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Abstract— This letter investigates on the derivation of good log1

likelihood ratio (LLR) approximations under uncorrelated fading2

channels with partial statistical channel state information (CSI)3

at the receiver. While previous works focused mainly on solutions4

exploiting full statistical CSI over the normalized Rayleigh fading5

channel, in this letter, a Bayesian approach based on conjugate6

prior analysis is proposed to derive LLR values that only uses7

moments of order one and two associated with the random fading8

coefficients. The proposed approach is shown to be a more robust9

method compared to the best existing approximations, since it can10

be performed independently of the fading channel distribution11

and, in most cases, at a lower complexity. Results are validated for12

both binary and M -ary modulations over different uncorrelated13

fading channels.14

Index Terms— LLR values, fading channel, channel uncer-15

tainty, M -ary modulations, best linear approximation.16

I. INTRODUCTION17

IN MODERN error correcting algorithms, the input of the18

associated soft input decoding algorithms mainly relies on19

the so-called log likelihood ratio (LLR) values [1], [2]. These20

LLR values can be shown to be sufficient statistics for the21

decoding and detection process. Typically, in order to compute22

a closed-form of these LLR values, the knowledge of the23

propagation channel, referred to as complete channel state24

information (CSI) is assumed, i.e. the channel is perfectly25

known. However, this assumption can be untrue in real appli-26

cations since the complete CSI might be not fully available at27

the receiver [3]. In this work, we focus on uncorrelated fading28

channels with binary and non-binary inputs, modeled with a29

fading gain h and an additive Gaussian noise wn ∼ N (0, σ2).30

If h and σ2 are known at the receiver (complete CSI case)31

and a binary modulation is used, the LLRs can be computed32

as a linear function of the channel output [4], [5]. However33

for non-binary modulations, LLRs are non linear functions34

of the channel output [6], increasing the receiver complexity.35

In order to handle this complexity, approximate LLRs have36

been previously proposed in the literature (e.g. [7]). If h cannot37

be precisely known and only full statistical CSI is avail-38

able (i.e. we have the knowledge of the probability density39
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function (pdf) associated with the fading coefficients), one is 40

