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Abstract—Global Navigation Satellite Systems (GNSS) are a
key player in a plethora of applications. For navigation purposes,
interference scenarios are among the most challenging operation
conditions, which clearly impact the maximum likelihood esti-
mates (MLE) of the signal synchronization parameters. While
several interference mitigation techniques exist, a theoretical
analysis on the GNSS MLE performance degradation under
interference, being fundamental for system/receiver design, is a
missing tool. The main goal of this contribution is to introduce a
mathematical tool to evalute the effect of any type of interference
on any GNSS signal. Regarding such tool, we provide closed-
form expressions of the misspecified Cramér-Rao (MCRB) bound
and estimation bias, for a generic GNSS signal corrupted by
an interference. The proposed expressions are used to analyze
the GNSS performance degradation induced by the distance
measuring equipment (DME) system.

Index Terms—GNSS synchronization, DME interference, max-
imum likelihood, misspecified CRB, bias analysis.

I. INTRODUCTION

Global Navigation Satellite Systems (GNSS) [1] appear
in a plethora of applications, ranging from navigation and
timing, to Earth observation, attitude estimation or space
weather characterization. Indeed, reliable position, navigation
and timing information is fundamental in new application such
as intelligent transportation systems or autonomous unmanned
ground/air vehicles, for which GNSS have become the corner-
stone source of positioning data, and this dependence can only
but grow in the future. But GNSS were originally designed
to operate in clear sky nominal conditions, and their per-
formance clearly degrades under harsh environments. Among
the non-nominal operation conditions, multipath, spoofing and
interferences (i.e., intentional or unintentional) are the most
challenging ones, being a key issue in safety-critical scenarios
[2]. It is well known that interferences may degrade GNSS
performance. These effects have been reported in the state-of-
the-art, and several interference mitigation countermeasures
have already been proposed [3]–[7]. A particular type of
interference, of interest in the aviation domain, is the one
caused by distance measuring equipment (DME) and tactical
air navigation (TACAN) systems.

Indeed, these systems transmit at the aeronautical radion-
avigation services band, which overlaps the GNSS E5 band
[8]. From an estimation point of view, it is important to
theoretically analyze how different interferences degrade the

GNSS synchronization performance, that is, the delay and
Doppler estimation stage of the GNSS receiver. Because the
optimal solution is given by the maximum likelihood estimator
(MLE), it is sound to obtain the corresponding Cramér-Rao
bound (CRB). Note that the CRB gives an accurate estimation
of the mean square error (MSE) of the MLE in the asymptotic
region of operation, i.e., in the large sample and/or high signal-
to-noise (SNR) regimes of the Gaussian conditional signal
model (CSM) [9]. Several CRBs for different GNSS receiver
architectures operating under nominal conditions are available
in the literature [10]. In addition, in recent papers closed-
form CRBs under non-nominal conditions (e.g. multipath [11],
acceleration systems [12]) have been derived. In this contribu-
tion, we provide a mathematical tool that allows to characterize
the performance degradation induced by an interference at
the first GNSS receiver stages. The main hypothesis is that
the receiver is not aware that an interference is present, and
therefore, it assumes that the received signal is only corrupted
by additive Gaussian noise. This implies that the signal model
at the receiver input and the assumed signal model do not
coincide, that is, there exists a model mismatch [13]. In that
case, the MLE is no longer unbiased, and one needs to obtain:
i) the estimation of the bias induced by the interference [14],
and ii) the corresponding misspecified CRB (MCRB) [15].

The goal of this contribution is twofold: 1) to introduce
to the GNSS community how this new tool can be used in
order to evaluate the effect of any kind of interference on
any GNSS signal, at the receiver synchronization step, and,
as an example of interest, 2) to analyze the performance
degradation induced by a DME interference on GNSS signals
within the L5 band. The analysis provided in this article allows
to assess, for instance, which is the maximum acceptable
signal to noise+interference power ratio for a correct receiver
operation, or the expected synchronization performance under
different interference powers. A set of simulation results for
the DME interference and GNSS signals in the L5/E5a band
are provided to support the discussion.

