.

[5] W. Xu, Z. Wu, Y.-L. Ueng, X. You, and C. Zhang, “Improved Polar De-
coder Based on Deep Learning,” in 2017 IEEE International Workshop
on Signal Processing Systems (SiPS). IEEE, oct 2017.

[6] A. Bennatan, Y. Choukroun, and P. Kisilev, “Deep Learning for Decod-
ing of Linear Codes - A Syndrome-Based Approach,” 2018.

[7] Y. Choukroun and L. Wolf, “Error Correction Code Transformer,” 2022.
[8] L. Lugosch and W. J. Gross, “Learning from the Syndrome,” in 2018

52nd Asilomar Conference on Signals, Systems, and Computers. IEEE,
oct 2018.

[9] E. Arikan, “Channel Polarization: A Method for Constructing Capacity-
Achieving Codes for Symmetric Binary-Input Memoryless Channels,”
IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051–
3073, jul 2009.

[10] A. Caciularu, N. Raviv, T. Raviv, J. Goldberger, and Y. Be’ery,
“perm2vec: Attentive Graph Permutation Selection for Decoding of
Error Correction Codes,” IEEE Journal on Selected Areas in Communi-
cations, vol. 39, no. 1, pp. 79–88, 2021.

[11] G. De Boni Rovella and M. Benammar, “Improved
Syndrome-based Neural Decoder for Linear Block Codes,”
2023 IEEE Global Communications Conference. [Online].
Available: https://www.tesa.prd.fr/documents/26/improved syndrome-
based neural decoder for linear block codes.pdf

[12] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modula-
tion,” IEEE Transactions on Information Theory, vol. 44, no. 3, pp.
927–946, 1998.

[13] A. Alvarado, On bit-interleaved coded modulation with QAM constel-
lations. Chalmers Tekniska Hogskola (Sweden), 2008.

[14] K. Cho, B. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation,” 06 2014.

[15] M. A. et al., “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[16] F. Chollet et al., “Keras,” 2015. [Online]. Available: https://keras.io
[17] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”

2014.
[18] R. Dey and F. M. Salem, “Gate-variants of Gated Recurrent Unit (GRU)

neural networks,” in 2017 IEEE 60th International Midwest Symposium
on Circuits and Systems (MWSCAS), 2017, pp. 1597–1600.

[19] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural
Information Processing Systems, vol. 30. Curran Associates, Inc., 2017.