still able to derive a closed-form for LLR values, which is in 41

general a non linear function of the channel output. To lower 42

the complexity, several authors (see for example [8], [9] for 43

binary-phase shift-keying (BPSK) modulation and [6], [9] 44

for M -ary modulations) have proposed LLR approximations. 45

Regarding to the BSPK case, [8] proposed an efficient method 46

for which the best linear approximation can be shown to 47

maximize an approximate mutual information based functional 48

assuming that full statistical CSI is available, i.e. we can have 49

access to the (conditional) pdf of the estimated LLRs. This 50

work has been then extended to non-binary modulations 51

in [6]. Another approach to compute analytically closed- 52

form LLR approximations through the Taylor series was 53

proposed in [9]. Thanks to this approach, it was possible to 54

reduce the complexity issue for the method presented in [6]. 55

However, those approximations are only available for the 56

normalized Rayleigh/Rice distribution, for which an easy-to- 57

handle closed-form of the derivative is available, which is not 58

always possible in the general case. 59

In this letter, we propose a different method following a 60

Bayesian approximation based approach using conjugate prior 61

analysis [10]. This method allows to derive simple analytical 62

closed-form expressions of the LLR values, considering that 63

only a partial statistical CSI (first and second moments of 64

the fading gain) is available at the receiver. Since a conjugate 65

prior is selected as a prior distribution for the fading gain, 66

this method can be applied independently of the channel 67

fading distribution p(h). Moreover, considering that a learning 68

sequence is available at the receiver, the first and the second 69

statistical moments can be easily estimated based on state-of- 70

the-art estimation techniques. 71

This letter is organized as follows: Section II reviews 72

LLR expressions under complete CSI and full statistical CSI. 73

In Section III, we present a novel Bayesian approach for the 74

derivation of the LLR values when only partial statistical CSI 75

is available. Moreover, we briefly present the online estimation 76

of the parameters μh and σ2
h considering that a learning 77

sequence is available at the receiver. Results are analyzed 78

for two kinds of uncorrelated fading channels in Section IV. 79

Conclusions and perspectives are finally drawn in Section V. 80

II. LLR UNDER COMPLETE AND FULL STATISTICAL CSI 81

Following [9], we consider an uncorrelated fading channel 82

where the received signal is expressed as : 83

yn = hn · xn + wn (1) 84

where xn and yn represent the channel input and output at 85

symbol time n, respectively; wn is a zero mean (possibly com- 86

plex) additive white Gaussian noise (AWGN) with variance σ2
87
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(2σ2 for bi-dimensional constellations), and hn are the channel88

gains that are independent and identically distributed (i.i.d.)89

random variables with associated probability density function90

(pdf) given by p(h), i.e. hn ∼ p(h). We further assume that91

xn and wn are i.i.d. random variables (r.v.).92

At the transmitter, we assume a bit-interleaved coded modu-93

lation (BICM) scheme where the binary information sequence94

u = [u1, . . . , uK ] is first encoded using a binary error95

correcting code of rate R = K/N , yielding a binary codeword96

c = [c1, . . . , cN ] of length N > K . Then, c is bit interleaved97

and divided into Ns blocks of m bits. ∀k = 1, . . . , Ns, each98

block bk = [b1
k, . . . , bm

k ] is mapped into a symbol xk from an99

M -ary signal constellation X of size |X | = 2m. We further100

assume that Gray mapping is used. At the receiver, LLRs are101

computed for each interleaved bit and then used to feed the102

input of the soft channel decoder. For the case of complete103

CSI (i.e. hn is perfectly known), the LLR associated with the104

i-th transmitted bit bi
n(xn), i = 1, . . . , m, associated with the105

n-th transmitted symbol xn ∈ X is given by106

L(i)
n = ln

(
P (yn|bi

n(xn) = 0, hn)
P (yn|bi

n(xn) = 1, hn)

)
107

= ln

(∑
xn∈X0(i)

P (yn|xn, hn)∑
xn∈X1(i) P (yn|xn, hn)

)
(2)108

where Xj (i) is the subset of symbols of X where bi
n(xn) =109

j, j ∈ {0, 1}. When hn cannot be perfectly known at the110

receiver, but p(h) is known (full statistical CSI case) as a prior111

knowledge, the LLR expression can be computed as112

L(i)
n = ln

(∑
xn∈X0(i)

∫∞
−∞ P (yn|xn, h)p(h) dh∑

xn∈X1(i)

∫∞
−∞ P (yn|xn, h)p(h) dh

)
. (3)113

One useful low-complexity approximation proposed in [7] is114

obtained by the log-sum approximation. With complete CSI,115

the approximation leads to116

L̂(i)
n = ln

(
maxxn∈X0(i) P (yn|xn, hn)
maxxn∈X1(i) P (yn|xn, hn)

)
, (4)117

and with full statistical CSI, this leads to118

L̂(i)
n = ln

(
maxxn∈X0(i)

∫∞
−∞ P (yn|xn, h)p(h) dh

maxxn∈X1(i)