II. TRUE AND MISSPECIFIED SIGNAL MODELS

A. Correctly Specified Signal Model

A GNSS band-limited signal s(t), with bandwidth B, is
transmitted over a carrier frequency fc (λc = c/fc, ωc =
2πfc). The synchronization parameters to be estimated are the



delay and Doppler shift, η = (τ, b)
⊤. Under the narroband

assumption, the influence of the Doppler parameter on the
baseband signal samples is negligible, s((1−b)(t−τ)) ≈ s(t−
τ) [16]. For short observation times, a good approximation
of the baseband output of the receiver’s Hilbert filter (GNSS
signal + interference) is [17],

x (t;η) = αs (t− τ) e−j2πfc(b(t−τ)) + I(t) + n (t) , (1)

with I(t) a band-limited unknown interference within the
frequency band of interest, n(t) a complex white Gaussian
noise with unknown variance σ2

n and α a complex gain. The
discrete vector signal model is built from N = N1 −N2 + 1
samples at Ts = 1/Fs = 1/B,

x = αa(η) + n = ρejΦa(η) + n = αµ(η) + I+ n, (2)

with x = (. . . , x (kTs) , . . .)
⊤, I = (. . . , I (kTs) , . . .)

⊤, n =
(. . . , n (kTs), . . .)

⊤, N1 ≤ k ≤ N2 signal samples, and

a(η) = (. . . , s(kTs − τ)e−j2πfc(b(kTs−τ) +
1

α
I(kTs). . . .)

⊤,

(3)

µ(η) = (. . . , s(kTs − τ)e−j2πfc(b(kTs−τ). . . .)⊤. (4)

The unknown deterministic parameters can be gathered in
vector ϵ⊤ =

(
σ2
n, ρ,Φ,η

⊤) =
(
σ2
n,θ

⊤
)

, with ρ ∈ R+, 0 ≤
Φ ≤ 2π. The correctly specified signal model is represented
by a probability densitiy function (pdf) denoted pϵ(x; ϵ),
which follows a complex circular Gaussian distribution x ∼
CN

(
αa(η), σ2

nIN

)
.

B. Misspecified Signal Model
The misspecified signal model represents the case where the

interference is not considered, i.e., when a mismatched MLE
(MMLE) is implemented at the receiver. This nominal case
leads to the definition of the misspecified parameter vector
η′ = [τ ′, b′]⊤, and the complete set of unknown parameters
ϵ′

⊤
=
[
σ2
n, ρ

′,Φ′,η′⊤] =
[
σ2
n,θ

′⊤
]
, yielding the following

signal model at the output of the Hilbert filter,

x′(t;η′) = α′s(t− τ ′)e−j2πfcb
′(t−τ ′) + n(t), (5)

with α′ = ρ′ejΦ
′
. Again, we can build the discrete vector

signal model from N samples at Ts = 1/Fs,

x′ = α′µ(η′) + n, (6)

with µ(η′) = (. . . , s(kTs − τ ′)e−j2πfcb
′(kTs−τ ′), . . .)⊤. The

misspecified signal model is represented by a pdf denoted
fϵ′(x; ϵ

′) which follows a complex circular Gaussian distri-
bution x′ ∼ CN (α′µ(η′), σ2

nIN ). Note that in this particular
scenario, the covariance matrix of the correctly specified signal
model equals the covariance matrix of the misspecified signal
model, i.e. σ2

nIN , which does not depend on the synchroniza-
tion parameters of interest, then:

pϵ(x; ϵ) =
1

πNσ2N
n

e
−(x−αa(η))H (x−αa(η))

σ2
n , (7)

fϵ′(x
′; ϵ′) =

1

πNσ2N
n

e
−(x−α′µ(η′))H (x−α′µ(η′))

σ2
n . (8)

Notice that considering the misspecified signal model induces
a bias on the corresponding MMLE. These biased estimated
parameters are commonly referred to as pseudotrue parame-
ters, θ⊤

pt = [ρpt,Φpt, τpt, bpt].

III. COMPUTATION OF THE THEORETICAL MSE

A. Bias Computation via Kullback-Leibler Divergence

The pseudotrue parameters are simply those that give
the minimum Kullback-Leibler Divergence (KLD) [15]
D(pϵ||fϵ′) = Ep

[
ln pϵ(x; ϵ)− ln fϵ′(x

′; ϵ′)
]
, between the

true and assumed models (i.e., because the estimation is
independent of σ2

n), where Ep[·] is the expectation with respect
to (w.r.t.) the true model’s pdf,

θpt = argmin
θ′

{D(pϵ||fϵ′)} = argmin
θ′

{
Ep

[
− ln fϵ′(x; ϵ

′)
]}

,

(9)

