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Abstract—In Global Navigation Satellite Systems, resilience to
multipath remains an important open issue, being the limiting
factor in several applications due to the environment specific
nature of such harsh propagation conditions. In order to as-
sess the multipath impact into the final system performance,
accurate metrics are required. The multipath error envelope
(MPEE), even if easy to handle, is limited to the study of the
bias of a receiver architecture in a noise free environment.
Moreover, when it is a flat zero-valued line, the MPEE becomes
less informative about the parameter estimation performance.
Considering an unbiased estimator, an alternative way to char-
acterize an architecture is to evaluate its mean square error
(MSE) and compare it to the corresponding Cramér-Rao bound
(CRB). In this work, a methodology to use both aforementioned
tools is presented. First, the MPEE, which is an understandable
metric. Secondly, the MSE convergence to the CRB, where
one can clearly interpret the estimation performance in terms
of signal-to-noise ratio or minimum path separation. These
tools are then applied to a range of known multipath mitigation
techniques. In addition, a new alternating projection multipath
mitigation approach is proposed and analyzed.
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1. INTRODUCTION
The design of new Global Navigation Satellite Systems
(GNSS) architectures implies a trade-off between different
performance criteria. Estimation accuracy, computational
cost or robustness to multipath are examples of key GNSS
receiver design criteria. Among them, resilience to mul-
tipath still remains an important open issue, indeed being
the limiting factor in several applications due to the envi-
ronment specific nature of such harsh propagation condi-
tions. There are many ways to tackle the multipath issue:
one is to use choke ring or specific antenna arrays to filter
out the multipath, assuming that one knows its direction of
arrival; another is to use signal processing techniques such
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as Multipath Estimating Delay Lock Loop (MEDLL) [1] or
Multipath Mitigation Technique (MMT) [2]; or a method of
the family of algorithms which try to exploit the distortion of
the correlation function, such as Vision Correlator [3], Pulse
Aperture Correlator (PAC) [4], etc.

In order to assess the impact of possible multipath conditions
into the final system performance, accurate metrics are re-
quired. From previous contributions, it is clear that, among
many different tools [5], [6], [7], the de facto metric used
to characterize the multipath effect is the so-called multipath
error envelope (MPEE) [8], [9], [10]. The MPEE displays, for
a given receiver architecture, the range of possible multipath-
induced errors considering a simple two-ray model. This tool,
however simple to handle, becomes less informative when it
is a flat zero-valued line. In that case, the estimator under
consideration is unbiased and thus its performance can no
longer be characterized through the MPEE. In that case the
estimator performance is only given by its variance, which in
turn can only be evaluated in a noisy environment.

A way to characterize a given receiver architecture - provided
the fact that it is unbiased - is to evaluate its mean square
error (MSE) in the presence of noise for a number of signal-
to-noise (SNR) or path separation values and determine the
threshold region where the MSE converges to the Cramér-
Rao bound (CRB) that corresponds to the scenario under
study. The CRB in a dual source context has been the
object of several studies [11], [12]. In the latter, a handy
closed-form expression was derived from the Slepian-Bangs
formula [13] in the case of a narrowband signal. The CRB
provides the best achievable performance of an unbiased
estimator in terms of MSE. Then, it is meaningful to compare
different architecture solutions according to their MSE when
their corresponding MPEE is a flat zero, that is, when the
estimator is unbiased. Notice that the CRB and the MPEE
are complementary approaches.

In this work, a methodology is proposed to use both afore-
mentioned tools: the MPEE which is an understandable
metric, and the MSE convergence to the CRB where one
can clearly read the limit of a technique in terms of SNR or
minimum path separation. These tools are then applied to a
range of existing (MEDLL, MMT, PAC) and new (Alternat-
ing Projection) multipath mitigation techniques. To support
the discussion, a couple of well-known GNSS signals are
compared in terms of both the MPEE and the MSE obtained
through Monte Carlo simulations, namely, GPS L1 C/A and
Galileo E1B signals. Notice that the former is the legacy GPS
signal using a binary phase shift keying (BPSK) modulation
with a large correlation function (the largest among the dif-
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ferent GNSS signals in space), and the latter is built from
a binary offset carrier (BOC) modulation, which implies a
narrower correlation function but two sidelobes.