∫∞
−∞ P (yn|xn, h)p(h) dh

)
. (5)119

Note that the log-sum approximation is particularly useful120

under complete CSI assumption since a linear LLR approxi-121

mation can be implemented [7].122

III. A BAYESIAN APPROACH FOR LLR CALCULATION123

USING PARTIAL STATISTICAL CSI124

Prior works such as [9] provided LLR closed-form expres-125

sions considering full statistical CSI over a normalized126

Rayleigh fading channel for the BSPK, pulse and quadrature127

amplitude modulations (denoted as PAM and QAM respec-128

tively). Then, to address complexity issues, LLR approx-129

imations based on Taylor series have been proposed [9].130

If the proposed solution provides an interesting framework131

for the derivation of non linear LLR approximations, it still132

comes with some limitations. First, this solution considers full133

statistical CSI (full knowledge of p(h)), which is unlikely to 134

be available at the receiver. Moreover, complete derivation of 135

useful expressions is only available for channels for which a 136

convenient analytical expression is available, which is the case 137

for the normalized Rayleigh fading channel scenarios that have 138

been considered, but it will be not that easy to generalize it 139

to any kind of fading channels. 140

In this letter, we consider a rather different approach 141

considering that only partial statistical CSI (i.e. only first 142

and second order statistics of h) are available at the 143

receiver. Moreover, the proposed method can be implemented 144

independently of the fading channel distribution p(h). Then, 145

whereas σ2 is assumed to be known or accurately estimated, 146

hn is considered as an unknown random variable whose first 147

and second statistical moments are well characterized. 148

The problem of computing LLR values turns out to be the 149

derivation of a closed-form expression of the integral in (3), 150

for which we have to select a suitable prior distribution for 151

the r.v. h, enabling both a good approximation of the true 152

prior distribution and the ease of a closed-form derivation. 153

A common approach in Bayesian analysis, when possible, is to 154

select a prior distribution to be the conjugate of the likelihood 155

distribution, which results in a posterior distribution that is of 156

the same family as the a priori distribution [11]. Given that the 157

likelihood distribution is a Gaussian distribution, the conjugate 158

prior distribution for the r.v. hn is also a Gaussian one [10], 159

i.e. hn ∼ N (μh, σ2
h), where the parameters μh and σ2

h are 160

considered to be known or well estimated. As an example, 161

if the scale factor a of the unnormalized Rayleigh distribution 162

is known, the first and second moments of h can be computed 163

as μh = a
√

π
2 and σ2

h = 4−π
2 a2. 164

A. M -Ary PAM and QAM Modulations 165

Based on the selected prior, a closed-form expression for 166

equation (3) can be derived for M -ary PAM modulations, for 167

which xn ∈ {±1,±3, · · · ± (M − 1)}. The LLR in (3) can be 168

written as 169

L(i)
n =ln

⎛
⎜⎜⎝
∑

xn∈X0(i)

∫∞
−∞ e−

(yn−hxn)2

2σ2 e
− (h−μh)2

2σ2
h dh

∑
xn∈X1(i)

∫∞
−∞ e−

(yn−hxn)2

2σ2 e
− (h−μh)2

2σ2
h dh

⎞
⎟⎟⎠. (6) 170

which can be shown to be (cf. Appendix A): 171

L(i)
n = ln

⎛
⎝ ∑

xn∈X0(i)

e
− (yn−xnμh)2

2(σ2+x2
nσ2

h)

⎞
⎠ 172

− ln

⎛
⎝ ∑

xn∈X1(i)

e
− (yn−xnμh)2

2(σ2+x2
nσ2

h)

⎞
⎠. (7) 173

In order to reduce the complexity, the log-sum approximation 174

can be used following (5). Considering M -ary QAM modula- 175

tions built as a direct product of two orthogonal Gray encoded 176

PAM constellations, the LLR values can be directly computed 177

by the previous method (i.e. equation (7)) considering indepen- 178

dently the two dimensions of the signal. Then, the combined 179

LLR values can be computed as the sum of the LLR values 180

obtained for each of the signal components. 181
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B. BPSK Modulation: A Particular Case182

The BPSK modulation can be seen as a particular case of183

the M -ary PAM modulation where the posterior distribution184

becomes the product of two Gaussian distributions, and the185

marginal distribution can be shown to be another Gaussian dis-186

tribution of the form p(xn|yn) ∝ N (yn/μh,
(
σ2 + σ2

h

)
/μ2

h).187

From the previous distribution, the LLR can be directly188

computed as189

Ln = −μ2
h

(
1 − yn

μh

)2

2 (σ2 + σ2
h)

+ μ2
h

(
−1 − yn

μh

)2

2 (σ2 + σ2
h)

