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Abstract—This paper aims to characterize the estimation
precision at the output of the GNSS receiver tracking stage.
We define an original statistical modelling of the GNSS tracking
loop, which can then be exploited by an optimal linear Kalman
Filter (KF) in order to obtain an analytical expression of the
steady-state regime. The latter is designed to encompass dynamic
information of the GNSS receiver. Two observation models are
of interest: the first one considers the propagation delay and
Doppler parameters, and the second one also including the
Doppler rate, i.e., the acceleration, which is known to be relevant
for high dynamics scenarios and can easily be included into the
acquisition step. Within this context, the steady-state asymptotic
performance of the tracking stage is obtained by solving an
algebraic discrete Riccati equation. In both cases, simulation
results are provided to show the validity of the proposed approach
and the resulting steady-state performance.

Index Terms—Tracking loop, Kalman filter, maximum likeli-
hood estimator, Riccati equation.

I. INTRODUCTION

There are a huge variety of mass-market and safety-critical
applications, within a plethora of engineering fields, where
precise and reliable position, velocity and time (PVT) is nowa-
days of paramount importance, and Global Navigation Satellite
Systems (GNSS) [1] is typically the technology of choice to
provide positioning information. Therefore, it is fundamental
to assess the ultimate achievable performance at each receiver
stage, from baseband signal processing to PVT computation.
Regarding the first synchronization stage, standard GNSS
receiver architectures rely on a scalar (i.e., different satellite
signals are processed with independent channels) acquisition
and tracking approach. In this case, the former provides a
coarse point estimate of the synchronization parameters (iden-
tify/acquire visible satellites), and the latter keeps track of their
time-varying evolution. These two stages, i.e., acquisition and
tracking, can be seen as particular instances of the Maximum
Likelihood (ML) solution, where the final goal is to estimate
both propagation delay and Doppler shift (or higher order
Doppler terms in high dynamics scenarios) for each visible
GNSS satellite.

While acquisition and PVT computation are well studied
in the literature, the tracking block still needs some further
analysis to properly characterize the achievable estimation

This work has been partially supported by the DGA/AID projects
2022.65.0082, 2021.65.0070.00.470.75.01, and TéSA.

performance for the time-varying synchronization parameters,
which are the input to subsequent code and/or carrier phase-
based PVT solvers. In practice, the tracking stage is typically
performed using coupled delay/phase/frequency locked loops
[2], where the initialization is obtained from the subopti-
mal ML-based acquisition stage. Considering these loops,
the tracking performance (i.e., the achievable delay/Doppler
estimation precision under nominal conditions) is not easy
to obtain as it depends on several parameters and specific
implementations. A possible way to overcome such limitation
is to consider a Kalman Filter (KF) based tracking architecture
[3], [4], [5], as these locked loops can be seen as suboptimal
KF implementations. Using such approach, in its asymptotic
regime, the KF estimation error covariance provides the es-
timation precision on the parameters/states of interest. But
standard KF-based tracking schemes are still based on the
legacy architecture, that is, they consider a carrier wipe-off,
signal correlation, code/phase/frequency discriminators and a
linear/extended KF that replaces the standard filter loops.

In this contribution, a fundamentally different approach
is proposed to characterize the estimation precision at the
output of the tracking stage. The idea is to consider an
original statistical modelling of the GNSS tracking loop,
which can be exploited by an optimal linear KF in order
to obtain an analytical expression of the steady-state regime.
As input observations to the filter, two cases are considered:
1) ML-based propagation delay and Doppler measurements,
2) ML-based propagation delay, Doppler and Doppler rate
measurements. That is, in the second case the acceleration is
also taken into account, a parameter that is relevant for high
dynamics scenarios. Indeed, tracking the parameters of the
GNSS received signal in a high dynamic context has become
a major issue the last years [6], [7], [8], [9], [10], but has not
been studied from a statistical point of view.

Considering a large signal-to-noise ratio (SNR) regime, the
mean square error (MSE) associated to the ML estimator is
known to converge to the corresponding Cramér-Rao bound
(CRB), then the uncertainty on the observations taken as input
to the KF can be theoretically obtained [11]. In order to
obtain the uncertainty for these observations, we consider 1)
the closed-form CRB expressions derived for the propagation
time and Doppler observation model [12], [13], and 2) the
closed-form CRB expression derived for the propagation time,



Doppler and acceleration observation model [14]. Then, a
KF is used to recursively estimate the parameters related to
propagation time, velocity and acceleration. The advantage of
this approach is that it allows to compute theoretically the
optimal error covariance matrix. In addition, the steady-state
performance of the tracking stage is obtained by solving an
algebraic discrete Riccati equation. The latter also allows to
characterize the minimum convergence time of the tracking
stage. In both cases (i.e., considering or not the acceleration
as an input to the filter), results are provided to show the
validity of the proposed approach and the resulting steady-
state performance.