In [18] has been shown that in order to compute the parameters
that minimizes the KLD, we need to compute the following
minimization problem:

argmin
θ′

{
∥αa(η)− α′µ(η′)∥2

}
, (10)

where it is simple to show that{
∥αa(η)− α′µ(η′)∥2

}
=

∥∥∥∥µ(η′)

(
µ(η′)Hαa(η)

µ(η′)Hµ(η′)
− α′

)∥∥∥∥2
+ ∥αa(η)∥2 −

∥∥Πµ(η′)αa(η)
∥∥2 , (11)

with ΠA = A
(
AHA

)−1
AH . The parameters that minimize

the KLD are [18]:

αpt = α
µ(ηpt)

Ha(η)

µ(ηpt)
Hµ(ηpt)

, (12)

ηpt = argmax
η′

{∥∥Πµ(η′)αa(η)
∥∥2} , (13)

with αpt = ρpte
jΦpt and η⊤

pt = [τpt, bpt]. Note that the
pseudotrue parameters can be computed with the MMLE
without noise. Then, the bias is defined as ∆α = αpt − α,
∆η = ηpt − η.

B. Closed-Form MCRB Expressions for a Band-Limited Sig-
nal under Interference

In [19], the MCRB was derived as an extension of the
Slepian-Bangs formulas, a result that was later expressed as a
combination of two information matrices in [15]: A(θpt) and
B(θpt),

MCRB(θpt) = A(θpt)
−1B(θpt)A(θpt)

−1, (14)

where

A(θpt) =
2

σ2
n

ℜ

{
(δm)H

(
∂2αptµ(ηpt)

∂θpt∂θ
⊤
pt

)}
−B(θpt),

B(θpt) =
2

σ2
n

ℜ

{(
∂αptµ(ηpt)

∂θpt

)H (
∂αptµ(ηpt)

∂θpt

)}
,



δm ≜ αa (η) − αptµ(ηpt) = αµ (η) + I − αptµ(ηpt) the
mean difference between true and misspecified models.

In B(θpt) one can recognize the Fisher Information Matrix
(FIM) of a single source CSM. A compact expression of this
FIM, that depends only on the baseband signal samples, was
recently derived in [10]. We recall hereafter for completeness
that

B(θpt) =
2Fs

σ2
n

ℜ
{
QWQH

}
, (15)

with

W =

w1 w∗
2 w∗

3

w2 W2,2 w∗
4

w3 w4 W3,3

 , (16)

Q =


jαptωcbpt 0 −αpt

0 −jαptωc 0
ejΦpt 0 0
αpt 0 0

 , (17)

where the elements of W can be expressed w.r.t. the baseband
signal samples as,

w1 =
1

Fs
sHs, w2 =

1

F 2
s

sHDs,

w3 =
1

Fs
sHV∆,1(0)s, w4 =

1

Fs
sHDV∆,1(0)s,

W2,2 =
1

F 3
s

sHD2s,W3,3 = Fss
HV∆,2(0)s

with s, the baseband samples vector, D, V∆,1(·) and V∆,2(·)
defined as,

s = (. . . , s(nTs), . . .)
⊤
N1≤n≤N2

, (18)

D = diag (. . . , n, . . .)N1≤n≤N2
, (19)[

V∆,1 (q)
]
k,l

=
1

k − l − q
(cos (π(k − l − q))

−sinc (k − l − q)) , (20)[
V∆,2 (q)

]
k,l

= π2sinc (k − l − q)

+ 2
cos (π(k − l − q))− sinc (k − l − q)

(k − l − q)
2 . (21)

where the reader can refer to [14] for details on the closed-
form expressions of V∆,1(q) and V∆,2(q).

The matrix A(θpt) accounts for the model misspecification.
Its elements can also be expressed in a compact form as a
function of the baseband signal and interference samples as,

[A(θpt)]p,q =
2Fs

σ2
n

ℜ
{
[Qq]p,. W

Aα̃∗
}
− [B(θpt)]p,q ,

WA = [wA
1 wA

2 wA
3 ], α̃ =

(
ρejΦ, 1,−ρpte

jΦpt
)⊤

, (22)

with wA
1 = [. . . , wA

1,l, . . .]
⊤, wA

2 = [. . . , wA
2,l, . . .]

⊤ and
wA

3 = [. . . , wA
3,l, . . .]