=
2μh

(σ2 + σ2
h)

yn .190

(8)191

given that xn ∈ X0(i) = 1 and xn ∈ X1(i) = −1. The192

resulting LLR value is a linear function of yn.193

This result can be linked to previous work by [8], where194

the authors aim to estimate the linear coefficient α ∈ R
+ that195

provides the best linear approximation of the LLR written as196

L̂n = αyn. To this end, [8] proposed to compute the scaling197

factor α by maximizing an approximate mutual information198

based quantity, referred to as Î
(
L̂; X

)
, between the trans-199

mitted symbol X and the detector input L̂. The proposed200

optimization problem can be stated as:201

α = arg max
α′∈R+

Î
(
L̂; X

)
202

= arg max
α′∈R+

1 −
∫ ∞

−∞
log2

(
1 + e−L̂

)
p
(
L̂|X = +1

)
dL .203

(9)204

Originally, the optimization method proposed in [8] assumes205

the knowledge of the linearly approximated LLRs conditional206

pdf. In some specific cases, as for example the normalized207

Rayleigh fading channel, an exact analytical expression of208

LLRs can be derived [8, eq. (17)]. Apart from these spe-209

cific cases, one has to resort to a numerical optimization210

method, that can be computationally demanding. It can be211

done by applying one-dimensional search method [12] based212

on the objective function of equation (9). To evaluate this213

integral, as previously stated, one needs the integrand kernel214

p
(
L̂|X = +1

)
, which is not an easy task to evaluate online.215

To overcome this difficulty, one can resort to the corresponding216

empirical mean estimator as done in [13], [14]. But, one217

still has to resort to iterative one-dimensional search methods218

with a cost function involving log/exp function evaluations.219

With the proposed method, we rather need to evaluate both220

first and second order moments of the random variable h.221

This shows that for a first order approximation of the LLR,222

minimizing a functional involving a complete statistical pdf223

characterization is not a necessary condition to get a good224

approximation. When full statistical CSI is available, the pro-225

posed approach enables to circumvent the above optimization226

procedure by a direct parametric estimation of the scaling227

factor α using the first and second order moments, which228

are easily handled in this case. If full statistical CSI is not229

available, in order to compute an estimation for the scaling230

parameter α, we have to estimate online the parameters231

(μh, σ2
h) from the data at the receiver. Additionally, we can232

notice that, under an AWGN channel assumption for which233

μh = 1 and σ2
h = 0, the result obtained in equation (8) 234

corresponds to the classical Gaussian LLR expression with 235

Ln = 2 yn/σ2. 236

C. On the Estimation of the Parameters μh and σ2
h 237

In the previous section, we addressed the issue of computing 238

LLR values considering partial statistical CSI, i.e. the first 239

(μh) and the second (σ2
h) orders of the p(h) are considered 240

known. However, in real scenarios these parameters might not 241

be available at the receiver and should be estimated online. 242

As a simple example, assuming that a binary learning sequence 243

is available at the receiver, and considering the output signal 244

model in (1), i.e. yn ∼ N (μhxn, σ2
h + σ2), we can compute 245

the log-likelihood function Λ(yn; μh, σ2
h) as 246

log (Λ) = −
N∑

n=1

1
2

log
(
2π
(
σ2

h + σ2
))− N∑

n=1

(yn − μhxn)2

2 (σ2
h+σ2)

