Publications

Articles, Thèses, Brevets, Séminaires, Livres, Notes techniques

Recherche

Article de conférence

Estimation du centre et du rayon d'une hypersphère à l'aide d'une loi a priori de Von Mises-Fisher et d'un algorithme EM

Auteurs : Lesouple Julien, Pilastre Barbara, Altmann Yoann et Tourneret Jean-Yves

In Proc. XXVIII ème Colloque Francophone de Traitement du Signal et des Images (GRETSI 2022), Nancy, France, September, 2022.

Télécharger le document

Cet article présente une extension d'un algorithme EM (expectation maximization) publié récemment par les auteurs permettant d'estimer conjointement le centre et le rayon d'une hypersphère avec les hyperparamètres d'un modèle statistique prenant en compte le fait que les observations sont localisées sur une partie de l'hypersphère. La méthode proposée repose sur l'ajout de variables latentes ayant une loi a priori de von Mises-Fisher. Ce modèle statistique permet d'exprimer la vraisemblance complète des données, dont l'espérance conditionnée aux données observées possède une distribution connue conduisant à un algorithme EM simple et efficace. Les performances de cet algorithme d'estimation sont évaluées à l'aide de de simulations effectuées dans un cas bi-dimensionnel avec des résultats prometteurs.

Lire la suite

Traitement du signal et des images / Observation de la Terre et Autre

Article de journal

Non-Binary PRN-Chirp Modulation: A GNSS Fast Acquisition Signal Waveform

Auteurs : Ortega Espluga Lorenzo, Vilà-Valls Jordi et Chaumette Eric

IEEE Communications Letters, vol. 26, Issue 9, pp. 2151-2155, September, 2022.

Télécharger le document

In this article, we propose a new non-binary modulation which allows both Global Navigation Satellite Systems (GNSS) synchronization and the demodulation of non-binary symbols, without the need of a pilot signal, with the aim to provide a fast first position, velocity and time fix. The waveform is constructed as the product of i) a pseudo-random noise sequence with good auto-correlation and cross-correlation properties, and ii) a chirp spread spectrum family, which allows to demodulate non-binary symbols even if the signal phase is unknown. In order to demodulate the data, a bank of non-coherent matched filters is proposed. Because of the particular modulation structure, the receiver is capable to demodulate the navigation message faster while allowing the basic GNSS signal processing functionalities. Illustrative results are provided to support the discussion.

Lire la suite

Traitement du signal et des images / Localisation et navigation et Systèmes spatiaux de communication

Article de conférence

An EM Algorithm for Mixtures of Hyperspheres

Auteurs : Lesouple Julien, Burger Philippe et Tourneret Jean-Yves

30th European Signal Processing Conference (EUSIPCO 2022), Belgrade, Serbia, August, 2022.

This paper studies a new expectation maximization (EM) algorithm to estimate the centers and radii of multiple hyperspheres. The proposed method introduces latent variables indicating to which hypersphere each vector from the dataset belongs to, in addition to random latent vectors having an a priori von Mises-Fisher distribution characterizing the location of each vector on the different hyperspheres. This statistical model allows a complete data likelihood to be derived, whose expected value conditioned on the observed data has a known distribution. This property leads to a simple and efficient EM algorithm whose performance is evaluated for the estimation of hypersphere mixtures yielding promising results.

Lire la suite

Traitement du signal et des images / Observation de la Terre et Autre

Article de journal

A novel image representation of GNSS correlation for deep learning multipath detection

Auteurs : Blais Antoine, Couellan Nicolas et Evgenii Munin

Array, vol. 14, Art. no 100167, July, 2022.

Télécharger le document

This paper proposes a novel framework for multipath prediction in Global Navigation Satellite System (GNSS) signals. The method extends from dataset generation to deep learning inference through Convolutional Neural Network (CNN). The process starts at the output of the correlation stage of the GNSS receiver. Correlations of the received signal with a local replica over a (Doppler shift, propagation delay)-grid are mapped into grey scale 2D images. They depict the received information possibly contaminated by multipath propagation. The images feed a CNN for automatic feature construction and multipath pattern detection. The issue of unavailability of a large amount of supervised data required for CNN training has been overcome by the development of a synthetic data generator. It implements a well-established and documented theoretical model. A comparison of synthetic data with real samples is proposed. The complete framework is tested for various signal characteristics and algorithm parameters. The prediction accuracy does not fall below 93% for C/N0 ratio as low as 36 dBHz, corresponding to poor receiving conditions. In addition, the model turns out to be robust to the reduction of image resolution. Its performance is also measured and compared with an alternative Support Vector Machines (SVM) technique. The results show the undeniable superiority of the proposed CNN algorithm over the SVM benchmark.

Lire la suite

Traitement du signal et des images / Localisation et navigation

Generalized Frequency Estimator with Rational Combination of Three Spectrum Lines

Auteurs : Gigleux Benjamin, Vincent François et Chaumette Eric

IET Radar Sonar Navigation, vol. 16, issue 7, pp.1107-1115, July, 2022.