⊤ for l ∈ (1, · · · , 6), and where [Qq]p,.
is the p-th row of the matrix Qq with q ∈ (1, · · · , 4) and

Q1 =


−αptω

2
cb

2
pt 0 0 −j2αptωcbpt 0 αpt

jαptωc αptω
2
cbpt 0 0 jαptωc 0

jejΦptωcbpt 0 0 −ejΦpt 0 0
−αptωcbpt 0 0 −jαpt 0 0

 ,

(23)

Q2 =


jαptωc αptω

2
cbpt 0 0 jαptωc 0

0 0 −αptω
2
c 0 0 0

0 −jejΦptωc 0 0 0 0
0 αptωc 0 0 0 0

 ,

(24)

Q3 =


jejΦptωcbpt 0 0 −ejΦpt 0 0

0 −jejΦptωc 0 0 0 0
0 0 0 0 0 0

jejΦpt 0 0 0 0 0

 ,

(25)

Q4 =


−αptωcbpt 0 0 −jαpt 0 0

0 αptωc 0 0 0 0
jejΦpt 0 0 0 0 0
−αpt 0 0 0 0 0

 , (26)

Finally: ∆τ = τ − τpt and ∆b = b− bpt, and WA is obtained
from,

wA
1,1(η)

∗ =
1

Fs
sHU

(
fc∆b

Fs

)
V∆,0

(
∆τ

Ts

)
s ejωcb∆τ , ,

(27)

wA
1,2(η)

∗ =
1

F 2
s

sHDU

(
fc∆b

Fs

)
V∆,0

(
∆τ

Ts

)
s ejωcb∆τ ,

(28)

wA
1,3(η)

∗ =
1

F 3
s

sHD2U

(
fc∆b

Fs

)
V∆,0

(
∆τ

Ts

)
s ejωcb∆τ ,

(29)

wA
1,4(η)

∗ =

(
−sHU

(
fc∆b

Fs

)
V∆,1

(
∆τ

Ts

)
s+

jωc∆b

Fs
sHU

(
fc∆b

Fs

)
V∆,0

(
∆τ

Ts

)
s

)
. ejωcb∆τ , (30)

wA
1,5(η)

∗ =

(
− 1

Fs
sHU

(
fc∆b

Fs

)
V∆,0

(
∆τ

Ts

)
s

− 1

Fs
sHDU

(
fc∆b

Fs

)
V∆,1

(
∆τ

Ts

)
s

+j
ωc∆b

F 2
s

sHDU

(
fc∆b
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wA
2,6 = −FsI
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(
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(
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wA
3,1 = w1, w

A
3,2 = w2, w

A
3,3 = W2,2, (39)

wA
3,4 = w3, w

A
3,5 = w4, w

A
3,6 = −W3,3. (40)

with

U (p) = diag
(
. . . , e−j2πpn, . . .

)
N1≤n≤N2

, (41)[
V∆,0 (q)

]
k,l

= sinc (k − l − q) (42)

The entire derivation can be found in [14]. However, the
equations included above are self-contained and it is not
necessary to go to the proof to perform the implementation.

IV. RESULTS

Let us consider the case where a L5/E5a GNSS signal is
interfered by a DME system. The signal transmitted by an
individual DME station is composed of a pair of Gaussian
pulses, modulated by a cosine, at central frequency fDME .
The interference baseband signal at the output of the receiver’s
Hilbert filter can be modeled as:

I(t) =

K∑
i=1

Ii·
(
e−

γ(t−ti)
2

2 + e−
γ(t−ti−δt)

2

2

)
e−j2π(fi)t, (43)

with Ii a complex gain whose module represents the received
interference beacon peak power of the i-th pulse pair, γ = 4.5·
1011s−2, δt = 12µs, ti represents the i-th pulse pair reception
time, and fi the received frequency of the i-th pulse pair after
the baseband demodulation process, i.e., fi = fDMEi

− fc +
fDi

, where fDMEi
is the central frequency of the transmitted

i-th pulse pair, fc the central frequency of the L5/E5a GNSS
signal, and fDi is the Doppler frequency associated to the
reception of the i-th pulse pair. Finally, K is the number of
pulse pairs received within the GNSS signal integration period.

We underline that the aircraft’s DME interrogators trans-
mitting their signals between 1025 MHz and 1150 MHz
are ignored herein. This study focuses on DME ground
stations/repeaters, as they transmit their signals between 962

MHz and 1213 MHz, which includes the L5/E5a GNSS band
of interest (i.e., between 1164 MHz and 1191 MHz). The band
is divided into 126 channels for interrogation and 126 channels
for reply. The interrogation and reply frequencies always differ
by 63 MHz. The spacing among channels is 1 MHz.