. 247

(10) 248

Then, we can derive maximum likelihood estimates of μh and 249

σ2
h as the roots of the partial derivatives of (10) with respect 250

to μh and σ2
h. 251

μ̂h =
1
N

N∑
n=1

ynxn , σ̂2
h =

1
N

N∑
n=1

(yn − μ̂h)2 − σ2 . (11) 252

Other types of estimation strategies can be also considered, 253

but they are out-of scope of this letter. 254

IV. RESULTS 255

In Fig. 1, we compare LLR values obtained as a func- 256

tion of the channel output yn for a 8-PAM signal set with 257

Gray labeling for a normalized Rayleigh fading channel at 258

SNR = 7.91 dB and for the following scenarios : (a) full 259

statistical CSI [9, eq. (9)], (b) their Taylor approximation 260

[9, eqs. (24),(26),(27)]; and (c) the Bayesian approach pro- 261

posed in (7) (perfect partial statistical CSI). Note that a 262

normalized Rayleigh distribution was used in [9] to compute 263

the LLR values, since a derivable closed-form conditional 264

pdfs is required. From the plots, we note that the proposed 265

Bayesian method exhibits the same behavior as the Taylor 266

approximations for low amplitude values and differs when 267

amplitudes increase. In Fig. 3, we compare Frame Error Rate 268

(FER) between the LLR computed with (a) full statistical CSI 269

[9, eq. (9)], (b) the proposed Bayesian approach, and (c) the 270

Bayesian approach with the log-max approximation. We con- 271

sider a data frame encoded by an irregular LDPC of rate 1/4 272

as defined in the norm DVB-S.2 [15] (N = 64800) following 273

the coding rate considered in [9]. For the LDPC decoding, 274

we consider the belief propagation (BP) algorithm [2] with 100 275

decoding iterations. The proposed Bayesian approach achieves 276

performance with a gap 0.4 dB with respect to the LLR values 277

computed considering full statistical CSI. Note that when 278

the log-sum approximation is used, a gap 0.8 dB is found. 279

We underline that the Bayesian approach only needs partial 280

statistical CSI and not full statistical CSI as in previous works. 281

In this section we also compare soft decoding performance 282

for a BPSK modulation corresponding to the LLR consid- 283

ering complete CSI (1), the LLR considering full statistical 284
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Fig. 1. LLR values L(1)
n (a), L(2)

n (b) and L(3)
n (c) as functions of the channel

output yn for 8-PAM modulation under a normalized Rayleigh channel at
SNR = 7.91 dB.

CSI [9, eq. (8)], the best linear approximation of the LLR285

proposed in [8] (full statistical CSI) and the Bayesian approach286

to compute LLR (8) considering partial statistical CSI. In par-287

ticular, as an example, we provide (FER) performance for288

the GPS L1C subframe 2 [16], [17] (N = 1200), which is289

based on an irregular LDPC code of rate 1/2 and decoded by290

the BP algorithm. We consider a normalized Rayleigh fading291

channel (since an analytical expression of the LLRs pdf is292

necessary to compute both: the LLR expression in [9, eq. (8)]293

and the best linear approximation method). In Fig. 2, we plot294

the LLRs as a function of the observation yn at Eb/N0 =295

4.5 dB. Note from Fig. 2 that the Bayesian approach (8) (when296

partial statistical CSI is assumed) converges to the same LLR297

values than the best linear approximation approach, whereas298

the proposed method does not involves full statistical CSI.299

Moreover, considering the same fading channel distribution300

Fig. 2. GPS L1C frame error rate under a Rayleigh channel with a = 0.2.

Fig. 3. GPS L1C frame error rate under a normalized Rayleigh channel.

