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Abstract—This paper studies an algorithm allowing the iso-
lation forest method to be adapted to time series associated
with ship trajectories. This algorithm builds decision trees using
different similarity measures between the ship trajectories of
interest and the atoms of a dictionary constructed by the user. The
similarity measure used to compare trajectories with potentially
different lengths is based on dynamic time warping. Results
obtained on synthetic data with an available ground truth yield
promising results, when compared to the state-of-the-art.

Index Terms—Maritime surveillance, Anomaly detection, Dy-
namic Time Warping, Isolation Forest

I. INTRODUCTION

Context. Oceans contain a wide variety of resources while also
serving as an unexpensive means to transport goods across the
globe. High priority sectors (such as protected or high traffic
zones) must be monitored and the behaviors of ships analyzed
efficiently so as to take action as quickly as possible in case
of illicit actions. Some recent methods allowing abnormal
trajectories to be detected are based on deep learning [1], [2],
clustering algorithms able to detect outliers such as DBSCAN
[3] and conformal anomaly detection [4]. Different sensors
exist to track the movement of ships, such as AIS (Automatic
Identification System), radar and SAR (Synthetic Aperture
Radar) images, which can be combined. The detection of
anomalies from these data, even after association, remains an
important research topic, especially because ship trajectories
are time series with potentially different lengths.
State-of-the-art. Several anomaly detection (AD) algorithms
have been proposed in the literature [5] among which Isolation
Forest (IF) [6] remains a standard and very efficient strategy.
However, IF requires training and test vectors to have the same
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dimension. This can be a problem when the measurements are
time series with different lengths such as ship trajectories. A
state-of-the-art algorithm for detecting anomalies in time series
of different lengths has been proposed by Laxhammar [4].
This algorithm uses conformal AD with the Hausdorff distance
and will be one of two methods used for comparison in this
paper as it contains a reference dataset. The other method is
DBSCAN combined with the longest common subsequence
(LCSS) similarity measure from [3]. An adaptation of the
One-Class SVM method for the detection of abnormal ship
trajectories has been recently proposed in [7]. IF has also
been considered for AD but less intensively. The existing IF-
based methods detecting abnormal ship trajectories generally
consider a set of features extracted from these trajectories
and possibly combine existing AD algorithms with clustering
methods [8]. To the best of the authors’ knowledge, the only
recent paper dealing with IF for time series is [9].
Objectives, contributions and organization. This paper stud-
ies a new IF method to detect anomalies in time series built
from ship trajectories. The paper is organized as follows:
Section II recalls the principles of the IF algorithm. Section
III explains how to adapt IF to time series having potentially
different lengths, using functional IF and dynamic time warp-
ing (DTW). Section IV is devoted to experiments comparing
different AD methods for ship trajectories. Conclusions are
reported in Section V.

II. ANOMALY DETECTION USING ISOLATION FOREST

AD consists of identifying data that does not conform to a
normal behavior [5]. In reality, there is no precise definition of
an anomaly and the assumption often made in this field is that
anomalies are rare. This makes model training complicated
because the two classes are unbalanced (there are fewer



anomalies than normal data) and this training must be done
in an unsupervised way because it is difficult, in principle,
to identify all potential anomalies. This paper focuses on IF
that has received a considerable attention in the literature [5],
[9]. This section recalls the principles of IF [6] and one of its
extensions based on functional isolation forest (FIF) [9].

A. Isolation Forest

Consider a set of vectors X = {x1, . . . ,xN} with N ≥ 1
and xi ∈ Rd, i = 1, ..., N with d the number of features.
The goal of IF is to build trees isolating each vector xi from
the database. The more “anomalous” the vector xi, the easier
or faster it can be isolated from the other vectors. Building
multiple trees leads to a forest of trees. To build a binary tree
for a subsample Xψ ⊂ X (with sub-sample size ψ > 2), a
feature is selected randomly. The maximum and minimum of
this feature are computed before randomly selecting a split for
this attribute (located between the minimum and the maximum
of the feature). In this step, all vectors with a feature higher
than the split go into the right branch of the node whereas the
others go to the left branch. This operation is repeated until all
vectors have either been isolated or have reached a maximum
depth fixed by the user. After constructing a forest of trees,
an anomaly score s(xi, ψ) is defined for each vector xi [6]:

s(xi, ψ) = 2−
E[h(xi)]

c(ψ) , (1)

where c(ψ) = 2
[
ln(ψ − 1) + γ − ψ−1

N

]
, γ is the Euler

constant and E[h(xi)] is the average tree path length of xi
computed using all the trees of the forest. As such, the number
of trees and the maximum depth of a tree are both parameters
that have to be adjusted by the user. It is worth noting that
an interesting property of IF is that it can be used for both
continuous and discrete features.