The outline of this work is as follows: in Section 2, the
framework of this study is presented, including the signal
model and a reminder on the different tools used. Section
3 presents the methodology, first introducing the algorithms
under study, and then providing information on the simula-
tions, the results of which are displayed and commented in
Section 4. A concluding section closes this contribution.

2. FRAMEWORK OF THE STUDY
Signal Model

In this study, a simple two ray model is considered: a
bandlimited signal B(C), modulated at a carrier frequency is
received twice at the receiver’s front-end: the first occurrence,
indexed 0, is the line-of-sight (LOS) signal which has a
given delay (g0) and complex attenuation (modulus d0 and
phase q0). The second occurrence, indexed 1, is the single
multipath, which is the result of a specular reflection from a
reflecting object (e.g., the ground, a building, etc) and has its
own delay (g1), and complex attenuation (d1 and q1). This
multipath is assumed to arrive after the LOS signal: g1 > g0.

All front-end operations are done assuming that the Doppler
frequency is known and compensated, as it is done in analyses
involving MPEE [8]. The baseband output of the Hilbert filter
with bandwidth � can be expressed as follows:

G(C) , d04
9 q0 B(C − g0) + d14

9 q1 B(C − g1) + F(C), (1)

with F(C) an additive white Gaussian noise. Considering
now the acquisition of # = #2 − #1 samples at a sampling
frequency �B = 1/)B , the discrete two-path conditional signal
model (CSM) is,

x = A(g0, g1)" + w, w ∼ CN(0, f2
=I# ), (2)

where f2
=I# is the covariance matrix of the noise vector w,

A(g0, g1) = [s(g0), s(g1)] (3)
s(g) = (. . . , B(=)B − g), . . .)=∈[#1 ,#2 ] (4)

w = (. . . , F(=)B), . . .)=∈[#1 ,#2 ] (5)

") =
(
d04

9 q0 , d14
9 q1

)
(6)

Multipath Error Envelope

MPEE is a simple graphical tool that provides the range of
the bias induced by a secondary source (the multipath) upon
the estimation of the LOS signal time delay. For a given
estimator, it can generally be defined as follows:

maxΔq (1 (MDR,Δg,Δq)) ,minΔq (1 (MDR,Δg,Δq)) (7)

where 1(·) is the induced bias on the estimation of the LOS
delay, MDR = d1/d0 is the multipath-to-direct ratio, Δg =
g1 − g0 is the excess delay of the multipath and Δq = q1 − q0
is the relative phase. In practice, the bounds correspond
when the multipath is in-phase (Δq = 0) and out-of-phase
(Δq = c) of the LOS signal. As an example, Figure 1
presents the MPEE of the single source maximum likelihood
estimator (1S-MLE) for two GNSS signals: GPS L1 C/A
and GALILEO E1B and a precorrelation bandwidth set to 12
MHz.

Figure 1. Example of MPEE for the single source
maximum likelihood estimator for GPS L1 C/A and

GALILEO E1B signals

Cramér-Rao Bounds

The CRB describes the minimum variance achievable of an
unbiased estimator. In [12], a closed-form CRB was derived
for a dual source CSM that takes into account the contribution
of the Doppler effect.

CRB−1
& |& = F& |& , (8)

with &) = [f2
= , g0, 10, d0, q0, g1, 11, d1, q1] and 1 is the

stretch induced by the Doppler effect.

To obtain the CRB that corresponds to the present model, that
is for the unknown vector ') = [f2

= , g0, d0, q0, g1, d1, q1],
one only needs to inject the fact that the Doppler frequency
is assumed known and compensated. This can be done by
adding the following constraint to the CSM studied in [12]:

10 = 11 = 0⇔ & = & ('), (9)

where, if one notes the 9-by-9 unity matrix I9 = [e1, . . . , e9]
with e8 the column unit vector with 1 at the 8th component
and 0 elsewhere, the constraint (9) simply becomes:

& (') = [ e1 e2 e4 e5 e6 e8 e9 ] ' =
m& (')
m')

' ,

(10)
and the CRB for the CSM (2) is obtained with the following
matrix product:

CRB−1
' |' = F' |' =

(
m& (')
m')

))
F& |&

m& (')
m')

. (11)

3. METHODOLOGY
Algorithms

In order to illustrate the combined use of MPEE and CRB, a
set of four algorithms is investigated. Three of them are well
known multipath mitigation algorithms:

