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ABSTRACT
Global Navigation Satellite Systems (GNSS) are a key player in a plethora of applications, ranging from navigation and timing,
to Earth observation or space weather characterization. For navigation purposes, interference scenarios are among the most
challenging operation conditions, which clearly impact the maximum likelihood estimates (MLE) of the signal synchronization
parameters. While several interference mitigation techniques exist, a theoretical analysis on the GNSS MLE performance
degradation under interference, being fundamental for system/receiver design, is a missing tool. The main goal of this
contribution is to provide such analysis, by deriving closed-form expressions of the estimation bias, for a generic GNSS signal
corrupted by an interference. The proposed bias are validated for a tone interference and a linear frequency modulation chirp
interference.

I. INTRODUCTION
Reliable position, navigation and timing information is fundamental in new application such as Intelligent Transportation
Systems (ITS), automated aircraft landing or autonomous unmanned ground/air vehicles. In such applications, the main source
of positioning information are Global Navigation Satellite Systems (GNSS) Teunissen and Montenbruck (2017), a technology
which has attracted a lot of interest in the past decades. But GNSS were originally designed to operate in clear sky nominal
conditions, and their performance clearly degrades under harsh environments. Among the non-nominal operation conditions,
multipath, jamming (i.e., intentional or unintentional) and spoofing are the most challenging ones, being a key issue in safety-
critical applications Amin et al. (2016). These interferences degrade GNSS performance, and can lead to denial of service or even
counterfeit transmissions to control the receiver positioning solution. These effects have been reported in the state-of-the-art,
and several interference mitigation countermeasures have been already proposed at different stages of the receiver Amin et al.
(2017); Arribas et al. (2019); Borio and Gioia (2021); Fernández-Prades et al. (2016); Morales-Ferre et al. (2020). However,



even with such a large pool of methods, a theoretical synchronization performance characterization under such conditions does
not exist in the literature, and this is fundamental for receiver design and analysis.

From an estimation point of view, such performance characterization implies to theoretically analyze how different interferences
degrade the acquisition and tracking stages (i.e., both being particular instances of the optimal maximum likelihood (ML)
solution) of the GNSS receiver, and in turn the final position estimate. Because the optimal solution is given by the ML
estimator, it is sound to obtain the corresponding Cramér-Rao bound (CRB), which provides a lower bound on the estimation
performance of any (locally) unbiased estimator Trees and Bell (2007). Even if the CRBs for different GNSS receiver
architectures operating under nominal conditions are available in the literature Das et al. (2020); Lubeigt et al. (2020); Medina
et al. (2020); Medina et al. (2021); Ortega et al. (2022), such performance bounds have not been studied for the interference
case of interest in this contribution. Indeed, performance bounds can provide precious information for the design of new GNSS
signals, or for the design of next-generation interference countermeasures, therefore being an important missing point.

Preliminary work has empirically evidenced that interferences induce a bias on the parameter estimation. The main objective
of the article is to provide the theoretical analysis of the effect of interferences on the GNSS receiver performance, i.e., how
the GNSS synchronization (time-delay, Doppler and signal phase estimation) is degraded when the receiver is corrupted by
an interfering signal. The main hypothesis is that the receiver does not have any countermeasure mechanism against such
interferences. In other words, the GNSS receiver assumes that the received signal is only corrupted by additive noise, as in
a standard operation regime. This implies that the signal model at the receiver input and the assumed signal model do not
coincide, that is, there exists a model mismatch. In order to perform the analytical study of the estimation performance limits
under model mismatch we resort to the theoretical computation of the bias induced by the interference. Notice that because the
estimator is no longer unbiased, the mean square error (MSE) is the addition of the CRB and the squared bias, the latter being
dominant for large interference powers. Then, the main challenge is to analytically compute the bias for a set of representative
interferences that may corrupt the GNSS system.

The corresponding theoretical derivations and results are obtained for the following set of interferences: 1) single tone
interference at the maximum spectral support; 2) single tone interference at first information lobe; 3) chirp interference centered
at the maximum spectral support; and 4) chirp interference not centered at the maximum spectral support. Notice that once an
analytical form is derived, this information can be used for: i) the derivation of metrics that allow to compare the robustness
to interference of different GNSS signals, as well as for the design of new GNSS signals; ii) the design of next-generation
interference countermeasures, e.g., robust estimation methods. In addition, in terms of estimation performance degradation the
analysis provided in this article allows to assess, for instance, which is the maximum acceptable signal to noise+jammer power
ratio for a correct receiver operation, or the expected synchronization performance under different jammer powers. A set of
simulation results are provided to support the discussion and validate the theoretical derivations.