The article is organized as follows: Section II presents the
GNSS received signal model. Section III models the acquisi-
tion stage by the ML estimator. Section IV details the proposed
tracking loop through the linear KF modelling. Simulation
results presented in Section V validate the performance of
the proposed method for two particular scenarios. Finally,
conclusions are drawn in Section VI

II. SIGNAL MODEL

The complex analytic band-limited signal, with bandwidth
B, at the output of the receiver’s Hilbert filter, can be written
as

sR(t) =

M∑
m=1

αmsm(t− τA,m(t))e−j 2πfcτA,m(t) + n(t), (1)

where M is the number of visible satellites, αm denotes the
complex attenuation coefficient and τA,m(t) is the propagation
delay associated to the mth satellite. n(t) is a zero mean
complex white Gaussian noise with unknown variance σ2

n, fc
is the carrier frequency and sm(t − τA,m(t)) is the delayed
transmitted signal. In the rest of the paper, and for the sake
of notation simplicity, we are only considering one tracking
channel, thus allowing to omit the subscript m.

The receiver-satellite distance can be computed as ρ(t) ≜
c τA(t), where c is the speed of light. Note that the distance
traveled by the transmitted signal can also be described by

ρ(t) = ∥pS(t− τA(t))− pR(t)∥, (2)

with pS(t) the satellite position and pR(t) the receiver posi-
tion. Due to the relative radial motion between the satellites
and the receiver, the propagation delay is time dependent. A
second order distance-velocity-acceleration model yields to

ρ(t) ≃ ρ(0) + ∥vrel∥ t+ ∥arel∥
t2

2
, (3)

or
τA(t) =

ρ(0)

c︸︷︷︸
=τ

+
∥vrel∥
c︸ ︷︷ ︸
=b

t+
∥arel∥
2c︸ ︷︷ ︸
=d

t2, (4)

where b and d relate to the Doppler frequency and the
Doppler frequency rate, respectively. For short observation
times, and considering a narrowband signal model [12], a good
approximation of the Hilbert filter’s output yields to

sR(t;η) = α̃ e−j 2π fc (b(t−τ)+d(t−τ)2) s(t− τ) + n(t) (5)

with η⊤ = [τ, b, d] and α̃ = α e−j 2πfc(1+b+d τ) τ . Con-
sidering the acquisition of N samples at sampling frequency
Fs = B = 1/Ts, the discrete vector model is

s = α̃a(η) + n, (6)

with

s = [. . . , sR(lTs;η), . . .]
⊤
,

a(η) =
[
· · · , e−j2πfc(b(lTs−τ)+d(lTs−τ)2)s(lTs − τ), · · ·

]⊤
,

n = [. . . , n(lTs), . . .]
⊤
,

where l ∈ (N1, · · · , N2) and n ∼ CN
(
0, σ2

nIN
)
. Note that

under a first order approximation, i.e., d = 0, we could
redefine η⊤ = [τ, b], α̃ = α e−j 2πfc(1+b) τ and

a(η) =
[
. . . , e−j2πfcb(lTs−τ)s(lTs − τ), . . .

]
. (7)

III. ACQUISITION STAGE

The acquisition stage can be modeled as a Maximum Like-
lihood Estimator (MLE), and provides the estimated values
of the propagation delay, Doppler frequency, and Doppler
frequency rate, by computing and maximizing the correlation
between the received signal and a noiseless local replica.
Considering (6), the vector of estimated parameters η̂ is
defined as1 [15]

η̂a = argmin
η

{
sHΠ⊥

a(η)s
}
= argmax

η

{ ∣∣a(η)Hs
∣∣2

a(η)Ha(η)

}
.