• MEDLL as in [1] which consists of a relaxed version of a
dual source CLEAN algorithm [14]. This algorithm estimates
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a first source and then removes this estimate from the noisy
samples in order to estimate a weaker source. It iterates until
the associate likelihood does not change anymore.
• PAC [4] belongs to the family of algorithms known as
double-delta (ΔΔ). Those algorithms improve with a limited
number of extra correlators the basic early-minus-late archi-
tecture. PAC estimates the slope at each side of the correlation
function peak and if there is any asymmetry, the algorithm
compensates for it by assuming that a single multipath is
causing this asymmetry. In this implementation, the spacing
was set to 1/12 of L1 C/A chips.
• MMT [2] is an implementation of the dual source max-
imum likelihood estimator (2S-MLE). This estimator has
particular properties that make it a benchmark for the other
algorithms: it has been shown that in the asymptotic regime,
when the SNR is large enough [15], the 2S-MLE is efficient,
i.e., it is unbiased and its variance is equal to the correspond-
ing CRB.

Along with these three algorithms, an implementation of the
Alternating Projection Estimator (APE) [16] is proposed in
this study. This dual source implementation simplifies the 2S-
MLE multi-dimensional parameter search to one-dimension
by introducing an adequate projector. Thus, it iteratively
maximizes the likelihood criterion with respect to the first
source and then to the second source.

Variables of Interest

Traditionally, the MPEE represents the bias induced by a
multipath as a function of the path separation between the
LOS signal and the multipath, i.e., Δg. It is evaluated for the
in-phase and out-of-phase cases with a fixed MDR and with
an infinite SNR. Consequently, a first variable that will drive
the following study is this relative time delay Δg.

On the other hand, in this study, the aim is to investigate the
behavior of the estimator at finite SNR. Then, it is necessary
to display the MSE of the algorithms for different SNR
values. Thus, the second variable of interest is the SNR at
the output of the matched filter that can be defined as:

SNRout ,
d2

0

f2
=

∫ )�

0
|B(C) |2dC (12)

where )� is the correlation integration time.

Simulation Set-up

The next section presents for each algorithm and for two
well-known GNSS signals, GPS L1 C/A ()GPS

�
= 1ms)

and GALILEO E1B ()GAL
�

= 4ms) with a pre-correlation
bandwidth � = �B set to 12 MHz and a MDR set to 0.5:

• the corresponding MPEE with regard to the path separation,
• the MSE with regard to the path separation for a fixed value
of SNRout (GPS L1 C/A: SNRout = 31dB and GALILEO
E1B: SNRout = 34dB),
• and the MSE with regard to the SNRout for a fixed value of
Δg (set to 0.5 C/A chips or about 150m).

MSE were evaluated from 1000 Monte Carlo runs. For these
particular examples, the relative phase between the LOS and
the multipath was set to Δq = 0.

4. RESULTS AND DISCUSSION
MPEE

Figure 2 and Figure 3 present the MPEE for the algorithms
under study applied to GPS L1 C/A and GALILEO E1B
signals. Results are obtained by simply observing the output
of the estimators in the presence of a single multipath without
noise. A first result that can be drawn from these figures is
that the PAC MPEE (in magenta), however small, never re-
duces to zero. Consequently, it can be said of this architecture
that the presence of a multipath will irremediably affect the
precision of the LOS time delay. On the other hand, MEDLL
(in blue) and APE (in orange) MPEEs both present interesting
behaviors. There is a path separation threshold above which
these algorithms estimate the LOS time delay with no bias.
Note that for GPS L1 C/A, the MEDLL and APE MPEEs
thresholds are around 140m and 40m, respectively. For
GALILEO E1B, both algorithms present a similar threshold
at 40m. As expected, the MMT/2S-MLE does not present any
bias, as this method correctly estimates the two sources in a
noiseless environment.

Figure 2. MPEE for GPS L1 C/A.

Figure 3. MPEE for GALILEO E1B.
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MSE with Regard to the Path Separation

In order to complete the previous experience, noise is in-
cluded at the input of the receiver. Figures 4 and 5 illustrate
the MSE of the LOS signal time delay estimate as a function
of the path separation. Moreover, the CRB (black solid line)
(11) is also illustrated. When the path separation is close to
zero, the dual source model CRB for the estimation of the
LOS time delay naturally soars to infinity since it becomes
impossible to identify the LOS signal from the multipath
signal. In this region all the estimators behaves better than
the CRB because only one source is observed.