B. Functional Isolation Forest

An extension of IF referred to as “Functional Isolation
Forest” (FIF) was proposed for time series [9]1. The mo-
tivation of FIF was to detect different abnormal behaviors
in time series by computing similarity scores between the
vectors xi and a fixed set of atoms belonging to a dictionary
D = {d1, ...,dND}, with dk ∈ Rd. More precisely, for a given
node of the tree, instead of choosing a random feature in a time
series xi, a random element dk is selected from D and all the
vectors xi such that ⟨xi,dk⟩ is larger (resp. smaller) than a
threshold (where ⟨·⟩ is a scalar product chosen by the user)
are going to the left (resp. right) branch of the node.

Note that different choices of dictionaries were proposed
in [9] including the self dictionary containing the data to be
analyzed, the cosine dictionary composed of cosine functions
with different frequencies and the mexican hat wavelet dic-
tionary made of negative second derivatives of the normal
density. In this work, we consider a self dictionary Dself since
it seems complicated to choose bases adapted to all normal

1The authors of this paper would like to thank Guillaume Staerman for
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ship trajectories. All the scalar products between the atoms
dk of the dictionary that correspond to the trajectories of the
dataset are computed to form a similarity matrix S of size
N ×N . IF is finally applied to the columns of S.

C. Principal Component Analysis

As explained in [6], IF can suffer from the curse of dimen-
sionality. This paper considers the possibility of reducing the
dimension of the similarity matrix S while keeping as much
information as possible. Principal Component Analysis (PCA)
is a common method that can be used for dimensionality
reduction. PCA can be used here to project the columns of
the similarity matrix S into a lower dimensional subspace
spanned by the eigenvectors of the covariance matrix of S
associated with its largest eigenvalues λ1, ..., λq . The number
of largest eigenvalues of the matrix S has been selected in
order to obtain an appropriate value of the variance ratio
r =

∑q
k=1 λk/

∑d
k=1 λk.

III. DYNAMIC TIME WARPING

A. Principle

Even if IF and FIF are powerful AD algorithms, they
should be applied to time series having the same length. To
compare time series with different lengths, an appropriate
similarity metric needs to be defined. This paper proposes
to use dynamic time warping (DTW), which can be used to
build a correspondence or “warping” between two time series
to evaluate their proximity (see Figs. 1 and 2 for illustration).
DTW has been used in several applications such as trajectory
outlier detection [10]. Its principle is recalled in this section.

Consider two multivariate time series concatenated in matri-
ces T and U (potentially of different dimensions) describing
the time evolution of features associated with the trajectories
such as latitude, longitude, velocity, heading, etc... Denote as
T = (t1, . . . , tn), n ≥ 1 and U = (u1, . . . ,um),m ≥ 1,
where ti and uj contain the features of the ith and jth columns
of the d×n and d×m matrices T and U . The DTW cumulated
similarity score between the first i columns of T and the first
j columns of U , denoted as s(i, j), is defined by:

s(i, j) = min{s(i− 1, j − 1), s(i, j − 1), s(i− 1, j)}
+∥ti − uj∥2,

(2)

with 1 ≤ i ≤ n, 1 ≤ j ≤ m and with the constraint that the
first and last elements of both time series are paired together.
The value of s(n,m) is denoted as DTW(T ,U). Figs. 1
and 2 illustrate the difference of point associations using the
Euclidean norm and DTW.

Fig. 1. Euclidean norm between two trajectories sampled differently.



Fig. 2. DTW between two trajectories sampled differently.

B. Similarity Measures based on DTW

This paper studies a modification of FIF that can handle
trajectories of different lengths using similarity scores based
on DTW. More precisely, similarity measures can be defined
for trajectories in the original spaces Rn and Rm and in higher
dimensionality spaces defined by reproducing kernels.

1) Similarity measures in the original data space: Three
similarity measures based on DTW denoted as DTW, simDTW
and cosDTW are considered. DTW was introduced in the
previous section whereas simDTW and cosDTW are defined as

simDTW(T ,U) =
DTW2(T ,−U)− DTW2(T ,U)

4
,

cosDTW(T ,U) =
simDTW(T ,U)

||T || × ||U ||
.

(3)

The smaller these similarity measures, the closer the corre-
sponding trajectories T and U .

