Publication

Journal papers, Talks, Conference papers, Books, Technical notes

Search

Journal Paper

Performance Limits of GNSS Code-Based Precise Positioning : GPS, Galileo & Meta-Signals

Authors: Das Priyanka, Ortega Espluga Lorenzo, Vilà-Valls Jordi, Vincent François, Chaumette Eric and Davain Loïc

MDPI Sensors, vol. 20, issue 8, p. 2196-2217, April, 2020.

Download document

This contribution analyzes the fundamental performance limits of traditional two-step Global Navigation Satellite System (GNSS) receiver architectures, which are directly linked to the achievable time-delay estimation performance. In turn, this is related to the GNSS baseband signal resolution, i.e., bandwidth, modulation, autocorrelation function, and the receiver sampling rate. To provide a comprehensive analysis of standard point positioning techniques, we consider the different GPS and Galileo signals available, as well as the signal combinations arising in the so-called GNSS meta-signal paradigm. The goal is to determine: (i) the ultimate achievable performance of GNSS code-based positioning systems; and (ii) whether we can obtain a GNSS code-only precise positioning solution and under which conditions. In this article, we provide clear answers to such fundamental questions, leveraging on the analysis of the Cramér–Rao bound (CRB) and the corresponding Maximum Likelihood Estimator (MLE). To determine such performance limits, we assume no external ionospheric, tropospheric, orbital, clock, or multipath-induced errors. The time-delay CRB and the corresponding MLE are obtained for the GPS L1 C/A, L1C, and L5 signals; the Galileo E1 OS, E6B, E5b-I, and E5 signals; and the Galileo E5b-E6 and E5a-E6 meta-signals. The results show that AltBOC-type signals (Galileo E5 and meta-signals) can be used for code-based precise positioning, being a promising real-time alternative to carrier phase-based techniques.

Read more

Signal and image processing / Localization and navigation and Space communication systems

LLR Approximation for Fading Channels Using a Bayesian Approach

Authors: Ortega Espluga Lorenzo, Aubault-Roudier Marion, Poulliat Charly, Boucheret Marie-Laure, Al Bitar Hanaa and Closas Pau

IEEE Communications Letters, vol. 24, issue 6, pp. 1244-1248, June, 2020.

Download document

This article investigates on the derivation of good log likelihood ratio (LLR) approximations under uncorrelated fading channels with partial statistical channel state information (CSI) at the receiver. While previous works focused mainly on solutions exploiting full statistical CSI over the normalized Rayleigh fading channel, in this article, a Bayesian approach based on conjugate prior analysis is proposed to derive LLR values that only uses moments of order one and two associated with the random fading coefficients. The proposed approach is shown to be a more robust method compared to the best existing approximations, since it can be performed independently of the fading channel distribution and, in most cases, at a lower complexity. Results are validated for both binary and M-ary modulations over different uncorrelated fading channels.

Read more

Digital communications / Localization and navigation and Space communication systems

Conference Paper

Misspecified Time-Delay and Doppler Estimation over Non Gaussian Scenarios

Authors: Ortega Espluga Lorenzo and Fortunati Stefano

In Proc. ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 9346-9350, Seoul, Korea, Republic of, 14-19 April 2024.

Time-delay and Doppler estimation is an operation performed in a plethora of engineering applications. A common hypothesis underlying most of the existing works is that the noise of the true and assumed signal model follows a centered complex normal distribution. However, everyday practice shows that the true signal model may differ from the nominal case and should be modeled by a non Gaussian distribution. In this paper, we analyse the asymptotic performance of the time-delay and Doppler estimation for the non-nominal scenario where the true noise model follows a centered complex elliptically symmetric (CES) distribution and the receiver assumed that the noise model follows a centered complex normal distribution. It turns out that performance bound under the misspecified model is equal to the one obtained for the well specified Gaussian scenario. In order to validate the theoretical outcomes, Monte Carlo simulations have been carried out.

Read more

Signal and image processing / Localization and navigation and Space communication systems

Time-Delay and Doppler Estimation with a Carrier Modulated by a Band-Limited Signal

Authors: Bernabeu Frias Joan Miguel, Ortega Espluga Lorenzo, Blais Antoine, Gregoire Yoan and Chaumette Eric

In Proc. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Los Sueños, Costa Rica, December 10-13, 2023.