and the same methods to compute LLRs, the FER for the 301

previous methods exhibit again similar behaviors as shown 302

in Fig. 3. This illustrates the fact that the proposed method 303

does not suffer from any loss of information compared to 304

other methods. When μh and σ2
h are estimated from a learning 305

sequence of length Np = 60 symbols, a small degradation 306

of 0.2dB for the FER is observed. Note that for the particular 307

case of GPS, a pilot component is transmitted in parallel to the 308

data component, a larger Np could be considered to estimate 309

μh and σ2
h). This degradation increases when the number of 310

symbols to estimate μh and σ2
h is reduced. The method used 311

to estimate μh and σ2
h is provided in subsection III-C. Note 312

that the method in [9] (not reported in the figure) has similar 313

performance to the full statistical CSI method. 314

Finally, we consider the case of an unnormalized Rayleigh 315

channel with a scale factor of a = 0.2. Fig. 4 shows the 316

corresponding FER performance. Note that, for this experi- 317

ment, no analytical expression for the LLRs pdf is available. 318

Therefore, the LLR considering full statistical CSI [9, eq. (8)] 319

cannot be computed. In order to compute the best linear 320

approximation method, since no analytical expression for the 321

LLRs pdf is available, the empirical estimator proposed in [13] 322

is used in order to provide an estimation of the coefficient α, 323

defined in (8). Similar conclusions to the previous case can 324

be drawn for the FER performance. We underline, that thanks 325

to the Bayesian approach, full statistical CSI is not required. 326

Then, the complexity of the method consist on estimating μh 327

and σ2
h, i.e. to compute (10). 328
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Fig. 4. GPS L1C frame error rate under a Rayleigh channel with a = 0.2.

V. CONCLUSION329

In this letter, we have addressed the problem of the deriva-330

tion of LLR values approximations for uncorrelated fading331

channels using partial statistical CSI. To this end, we have332

proposed a different method following a Bayesian approach333

using conjugate prior analysis. Under this framework, we are334

able to derive a simple closed-form solution of the conditional335

pdf. Then, we can obtain an analytical closed-form expression336

of the LLR values, which are independent of the fading gain337

distribution p(h). Moreover, this solution can be shown to338

be only dependent on the first and second order moments339

associated with the random variable h. As a consequence,340

based on this analysis, it appeared that full statistical CSI is not341

a sole condition to derive accurate LLR functions, but partial342

statistical CSI based on statistics of order 1 and 2 can also343

lead to accurate and robust approximations. Finally, we have344

presented a simple method to compute online estimation of345

statistics of order 1 and 2 when a learning sequence is available346

at the receiver, showing that the proposed method can be347

implemented with a reasonable complexity.348

APPENDIX A349

In this appendix, we solve the integral in (6):350

p(xn|yn) ∝
∫ ∞

−∞
e−

(yn−hxn)2

2σ2 e
− (h−μh)2

2σ2
h dh351

=
∫ ∞

−∞
e−β1(y2

n−2hxnyn+h2xn
2)e−β2(h2−2hμh+μ2

h)dh,352

(12)353

where β1 = σ2
h

2σ2σ2
h

and β2 = σ2

2σ2σ2
h

. Since the product of two354

Gaussian distributions is a Gaussian distribution, we proceed355

by finding the mean μa and variance σ2
a of the resulting356

Gaussian distribution as357

(h − μa)2

σ2
a

+ κ = β1

(
y2

n − 2hxnyn + h2xn
2
)

358

+β2

(
h2 − 2hμh + μ2

h

)
(13)359

where κ is an auxiliary constant. Expanding the expressions360

h2

σ2
a

− 2hμa

σ2
a

+
μ2

a

σ2
a

+ κ361

= β1y
2
n + β2μ

2
h − 2h (xnynβ1 + μhβ2)+h2

n

(
β1xn

2 + β2

)
,362

(14)363

it follows that 1
σ2

a
=
(
β1xn

2 + β2

)
, μa

σ2
a

= (xnynβ1 + μhβ2) 364

and μ2
a

σ2
a

= (xnynβ1+μhβ2)
2

(β1xn
2+β2)

after identifying terms on both 365

sides of equation (14). The constant κ can be computed 366

as 367

κ=
β1β2

β1xn
2 + β2

(
y2

n−2xnynμh + μ2
hxn

2
)
=

(yn−xnμh)2

2 (σ2 + xn
2σ2

h)
, 368

where β1β2
β1xn

2+β2
= 1

2(σ2+xn
2σ2

h) . Reporting these equations, 369

equation (12) can be re-written as 370∫ ∞

−∞
e
− (h−μa)2

σ2
a e

− (yn−xnμh)2

2(σ2+xn2σ2
h) dh = e

− (yn−xnμh)2

2(σ2+xn2σ2
h) (15) 371

where by definition we have
∫∞
−∞ e

− (h−μa)2

σ2
a dh = 1, 372

yielding to equation (7) after inserting equation (15) into 373

equation (6). 374
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