(8)

Note that η̂a provides the initial parameters for the tracking
stage, which is defined in the following section. The lowest
achievable MSE for this estimator is given by the correspond-
ing CRB. In the case of the signal model defined in (6), the
CRB expression was derived in [15], [16],

CRBη =
σ2
n

2 |α̃|2
Re (Φ(η))

−1 (9)

with

Φ(η) =
∂a(η)

∂ηT

H

Π⊥
a(η)

∂a(η)

∂ηT
. (10)

A. Closed-form CRB expression for τ , b and d

The CRBs for the main parameters of interest are:

CRBτ = CRBη(1, 1), CRBb = CRBη(2, 2)

CRBd = CRBη(3, 3).
, (11)

A closed-form CRB expression for the bandlimited narrow-
band signal scenario has been recently computed in [14]:

Re {Φ(η)} =

(·)1,1 (·)1,2 (·)1,3
(·)1,2 (·)2,2 (·)2,3
(·)1,3 (·)2,3 (·)3,3

 , (12)

1Let S = span (A) be the linear span of the set of the column vectors of
matrix A, ΠA = A

(
AHA

)−1
AH is the orthogonal projection over S,

and Π⊥
A = I−ΠA.



with

(·)1,1 = Fs

W3,3 − |w3|2
w1

+ 4ω2
cd

2
(
W2,2 − |w2|2

w1

)
−4ωcdℑ

{
W3,2 − w∗

2w3

w1

}  ,

(·)1,2 = Fs

(
2ω2

cd
(

|w2|2
w1

−W2,2

)
− ωcℑ

{
w∗

2w3

w1
−W3,2

})
,

(·)1,3 = Fs

(
2ω2

cd
(

w2w
∗
4

w1
−W ∗

4,2

)
− ωcℑ

{
w∗

4w3

w1
−W ∗

4,3

})
,

(·)2,2 = Fs

(
ω2
c

(
W2,2 −

|w2|2

w1

))
,

(·)2,3 = Fs

(
ω2
c

(
W ∗

4,2 −
w2w

∗
4

w1

))
,

(·)3,3 = Fs

(
ω2
c

(
W4,4 −

|w4|2

w1

))
, (13)

where

w1 =
1

Fs
sHs, w2 =

1

F 2
s

sHDs, w3 = sHΛs,

w4 = W2,2 =
1

F 3
s

sHD2s, w5 = W3,2 =
1

Fs
sHDΛs,

W3,3 = FssHVs, W4,2 =
1

F 4
s

sHD3s,

W4,3 = W5,2 =
1

F 2
s

(
sHDΛDs − sHDs

)
,

W4,4 =
1

F 5
s

sHD4s,

(14)

with D, V and Λ defined as

D = diag ([N1, N1 + 1, . . . , N2 − 1, N2]) , (15)

(V)l,l′ =

∣∣∣∣∣ l′ ̸= l : (−1)|l−l′| 2
(l−l′)2

l′ = l : π2

3

, (16)

(Λ)n,n′ =

∣∣∣∣∣ l′ ̸= l : (−1)|l−l′|
(l−l′)

l′ = l : 0
, (17)

The latter is useful and relevant for our study, particularly
because we can take advantage of it in the statistical modelling
of the tracking stage. Indeed, this allows to properly define the
observation model for the linear KF.

B. Closed-form CRB expression for τ and b

For the particular case where the signal model does not
consider the acceleration, we have:

CRBτ = CRBη(1, 1), CRBb = CRBη(2, 2). (18)

A closed-form CRB expression for the bandlimited narrow-
band signal scenario was computed in [12]:

Re {Φ(η)} =

[
(·)1,1 (·)1,2
(·)1,2 (·)2,2

]
, (19)

with

(·)1,1 = Fs

(
W3,3 − |w3|2

w1

)
,

(·)1,2 = Fs

(
−ωcℑ

{
w∗

2w3

w1
−W3,2

})
,

(·)2,2 = Fs

(
ω2
c

(
W2,2 −

|w2|2

w1

))
.

(20)

IV. KALMAN FILTER TRACKING STAGE

In order to refine the signal parameters estimates (and track
their time-varying evolution), conventional GNSS tracking
loops implement a delay-locked loop (DLL) to track the delay
variations, and a phase-locked loop (PLL), sometimes assisted
by a frequency-locked loop (FLL), to estimate the phase
and Doppler frequency variations. The tracking stage is a
recursive estimation problem, and the locked loops architecture
can be reformulated as a KF. In this study, we propose a
linear KF which recursively estimate both state and covariance
matrix of the unknown parameters, η⊤

k = [τk, bk, dk], using
the propagation time, Doppler and acceleration observations
estimated at the MLE acquisition step.