Download document

Since time-delay and phase estimation is a fundamental task in a plethora of engineering fields, several CRB and MLE expressions have been derived for the past decades. In all these previous works, a common hypothesis is that the wave transmission process introduces an unknown phase which prevents from estimating both delay and transmission phase components. By revisiting this problem, including the derivation of the MLE and the associated CRB, we show that this well-admitted assertion is not true strictly: both informations can be estimated, but generally with a sub-optimal achievable MSE in the asymptotic region. Moreover, since practical problems exist where the transmission phase can be estimated apart, adding this additionnal measure to the observation model provides a setting allowing to explore the contribution of each signal component (carrier frequency, baseband signal and transmission phase measure) to the achievable MSE of time-delay and phase estimation in the asymptotic region.

Read more

Signal and image processing / Aeronautical communication systems and Space communication systems

An EM Approach for GNSS Parameters of Interest Estimation Under Constant Modulus Interference

Authors: Lesouple Julien and Ortega Espluga Lorenzo

In Proc. 31st EUropean SIgnal Processing COnference (EUSIPCO 2023), Helsinki, Finland, September 4-8, 2023.

Download document

Interferences are an important threat for applications relying on Global Navigation Satellite Systems (GNSS). Interferences degrade GNSS performance, and can lead to denial of service. The most notable intentional interference family is characterized by its constant envelope, e.g. chirp and tone interferences. Due to its simple structure, the space to search the interference contribution yields to complex circles, allowing the introduction of some latent variables related to those circles. In order to mitigate the interference effect, we compute the maximum likelihood estimator of the parameters of interest (time delay and Doppler shift) in presence of those latent variables. Thus, we resort to the Expectation Maximization algorithm which has already been proved to be efficient in such cases. Experiments conducted on synthetic signals highlight the efficiency of the proposed algorithm.

Read more

Signal and image processing / Localization and navigation and Space communication systems

Theoretical Performance Analysis of GNSS Tracking Loops

Authors: Labsir Samy, Pages Gaël, Ortega Espluga Lorenzo, Vilà-Valls Jordi and Chaumette Eric

In Proc. IEEE/Institute of Navigation (ION) Positioning, Location, and Navigation Symposium (PLANS), Monterey, California-USA. April 24-28, 2023.

Download document

This paper aims to characterize the estimation precision at the output of the GNSS receiver tracking stage. We define an original statistical modelling of the GNSS tracking loop, which can then be exploited by an optimal linear Kalman Filter (KF) in order to obtain an analytical expression of the steady-state regime. The latter is designed to encompass dynamic information of the GNSS receiver. Two observation models are of interest: the first one considers the propagation delay and Doppler parameters, and the second one also including the Doppler rate, i.e., the acceleration, which is known to be relevant for high dynamics scenarios and can easily be included into the acquisition step. Within this context, the steady-state asymptotic performance of the tracking stage is obtained by solving an algebraic discrete Riccati equation. In both cases, simulation results are provided to show the validity of the proposed approach and the resulting steady-state performance.

Read more

Signal and image processing / Localization and navigation and Space communication systems

GNSS L5/E5 Maximum Likelihood Synchronization Performance Degradation under DME Interferences

Authors: Ortega Espluga Lorenzo, Lubeigt Corentin, Vilà-Valls Jordi and Chaumette Eric

In Proc. IEEE/Institute of Navigation (ION) Positioning, Location, and Navigation Symposium (PLANS), Monterey, California-USA. April 24-28, 2023.

Download document

Global Navigation Satellite Systems (GNSS) are a key player in a plethora of applications. For navigation purposes, interference scenarios are among the most challenging operation conditions, which clearly impact the maximum likelihood estimates (MLE) of the signal synchronization parameters. While several interference mitigation techniques exist, a theoretical analysis on the GNSS MLE performance degradation under interference, being fundamental for system/receiver design, is a missing tool. The main goal of this contribution is to introduce a mathematical tool to evalute the effect of any type of interference on any GNSS signal. Regarding such tool, we provide closedform expressions of the misspecified Cram´er-Rao (MCRB) bound and estimation bias, for a generic GNSS signal corrupted by an interference. The proposed expressions are used to analyze the GNSS performance degradation induced by the distance measuring equipment (DME) system.