Except for the PAC MSE, which is altered by a non-zero bias,
it can be observed that the other three algorithms satisfyingly
reach the CRB at a given path separation. For GPS L1 C/A,
when MEDLL is used, the MSE reaches the CRB at about
100m of path separation, which is a little before becoming
fully unbiased according to its MPEE. On the other hand, it
is noteworthy to remark that in Figure 2, between 100m and
140m the upper bound of the MPEE, which corresponds to
the in-phase case, is at about 0.2m. However, in Figure 4
the resulting root MSE (RMSE) around this area is at about
1m. That involves that the bias observed from the MPEE is
masked by a larger value of RMSE. The APE MSE coherently
reaches the CRB at about 40m as hinted by its MPEE.

Finally, the MMT estimator was supposed to stick to the CRB
at any path separation. However, it does not behave so in the
range between 0 to 40m due to the practical implementation,
i.e., the search area for g0 and g1 was limited for computa-
tional load reasons and it did not allow large output values.
In short, in this range of path separation, the estimation of the
time delays was helped by the limited search area.

Similar comments apply for Figure 5.

Figure 4. Estimation of the LOS time delay g0 with respect
to the path separation for GPS L1 C/A at SNRout = 31dB.

MSE with Regard to the SNR

It is well-known that for low SNR, an algorithm might not be
able to detect a signal over the thermal noise. Then, there is
a strong interest to understand how the considered algorithms
behave when the SNR varies. The main feature that one might
look for is, for a given path separation, the SNR threshold,
i.e., the minimum SNR level necessary to detect the signal in
an efficient way.

Figure 5. Estimation of the LOS time delay g0 with respect
to the path separation for GALILEO E1B at SNRout = 34dB.

Figures 6 and 7 illustrate the MSE for each algorithm and for
both GNSS signals with respect to the SNR. Both figures can
be divided into three areas: in the left-hand side the SNR is
so small that any estimator is outputting meaningless random
estimates; then when the SNR rises, there is a transition
area in which the MSE is not yet reaching the CRB but is
not out of range. Finally, in the right-hand side, there is a
particular operation point where the SNR is large enough for
the estimators to behave efficiently. It is exactly that transition
point that is referred to as SNR threshold.

From Figure 6, the considered estimators can be compared
according to their behaviour: the threshold is slightly better
for the MMT algorithm (SNRout=21dB), followed by the
APE (SNRout=22dB) and the MEDLL (SNRout=24dB). The
MSE of the PAC algorithm (in magenta) does not seem to
reach the CRB. Note that this is due to the fact that a biased
estimator does not necessarily have a MSE that follows the
CRB. Indeed at path separation of 150m, from Figure 2, one
can read that an in-phase multipath induces a bias of about
-0.2m. This phenomenon is particularly visible in the case
of the GALILEO signal, in Figure 7, where the PAC RMSE
converges to a constant value of about 1.5m, which is exactly
the value of the PAC upper bound MPEE for this specific path
separation of 150m (refer to Figure 3).

5. CONCLUSION
In this contribution, a set of multipath mitigating estimators
was analyzed not only with the well-known MPEE tool but
also with the CRB, which takes into account noisy environ-
ments and provides informative features on the MSE. This
approach coherently completes the MPEE tool, emphasizing
the impact of a bias on the performance and giving a way
to compare algorithms even when their MPEE converges to
zero (no bias). The entire analysis can provide the following
features that are easy to extract from the results and that are
key for the comparison of different algorithms:

• bias from the MPEE,
• variance lower bound from the CRB,
• threshold with regard to the path separation from which the
MSE reaches the CRB for a given SNR,
• threshold with regard to the SNR from which the MSE
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Figure 6. Estimation of the LOS time delay g0 with regard
to SNRout for GPS L1 C/A and path separation of 150m.

Figure 7. Estimation of the LOS time delay g0 with regard
to SNRout for GALILEO E1B and path separation of 150m.

reaches the CRB for a given path separation.

Finally, through this analysis, an implementation of the Al-
ternating Projection estimator has been first presented. More-
over, it has been shown, at least for the set of scenarios studied
here, that the Alternating Projection technique can be a good
candidate for multipath mitigation.
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