At the prediction step, a constant acceleration model is
considered for the state η̂t

k|k−1 evolution (i.e., superscript t
for tracking), as it allows to take into account a potential high-
dynamic context. At the correction step, the updated state η̂t

k|k
is computed using the MLE η̂a

k measurements (i.e., superscript
a for acquisition), computed at each instant k as in (8). We
theoretically describe the different steps of the proposed KF
model in the sequel.

Initial parameters

η̂t
0|0,P0|0

Evolution
model

Prediction step

η̂t
k|k−1,Pk|k−1

Observation
model

Correction step

η̂t
k|k,Pk|k

True signal
parameters η

Signal
generation

ML estimator
η̂a
k and CRB

computation

Kalman filter

k = k + 1

η̂k|k−1

CRBη̂k|k−1

η̂k

Fig. 1. Principle of the proposed KF-based tracking loop.



A. Evolution model

In order to study the possible influence of a relative acceler-
ation, dk, when taken into account (or not) within the tracking
stage, we consider the following evolution model:

τk = τk−1 + bk−1 ∆T + dk−1 ∆T 2, (21)
bk = bk−1 + dk−1 ∆T, (22)

dk = dk−1 + nd, nd ∼ N (0, σ2
d), (23)

or in compact form,

ηk = Fηk−1 + vk, vk ∼ N (0,Q), (24)

with

F =

1 ∆T ∆T 2

0 1 ∆T
0 0 1

 and Q =

0 0 0
0 0 0
0 0 σ2

d

 , (25)

where ∆T denotes the time interval between the (k−1)th and
kth discrete time instants, and σ2

d represents the dynamic stress
noise induced by the receiver motion.

B. Observation model

The observations used within the KF correspond to η̂a
k,

computed in (8). Note that since we consider asymptotic
conditions, the observations follow a Gaussian distribution
whose mean is equal to ηk and covariance matrix Rk equal
to the CRBη given in Section III. The observation model can
be then expressed as:

zk = Hk ηk + uk, uk ∼ N (0,Rk), Rk = CRBη̂t
k|k−1

,

(26)
where 1) CRBη̂t

k|k−1
can be computed from (18) and Hk =

I2×3, if the acceleration is not taken into account within
the signal model, and 2) CRBη̂t

k|k−1
is equal to (11) and

Hk = I3×3, otherwise. Note that if we do not take into
account the acceleration, the CRB value does not depend on
the parameters but only on the sampling frequency, signal
samples and SNR. Thus, for the same receiver conditions it
can be assumed constant. Moreover, even if we consider the
acceleration but its variation is small, the CRB can also be
considered constant (refer to equation (13)). Therefore, in the
following we denote Rk = R.

C. Steady state prediction error covariance

To study the performance of the proposed modelling, it is
crucial to know the duration required to obtain a theoretical
minimal precision in term of estimation error. In order to
characterize the convergence time of the linear KF, it is
relevant to use the discrete-time algebraic Riccati equation
(DARE) [17], which is extracted from the classical discrete
Riccati equation [18], and it provides the predicted covariance
obtained for a finite-time horizon. Indeed, if we consider a
KF built from the evolution and observation models (24) and

(26), then the predicted Pk|k−1 covariance and corrected Pk|k
covariance follow the classical recursion,

Pk|k−1 = FPk−1|k−1 F
⊤ +Q, (27)

Pk|k = (I−Kk H)Pk|k−1, (28)

Kk = Pk|k−1 H
⊤ (HPk|k−1H

⊤ +R
)−1

. (29)

By substituting (28) and (29) in (27), we obtain the discrete
Riccati equation,

Pk|k−1 =FPk−1|k−2 F
⊤−

FPk−1|k−2 H
⊤ (HPk−1|k−2 H

⊤ +R
)−1

HPk−1|k−2F
⊤ +Q. (30)

In the steady state (convergence), we can set P = Pk|k−1 =
Pk−1|k−2, ∀ k, which leads to the following DARE,

P = FPF⊤ − FPH⊤ (HPH⊤ +R
)−1

HPF⊤ +Q.
(31)

V. SIMULATION RESULTS

The objective of this section is to study the asymptotic per-
formance of the proposed tracking loop architecture taking into
account the acceleration in the evolution model. Consequently,
we focus on the characterization of the predicted and corrected
covariance estimation matrices of the linear KF. Two scenarios
are considered:

• In the first scenario (S1) the acceleration (as a measure-
ment) is not taken into account in the signal model (6).
Note that this is a misspecified signal model [19].