II. SIGNAL MODEL
1. Correctly Specified Signal Model
A GNSS band-limited signal s(t), with bandwidth B, transmitted over a carrier frequency fc (λc = c/fc) is considered in
this study. The complex analytical signal model is considered to be narrowband Dogandzic and Nehorai (2001), resulting in a
negligible influence of the Doppler parameter on the signal samples. For short observation times, a good approximation of the
baseband output of the receiver’s Hilbert filter (GNSS signal + interference) is Skolnik (1990),

x(t;η) = αs (t− τ) e−j2πfc(b(t−τ)) + I(t) + n (t) , (1)

with η = (τ, b)
⊤, containing both the delay and Doppler shift, f ∈

[
−Fs

2 , Fs

2

]
, I(t) an unknown interference, n(t) a complex

white Gaussian noise within Fs with unknown variance σ2
n and α a complex gain. The discrete vector signal model is built from

N = N1 +N2 + 1 samples at Ts = 1/Fs,

x = αa(η) + n = ρejΦa(η) + n = αµ(η) + I+ n, (2)

with x = (. . . , x (kTs) , . . .)
⊤, I = (. . . , I (kTs) , . . .)

⊤, n = (. . . , n (kTs), . . .)
⊤, N1 ≤ k ≤ N2 signal samples, and

a(η) = (. . . , s(kTs − τ)e−j2πfc(b(kTs−τ) +
1

α
I(kTs). . . .)

⊤, (3)

µ(η) = (. . . , s(kTs − τ)e−j2πfc(b(kTs−τ). . . .)⊤. (4)



The unknown deterministic parameters can be gathered in vector ϵ⊤ =
(
σ2
n, ρ,Φ,η

⊤) = (
σ2
n,θ

⊤
)

, with ρ ∈ R+, 0 ≤ Φ ≤ 2π.
The correctly specified signal model is represented by a probability densitiy function (pdf) denoted pϵ(x; ϵ), which follows a
complex circular Gaussian distribution x ∼ CN (αa(η), σ2

nIN ).

2. Misspecified Signal Model
The misspecified signal model represents the case where the interference is not considered, i.e., when a mismatched ML
estimator (MMLE) is implemented at the receiver. This nominal case leads to the definition of the misspecified parameter vector
η′ = [τ ′, b′]⊤, and the complete set of unknown parameters ϵ′⊤ =

[
σ2
n, ρ

′,Φ′,η′⊤] = [
σ2
n,θ

′⊤
]
, yielding the following signal

model at the output of the Hilbert filter,

x′(t;η′) = α′s(t− τ ′)e−j2πfcb
′(t−τ ′) + n(t) (5)

with α′ = ρ′ejΦ
′ . Again, we can build the discrete vector signal model from N = N1 +N2 + 1 samples at Ts = 1/Fs,

x′ = α′µ(η′) + n (6)

µ(η′) = (. . . , s(kTs − τ ′)e−j2πfc(b
′(kTs−τ ′)), . . .)⊤.

The misspecified signal model is represented by a pdf denoted fϵ′(x′; ϵ′)which follows a complex circular Gaussian distribution
x′ ∼ CN (α′µ(η′), σ2

nIN ). Note that under this particular scenario, the covariance matrix of the correctly specified signal
model is equals the covariance matrix of the misspecified signal model, i.e. σ2

nIN and this covariance matrix does not depend
on the synchronization parameters of interest, then

pϵ(x; ϵ) =
1

πNσ2N
n

e
−(x−αa(η))H (x−αa(η))

σ2
n , fϵ′(x

′; ϵ′) =
1

πNσ2N
n

e
−(x−α′µ(η′))H (x−α′µ(η′))

σ2
n . (7)

When we consider a misspecified model and the corresponding MMLE, the estimation of the parameters of interest is
biased. Those biased estimated parameters are commonly referred to as pseudo-true parameters. We denote them as
θ⊤
pt = [ρpt,Φpt, τpt, bpt].