The following scenario is proposed to verify the
theory introduced in Section III. We consider 7
DME signals interfering the GNSS receiver, with
fi = [−0.5,−0.25, 0.15, 0, 0.15, 0.25, 0.5] MHz, and
arriving at the receiver [1.25, 2.5, 3.75, 5, 6.25, 7.5, 8.75] ms
after the first chip of the GNSS PRN code. We consider the
reception of a GPS L5Q signal. The integration time is set
to 10 ms. The ambiguity function without interference is
illustrated in Figure 1.

Fig. 1. Ambiguity function of the GPS L5Q signal. The integration time is
set to 10 ms, Fs = 20 MHz.

The ambiguity function for the GNSS+DME scenario de-
scribed above, for a pulse power Ii = 30dB, is shown in
Figure 2. It is interesting to check that even if there are extra
secondary lobes due to the DME signals, the main GPS L5Q
lobe apparently does not change in position or shape. The
same effect can be seen in Figure 3, where Ii = 32dB.

For these two cases, Ii = {30, 32}dB, Figures 4 - 7 show
the MSE and bias for the parameters of interest ηT w.r.t.
the SNR at the output of the matched filter (i.e., SNROUT ),
obtained from 1000 Monte Carlo runs. In these results one
can observe that: i) the root MSE (

√
MSE) of the true

parameter converges to
√
MCRB +Bias2, ii) the

√
MSE of

the pseudotrue parameter converges to the
√
MCRB, and iii)

the
√
CRB represents the asymptotic estimation performance

without any source of interference. Such results validate and
prove the exactness of the proposed MCRB and bias expres-
sions. Interestingly, while the other parameter estimates (i.e.,
Doppler, amplitude and phase) are biased, in Figure 4 one
can observe that the time-delay MSE almost (i.e., the MCRB
is slightly larger than the CRB) converges asymptotically to
the case without interference, and then the time-delay MLE
is almost asymptotically unbiased. However, increasing the



Fig. 2. Ambiguity function of the GPS L5Q signal. The integration time is
set to 10 ms, Fs = 20 MHz. Ii = 30dB.

Fig. 3. Ambiguity function of the GPS L5Q signal. The integration time is
set to 10 ms, Fs = 20 MHz. Ii = 32dB.

interference power has an efect in the convergence threshold
of the MLE to the corresponding asymptotical performance.

Finally, the ambiguity function when Ii = 34 dB is shown
in Figure 8. Note that under this particular scenario (i.e.,
and for pulse powers larger than this value) the MLE does
not converge anymore, since the power of the DME signal
completely masks the GNSS L5Q signal: GNSS breakdown.

V. CONCLUSION

It is well documented in the literature that interference
signals may have a huge impact on the GNSS receivers’ per-
formance, but to the best of the authors’ knowledge, from an
estimation perspective, the theoretical analysis of the impact of
such intereferences on the first GNSS receiver stage (i.e., time-
delay and Doppler estimation) is an important missing point.
In practice, at the receiver there exists a model mismatch,
and an interference induces both i) an estimation bias and ii)
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Fig. 4. RMSE of the time-delay of the GPS L5Q signal. The integration time
is set to 10 ms, Fs = 20 MHz and Ii = {30, 32}dB.
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Fig. 5. RMSE of the Doppler of the GPS L5Q signal. The integration time
is set to 10 ms, Fs = 20 MHz and Ii = {30, 32}dB.

a variance degradation. In this contribution, we provided the
theoretical closed-form expressions that characterize the MSE
for the MLE of the GNSS synchronization parameters, that is,
bias and MCRB. Comparing these results to the standard CRB,
associated to the unbiased MLE without any interference, al-
lows to theoretically characterize the performance degradation
on the time-delay and Doppler estimation. The exactness of
the proposed expressions was validated for a representative
case where a DME system interfere a GNSS L5/E5a signal.
Results were provided to show such validity and the impact
on both time-delay and Doppler estimation. It is important to
notice that such analysis may allow to design robust metrics
for the design of new GNSS signals, as well as the design of
new interference countermeasures.
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Fig. 6. RMSE of the amplitude ρ of the GPS L5Q signal. The integration
time is set to 10 ms, Fs = 20 MHz and Ii = {30, 32}dB.
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Fig. 7. RMSE of the phase ϕ of the GPS L5Q signal. The integration time
is set to 10 ms, Fs = 20 MHz and Ii = {30, 32}dB.
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