• In the second scenario (S2) the acceleration is preserved
in the signal model [14].

In each scenario, we are interested in quantifying the delay
and Doppler frequency estimation precision for high-dynamic
targets, i.e., when σd is large. On the other hand, we also study
the methods’ convergence with the DARE solution.

A. Experiments

At the receiver, we consider a GPS L1 C/A signal sampled
at Fs = 2 MHz, and with an integration time equal to 4 ms.
We also consider ∆T = 4 ms. To evaluate the theoretical
filtering performance, we are interested on the behaviour of
the prediction error covariance matrix as a function of c σd

and the number of iterations considered to compute the DARE
solution. Then, we need to set the SNR at the output of the
matched filter [12],

SNROUT =
|α̃|sHs

σ2
n

. (32)

1) Study of the impact of σd: first, we define the covariance
ratio matrix, computed at each instant k for each state vector
component i ∈ {1, 2, 3},

(rk)i =
[Pk|k]i,i

[Rk]i,i
, (33)

where [Pk|k]i,i, or [Pk|k]i for sake of simplicity, is the esti-
mated variance for component i. Then, we study the evolution
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Fig. 3. Evolution of rk for parameters bk versus c · σd.

of such ratio for both parameters τk and bk. We consider 1000
iterations.

Fig. 2 shows the covariance matrix ratio for the parameter
τk, i.e., (rk)1, for both scenarios S1 and S2, considering a
SNROUT = 20dB. Note that negligible variations of the
covariance ratio are observed. Although the value of the
covariance ratio is lower in S2 (around 1 order of magnitude),
we can fairly conclude that σd has no direct impact on the
propagation delay estimation. However, this is different for
the parameter bk, as it can be seen in Fig. 3. For S1, at
low values of c · σd (between 10−20m.s−2 and 10−1m.s−2)
the covariance matrix ratio is near zero, which means a good
estimation of the bk parameter. Note that this is an expected
result since low values of c ·σd involve low dynamics, i.e., no
impact of the Doppler rate. When c · σd increases, the (rk)2
raises, loosing precision as the dynamics increase, reaching a
flat region (around 100m.s−2) where the KF can not improve
the estimation performance. For S2, even if the same behaviour
is observed, the transition region starts at a larger c ·σd value,
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Fig. 4. Evolution of [Pk|k−1]2 to the DARE solution as a function of the
number of iterations. Scenario S1.

showing the interest of taking into account the acceleration as
a measurement under certain conditions (i.e., high-dynamic).

2) Analysis of the DARE solution: Figs. 4 and 5 show the
evolution of both covariance matrix estimation [Pk|k−1]2 and
the DARE solution for the parameter bk, considering different
values of c · σd. For this particular scenario, we consider
10000 iterations and SNROUT = 20dB. We observe that in
S1, the speed of convergence of the variance (to the Riccati
solution (31)) is faster when the value of σd increases. On
the other hand, even if the same behaviour is observed in
S2, the convergence is globally faster due to the fact that dk
is considered within the observation model, i.e., the DARE
solution converges faster (104 iterations in S1 against 103 in
S2).

Figs. 6 and 7 show the evolution of the DARE solution as
a function of c ·σd, for different values of SNROUT , in order
to quantify its impact on the estimation performance. Again,
we consider 10000 iterations. In S1, we note that the predicted
covariance matrix element [Pk|k−1]2 converges faster to the
DARE solution with higher SNROUT . Moreover, we see that
the DARE solution converges to the same value when σd is
large whatever the SNROUT . In S2, since the acceleration is
taken into account in the observation model, we observe faster
convergence to the DARE solution as well as an improvement
of the precision performance.

VI. CONCLUSIONS

In this article, we proposed to model the GNSS tracking
loop through a linear Kalman filter, considering the acceler-
ation within the observation model. The acceleration infor-
mation is extracted from the maximum likelihood estimator,
which is known to be asymptotically efficient. Then, thanks
to this new architecture and considering the asymptotic SNR
regime, we provided closed-form expressions of the theoretical
performance of the tracking loop, being this the discrete-
time algebraic Riccati equation. Results were provided to
check the validity of such closed-form expression. Moreover,
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the proposed architecture was tested and validated through
numerical simulations, to study the impact of high-dynamics
on the precision and convergence of the linear Kalman filter
theoretical performance.
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