III. MISSPECIFIED SIGNAL MODEL: KULLBACK-LEIBLER DIVERGENCE
The pseudo-true parameters are simply those that give the minimum Kullback-Leibler (KLD) Divergence D(pϵ||fϵ′) between
the true and assumed models (i.e., because the estimation is independent of σ2

n),

D(pϵ||fϵ′) = Ep [ln pϵ(x; ϵ)− ln fϵ′(x; ϵ
′)] , (8)

θpt = argmin
θ′

{D(pϵ||fϵ′)} = argmin
θ′

{Ep [− ln fϵ′(x; ϵ
′)]} , (9)

where Ep[·] is the expectation with respect to (w.r.t.) the true model’s pdf, and

Ep [− ln fϵ′ ] = −N ln(π)− 2N ln(σn)

+
1

σ2
n

Ep

[
(x− αa(η) + αa(η)− α′µ(η′))

H
(x− αa(η) + αa(η)− α′µ(η′))

]
.

(10)

To minimize (10) w.r.t. the argument θ′, the equation can be simplified as,

argmin
θ′

{Ep [− ln fϵ′(x; ϵ
′)]}

= argmin
θ′

Ep


(x− αa(η))H(x− αa(η))

+(x− αa(η))H(αa(η)− α′µ(η′))
+(αa(η)− α′µ(η′))H(x− αa(η))

+(αa(η)− α′µ(η′))H(αa(η)− α′µ(η′))




= argmin
θ′

{
(αa(η)− α′µ(η′))H(αa(η)− α′µ(η′))

}
= argmin

θ′

{
∥αa(η)− α′µ(η′)∥2

}
.



We define the orthogonal projector Π⊥
A = I−ΠA with ΠA = A

(
AHA

)−1
AH , which leads to

∥αa(η)− α′µ(η′)∥2 =
∥∥∥(Πµ(η′)) +Π⊥

µ(η′))

)
(αa(η)− α′µ(η′)))

∥∥∥2
=

∥∥Πµ(η′)) (αa(η)− α′µ(η′))
∥∥2 + ∥∥∥Π⊥

µ(η′) (αa(η)− α′µ(η′))
∥∥∥2

=
∥∥Πµ(η′)αa(η)− α′µ(η′)

∥∥2 + ∥∥∥Π⊥
µ(η′)αa(η)

∥∥∥2
=

∥∥∥∥µ(η′)

(
µ(η′)Hαa(η)

µ(η′)Hµ(η′)
− α′

)∥∥∥∥2 + ∥αa(η)∥2 −
∥∥Πµ(η′)αa(η)

∥∥2 ,
then the parameters that minimize the KLD are,

argmin
θ′

{
∥αa(η)− α′µ(η′)∥2

}
⇔

 αpt = α
µ(ηpt)

Ha(η)

µ(ηpt)
Hµ(ηpt)

ηpt = argmax
η′

{∥∥Πµ(η′)αa(η)
∥∥2}

with αpt = ρpte
jΦpt and η⊤

pt = [τpt, bpt]. This result may be connected with the asymptotic behavior of the MMLE, α̂ = µ(η̂)Hx
µ(η̂)Hµ(η̂)

η̂ = argmax
η′

{∥∥Πµ(η′)x
∥∥2} →

SNR→∞

 α̂ = αµ(η̂)Ha(η)
µ(η̂)Hµ(η̂)

= αpt

η̂ = argmax
η′

{∥∥Πµ(η′)αa(η)
∥∥2} = ηpt

(11)

Because the pseudo-true parameters are those that give the minimum KLD between the true and assumed models, which can be
obtained by computing the MMLE without noise, we can define the bias as,

∆α = αpt − α, ∆η = ηpt − η. (12)

IV. BIAS COMPUTATION AND RESULTS FOR WELL-KNOWN INTERFERENCE MODELS
1. Preliminaries
Hereafter we further study (11) for the time-delay and Doppler bias calculation. Notice that,∥∥Πµ(η′)αa(η)

∥∥2 = α2a(η)HΠµ(η′)a(η) = α2a(η)Hµ(η′)
(
µ(η′)Hµ(η′)

)−1
µ(η′)Ha(η), (13)

with
(
µ(η′)Hµ(η′)

)−1
= 1/(FsEc) and Ec the chip energy (usually normalized to 1). Then,

∥∥Πµ(η′)αa(η)
∥∥2 =

α2

FsEc

∣∣µ(η′)Ha(η)
∣∣2 =

α2Fs

Ec

∣∣∣∣µ(η′)Ha(η)