Télécharger le document

The popular Discrete Fourier Transform (DFT) is known to be a sub‐optimal frequency estimation technique for a finite transform length. In order to approach the Cramer‐Rao Lower Bound (CRLB), many refinement techniques have been considered, but little considering both zero padding or tapering, also known as windowing or apodisation. In this paper, a frequency estimator with closed‐form combination of three DFT samples is generalized to zero padding and tapered data within the class of cosine windowing. Root Mean Squared Error (RMSE) is shown to approach the CRLB in the case of a single tone signal with additive white Gaussian noise. Compared to state‐of‐the‐art techniques, the proposed algorithm improves the frequency RMSE up to 1 dB when using significant zero‐padding lengths (K ≥ 2 N) and for small to moderate SNR, which is the most challenging case for practical radar applications.

Lire la suite

Traitement du signal et des images et Réseaux / Systèmes de communication aéronautiques, Localisation et navigation et Systèmes spatiaux de communication

A Bayesian Framework for Multivariate Multifractal Analysis

Auteurs : Leon Arencibia Lorena, Wendt Herwig, Tourneret Jean-Yves et Abry Patrice

IEEE Transactions on Signal Processing, vol. 70, pp. 3663 - 3675, June, 2022.

Télécharger le document

Multifractal analysis has become a reference tool for signal and image processing. Grounded in the quantification of local regularity fluctuations, it has proven useful in an increasing range of applications, yet so far involving only univariate data (scalar valued time series or single channel images). Recently the theoretical ground for multivariate multifractal analysis has been devised, showing potential for quantifying transient higher-order dependence beyond linear correlation among collections of data. However, the accurate estimation of the parameters associated with a multivariate multifractal model remains challenging, especially for small sample size data. This work studies an original Bayesian framework for multivariate multifractal estimation, combining a novel and generic multivariate statistical model, a Whittle-based likelihood approximation and a data augmentation strategy allowing parameter separability. This careful design enables efficient estimation procedures to be constructed for two relevant choices of priors using a Gibbs sampling strategy. Monte Carlo simulations, conducted on synthetic multivariate signals and images with various sample sizes and multifractal parameter settings, demonstrate significant performance improvements over the state of the art, at only moderately larger computational cost. Moreover, we show the relevance of the proposed framework for real-world data modeling in the important application of drowsiness detection from multichannel physiological signals.

Lire la suite

Traitement du signal et des images / Observation de la Terre et Autre

Article de conférence

Effective AM/AM and AM/PM curves derived from EVM simulations or measurements on constellations

Auteur : Sombrin Jacques B.

In Proc. 99th ARFTG Microwave Measurement Conference, Denver, Colorado USA, June 24th, 2022.

Télécharger le document

Lire la suite

Communications numériques / Systèmes spatiaux de communication

Attention Networks for Time Series Regression and Application to Congestion Control

Auteurs : Perrier Victor, Lochin Emmanuel, Tourneret Jean-Yves et Gélard Patrick

In Proc. 4th International Workshop on Network Intelligence (IFIP Networking), Catania, Italy, June 13-16, 2022.

Télécharger le document

This paper studies a new attention-based recurrent architecture, lighter and less computationally expensive than a global attention network. This type of architecture achieves better performance than commonly used recurrent networks for time series regression. An application to congestion control is considered, where the history of round trip times (RTT) evolution history is used to monitor congestion control. The performance of the proposed new congestion control strategy is evaluated with both synthetic and real traces, showing that it can be efficiently used to estimate the congestion state of a network.

Lire la suite

Réseaux / Systèmes spatiaux de communication

Caractère fractal des non-linéarités passives et croissance suivant une pente non-entière de la puissance des produits d’intermodulation

Auteur : Sombrin Jacques B.

In Proc. XXIIèmes Journées nationales Microondes (JNM), Limoges, France, June 7-10, 2022.

Télécharger le document

Lire la suite

Communications numériques / Systèmes spatiaux de communication

How Attention Deep Learning Can Improve Copa Congestion Control Performance

Auteurs : Perrier Victor, Lochin Emmanuel, Tourneret Jean-Yves, Kuhn Nicolas et Gélard Patrick

In Proc. International Wireless Communications and Mobile Computing Conference (IWCMC), Dubrovnik, Croatia, May 30-June 3, 2022.

Télécharger le document

Most modern congestion control algorithms, that aim to optimize delay and throughput, exploit more metrics than the sole packet loss congestion information. These additional metrics are mostly based on the round trip time evolution and allow congestion controls to reach better performance, in particular on wireless and cellular links as demonstrated by Copa, BBR, or REMY. Basically, these metrics allow congestion control to estimate the queuing level of the path and its evolution, to assess the presence of congestion. Actually, a good estimation of this level obviously prevents congestion losses, but also allows assessing a ratio of error link losses among the whole observed losses. The consistency and accuracy of these metrics are key to good congestion control performance, and this explains, for instance, the good performance of Copa currently in production at Facebook. However, these metrics remain challenging and the quest of an accurate and practical estimation seems complex. This paper investigates how a novel deep learning algorithm, known as Attention, can help in assessing queuing evolution and status on an end-to-end path. Among others, we focus on the evolution of the total time spent by packets in the buffers, which is the key metric of Copa. The results unequivocally demonstrate a better accuracy of this metric used by Copa.

Lire la suite

Réseaux / Systèmes spatiaux de communication

ADRESSE

7 boulevard de la Gare
31500 Toulouse
France

CONTACT


CNES
Thales Alenia Space
Collins Aerospace
Toulouse INP
ISEA-SUPAERO
IPSA
ENAC
IMT Atlantique