Read more

Signal and image processing / Localization and navigation and Space communication systems

Theoretical Evaluation of the GNSS Synchronization Performance Degradation under Interferences

Authors: Ortega Espluga Lorenzo, Vilà-Valls Jordi and Chaumette Eric

In Proc. 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Denver, Colorado, USA, September 19-23, 2022.

Download document

Global Navigation Satellite Systems (GNSS) are a key player in a plethora of applications, ranging from navigation and timing, to Earth observation or space weather characterization. For navigation purposes, interference scenarios are among the most challenging operation conditions, which clearly impact the maximum likelihood estimates (MLE) of the signal synchronization parameters. While several interference mitigation techniques exist, a theoretical analysis on the GNSS MLE performance degradation under interference, being fundamental for system/receiver design, is a missing tool. The main goal of this contribution is to provide such analysis, by deriving closed-form expressions of the estimation bias, for a generic GNSS signal corrupted by an interference. The proposed bias are validated for a tone interference and a linear frequency modulation chirp interference.

Read more

Signal and image processing / Localization and navigation and Space communication systems

Close-to-Ground Single Antenna GNSS-R

Authors: Lubeigt Corentin, Vincent François, Ortega Espluga Lorenzo, Vilà-Valls Jordi, Lestarquit Laurent and Chaumette Eric

In Proc. ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), Online Event, 5-7 april 2022.

Download document

For more than three decades, Global Navigation Satellite System (GNSS) signals have been seen as signals of opportunity as in GNSS Reflectometry (GNSS-R). The study of the reflections from the ground of such signals can indeed lead to many features regarding the reflecting surface and the receiver’s height. Due to the nature of the GNSS signal, that is, due to its wavelength, the distortion of the reflected signal may vary significantly depending on the reflecting surface and on the dynamic and height of the receiver. The latter does range from low earth orbit down to ground-based platforms. In this last case, the vicinity to the ground induces important interference between the direct and the reflected path which makes it difficult to process directly in order to obtain altimetry product. In this study, the feasibility of ground-based single antenna GNSS-R altimetry is studied and solutions are presented depending on the satellite elevation angle. To do so, maximum-likelihood-based algorithms - namely the CLEAN-RELAX Estimator and the Approximate Maximum Likelihood Estimator - are presented and applied to a set of scenarios.

Read more

Signal and image processing / Localization and navigation

Multipath Estimating Techniques Performance Analysis

Authors: Lubeigt Corentin, Ortega Espluga Lorenzo, Vilà-Valls Jordi, Lestarquit Laurent and Chaumette Eric

In Proc. IEEE Aerospace Conference, Big Sky, MT, USA, March 5-12, 2022.

Download document

In Global Navigation Satellite Systems, resilience to multipath remains an important open issue, being the limiting factor in several applications due to the environment specific nature of such harsh propagation conditions. In order to assess the multipath impact into the final system performance, accurate metrics are required. The multipath error envelope (MPEE), even if easy to handle, is limited to the study of the bias of a receiver architecture in a noise free environment. Moreover, when it is a flat zero-valued line, the MPEE becomes less informative about the parameter estimation performance. Considering an unbiased estimator, an alternative way to characterize an architecture is to evaluate its mean square error (MSE) and compare it to the corresponding Cram´er-Rao bound (CRB). In this work, a methodology to use both aforementioned tools is presented. First, the MPEE, which is an understandable metric. Secondly, the MSE convergence to the CRB, where one can clearly interpret the estimation performance in terms of signal-to-noise ratio or minimum path separation. These tools are then applied to a range of known multipath mitigation techniques. In addition, a new alternating projection multipath mitigation approach is proposed and analyzed.

Read more

Signal and image processing / Localization and navigation

ADDRESS

7 boulevard de la Gare
31500 Toulouse
France

CONTACT


CNES
Thales Alenia Space
Collins Aerospace
Toulouse INP
ISEA-SUPAERO
IPSA
ENAC
IMT Atlantique