Fs

∣∣∣∣2 =
α2Fs

Ec

∣∣Ra(η),µ(η′)(η
′)
∣∣2 , (14)

where µ(η′)Ha(η)
Fs

is the cross-correlation function Ra(η),µ(η′)(η
′). In order to compute the bias of interest, we need to consider

(i) the scenario with the unknown interference and (ii) set the noise equal to zero (refer to (11)). We can rewrite the previous
equations as,

∥∥Πµ(η′)αa(η)
∥∥2 =

Fs

Ec

∣∣∣∣µ(η′)Hαµ(η)

Fs
+

µ(η′)HI

Fs

∣∣∣∣2 =
Fs

Ec

∣∣αRµ(η′),µ(η′)(η
′) +RI,µ(η′)(η

′)
∣∣2 . (15)

with I = I(· · · , kTs, · · · ) the interference samples. It is important to notice that a bias appears if the correlation function
RI,µ(η′)(η

′) shifts in time-delay or Doppler the maximum value of the correlation function Rµ(η′),µ(η′)(η
′).

In the following we consider the bias for GPS C/A signals. These signals are generated by concatenating pseudo-random noise
(PRN) codes, which have good autocorrelation properties.



2. One Tone Interference at the Maximum Spectral Support
Let us consider the case where a jammer is generating a tone where most of the information is being transmitted, i.e., at the
maximum spectral support. In the case of the GPS C/A signal, the maximum energy is transmitted at the carrier frequency,
since GPS C/A uses a binary phase shift keying (BPSK) modulation. Then, after the Hilbert filter the tone is located at the
baseband frequency, i.e., at frequency 0, which involves that the interference is a constant signal with amplitude Ai. For this
particular case,

RI,µ(η′)(τ
′) = Ai

1023∑
k=1

Cl,k, (16)

that is, a constant value. Cl,k are the discrete values of the PRN code. Index l refers to the PRN code and index k refers to the
chip value. For balanced Gold codes,

∑1023
k=1 Cl,k = −1. Because the interference-related term is constant,

argmax
τ ′

∣∣Rµ(τ ′),µ(τ ′)(τ) +RI,µ(τ ′)(τ)
∣∣2 = argmax

τ

∣∣Rµ(τ ′),µ(τ ′)(τ)
∣∣2 , (17)

and there is no bias induced by such interference. So in terms of jamming capabilities, it is not a good idea for the jammer to
introduce a tone at the maximum spectral support.

Notice that this particular case is not realistic since the receiver performs the correlation operation with a signal limited in time,
i.e., the interference tone should be multiplied by a rectangular window. Therefore, at the receiver, the interference should be
modeled by a cardinal sine centered at the tone frequency. The width of the cardinal sine depends on the duration of the received
signal. Because the cardinal sine will be centered at frequency 0, a large amount of power is required in order to damage the
time-delay estimation. In contrast, the Doppler estimation is impacted by such interference. These effects are shown in Figures
1 and 2, where we provide the empirical MSE together with the theoretical CRB and bias for different scenarios:

• Figure 1: time-delay MSE and CRB. In blue, fixed jammer amplitude and three values for the jammer phase. In red, fixed
jammer phase and three different jammer amplitudes.

• Figure 2 (left plot): Doppler MSE, CRB and bias, fixed jammer amplitude Ai = 10, and three values of jammer phase.

• Figure 2 (right plot): Doppler MSE, CRB and bias, fixed jammer phase ϕ = 0, and three values of jammer amplitude.

In all the scenarios considered, the jammer is at fi = 0, the signal has a Doppler of 500 Hz, and the receiver considers a 2 ms
integration time. SNRout refers to the signal-to-noise ratio at the output of the ML matched filter. It is imporant to notice that
when the jammer power is too large, the receiver front-end is saturated and therefore not able to demodulate any kind of signal.

Regarding the results, as already anticipated, a single tone jammer (for the set of tested amplitude and phase values) has no
impact on the time-delay estimation performance. For the Doppler estimation, in contrast, a bias is induced on the MMLE.
Notice that both different jammer phases and amplitudes lead to different results. For instance, for a fixed amplitude, an in-phase
jammer, ϕ = 0, has no impact on the Doppler, and the larger bias is induced by the ϕ = π case. Obviously, for a fixed jammer
phase (not equal to 0), a larger jammer amplitude induces a larger bias. Regardless of the performance degradation, these results
show the validity of the theoretical derivations, given that the empirical MSE converges to the theoretical bias. Notice that in
practice a standard receiver operates at a SNRout between 15 and 25 dB. Larger values only appear for extended integration
schemes, where the impact of the interference is larger w.r.t. the optimal MSE (CRB).

3. One Tone Interference at First Information Lobe
Because a single tone at the maximum spectral support has no impact on the time-delay estimaton, in the sequel we consider
that the tone is located at a frequency fi such that −Fc ≤ fi ≤ Fc with Fc the modulation (BPSK) chip rate. For this particular
case, the interference samples are given by I = I(· · · , Aie

j2πfikTs+jϕ, · · · ), which is a complex function, and can be rewritten
as,

I = I(· · · , Aie
j2πfikTs+jϕ, · · · ) = I(· · · , Ai (cos(2πfikTs + ϕ) + j sin(2πfikTs + ϕ)) , · · · ) (18)

with ϕ the initial phase of the tone. The correlation function it is a periodic signal that depends on the tone frequency fi. The
bias induced by such interference depends on both ϕ and fi. The corresponding results are shown in Figures 3 and 4, for the
time-delay and Doppler estimation, respectively. In these results the tone is at fi = 0.5 MHz.

Again, the asymptotic empirical MSE coincides with the theoretical bias. In contrast to the previous case, a single tone within
the main BPSK lobe (fi ̸= 0) induces a bias on both time-delay and Doppler estimation.
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Figure 1: MSE for the time-delay estimation with a single tone jammer at fi = 0.
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Figure 2: MSE and bias for the Doppler estimation with a single tone jammer at fi = 0. Different jammer ϕi (left) and Ai (right).
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Figure 3: MSE and bias for the time-delay estimation with a single tone jammer at fi = 0.5 MHz, for different jammer ϕi (left) and Ai

(right).
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Figure 4: MSE and bias for the Doppler estimation with a single tone jammer at fi = 0.5 MHz, for different jammer ϕi (left) and Ai (right).
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Figure 5: MSE and bias for the time-delay (left) and Doppler (right) estimation with a chirp centered at fi = 0, for different jammer
amplitudes Ai. Chirp bandwidth 1 MHz and initial jammer phase ϕ = 0.

4. Chirp Interference in the First Lobe
The well-known linear frequency modulation (LFM) chirp signal is defined as,

Φ(t) = ΠT (t)× ejπαt
2+jϕ, ΠT (t) =

{
Ai 0 ≤ t < T
0 otherwise (19)

with α the chirp rate and T = NTs the waveform period. The instantaneous frequency is f(t) = 1
2π

d
dt

(
παt2

)
= αt, and

therefore the waveform bandwidth is B = αT . To define a chirp centered at frequency fi = 0, we can rewrite the chirp function
as,

Φ(t) = ΠT (t)× ejπα(t−T/2)2+jϕ, ΠT (t) =

{
Ai 0 ≤ t < T
0 otherwise (20)

The MSE and bias results for a chirp bandwidth equal to 1 MHz and an initial jammer phase ϕ = π/2 are shown in Figure 5.
Compared to the previous single tone case, a chirp induces a larger bias on both time-delay and Doppler estimation. To further
complete the analysis, the results for a chirp centered at fi = 0.5 MHz are shown in Figure 6. It is interesting to notice that a
non-centered chirp has less impact than a centered one.

V. CONCLUSIONS
It is well documented in the literature that interferences may have a huge impact on GNSS receivers’ performance, but to the
best of our knowledge the theoretical analysis of the impact of such intereferences on the first receiver stage was not available.
In practice, there exists a model mismatch and interferences induce a bias. In this contribution, we performed the theoretical
computation of the bias induced into the synchronization parameters ML estimates, that is, the performance degradation of the
time-delay and Doppler estimation. This analysis was conducted for a set of representative single tone and chirp interferences,
and results were provided for different scenarios to show the validity of the derivation and the possible impact on both time-delay
and Doppler estimation. It is important to notice that such analysis may be the starting point for both the derivation of robustness
metrics or new GNSS signals, and the design of interference countermeasures.
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Figure 6: MSE and bias for the time-delay (left) and Doppler (right) estimation with a chirp centered at fi = 0 and fi = 0.5MHz, for
different jammer amplitudes Ai. Chirp bandwidth 1 MHz and initial jammer phase ϕ = 0.
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