2) Similarity measures in an implicit feature space: Ini-
tially used for support vector machines (SVMs), reproducing
kernels are endowed with a scalar product in a vector space of
higher dimension (see [11] for a background on reproducing
kernel Hilbert spaces). A classic kernel is the Gaussian kernel
(GK) that is used to define the following similarity measure:

κ(T ,U) = exp

[
−DTW2(T ,U)

2σ2

]
, (4)

where σ > 0 is a bandwidth parameter chosen by the user.
It can be shown that the GK corresponds to a scalar product
in a space of infinite dimension. The scores defined by DTW
and (3) can be used to evaluate the similarity between a ship
trajectory and an atom of the dictionary. It should be noted
that these similarity scores can be used with other distance
measures. As such, the previous notations are extended to
simdist and cosdist with “dist” a distance measure.

C. Bandwidth selection for the Gaussian kernel

The hyperparameter σ should be chosen in order to optimize
AD. A strategy studied in [12] consists of maximizing the
following cost function J :

J(σ) =
2

N

N∑
i=1

[
exp

(
−C(Xi)

2σ2

)
− exp

(
−F (Xi)

2σ2

)]
,

(5)
where F and C are defined as:

F (Xi) = max
1≤j≤N

DTW2(Xi,Xj),

C(Xi) = min
1≤j≤N,i̸=j

DTW2(Xi,Xj),

with Xi the ith multivariate time series with i = 1, . . . , N .
The maximum of J can be found by using gradient descent
methods. In this paper, the initial point of this gradient descent
is calculated using Aggarwal’s trick [13, p. 83-88]. It consists
in calculating as a first estimate of σ the median of all pairwise
distances between the trajectories. Trinh and al. proposed to
estimate σ as the value maximizing J , when there is no
anomaly in the dataset. Since we use this method with a dataset
potentially containing anomalies, instead of building F as the
maximum of DTW over all vectors of the database, we propose
to define F as the 1−ν percentile of the DTW values to filter
the anomalies (with ν = 0.04 in our experiments).

D. Anomaly detection

Once a similarity measure (such as DTW, simDTW(T ,U),
cosDTW(T ,U) or κ(T ,U)) has been defined, an isolation
forest can be constructed to isolate each vector xi ∈ X . An
anomaly score is then be computed for any vector xi ∈ X
using (1). Anomaly detection is finally performed by com-
paring this anomaly score to an appropriate threshold. One
possibility is to set this threshold to 0.5, i.e., to detect as
abnormal the vectors that are more likely to be anomalies.
Indeed, uncertain data will have an average path length close
to c(ψ) which yields the default threshold of 0.5 [6]. Another
possibility adopted in this work is to set the threshold so that
it matches the proportion of expected anomalies contained in
the dataset, denoted as ν << 1 (and fixed to ν = 0.04 in the
section devoted to experimental results).

IV. EXPERIMENTS

A. Performance criteria

Suitable metrics have to be defined to evaluate the per-
formance of the algorithm for an appropriate choice of its
hyperparameters. A popular performance measure used for
binary hypothesis testing is the receiver operational charac-
teristic (ROC) which shows the probability of detection as
a function of the probability of false alarm. However, in
AD, to bypass the imbalanced proportion of normal data and
anomalies, it is common to consider Precision-Recall curves
[14]. In addition to ROCs, classical performance measures
include the precision, recall, F1-score and accuracy (Acc)
defined as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

,

F1 = 2

(
Precision × Recall
Precision + Recall

)
, Acc =

TP+TN
N

,
(6)

where TN, TP, FN and FP denote the numbers of true
negatives, true positives, false negatives and false positives.

B. Trajectories with the same length

The first simulations were completed using synthetic tra-
jectories (considered in [15]) containing NT = 1000 sets of
trajectories denoted as En, n = 1, ..., NT . Each trajectory is
defined by 16 positions (xi(1), xi(2)) ∈ R2. Each set En is
made up of 260 trajectories (hence d = 260) divided into 5



railways of 50 normal trajectories and 10 anomalies. Examples
of a set before and after AD are displayed in Figs. 4 and
5. The dataset and results from [4] serve as a reference for
performance comparison. The similarity measures based on
DTW introduced before, as well as another popular distance
measure called Time Warp Edit Distance (TWED), were com-
puted between all pairs of elements to calculate the similarity
matrix S. The isolation forest algorithm was finally applied
to the columns of S using 200 trees and a max depth of 260.

The algorithm was also tested with and without applying
PCA to the similarity matrix S. The variance ratio chosen for
PCA was adjusted by cross validation leading to r = 0.9999
and the maximum proportion of anomalies was set to ν = 0.04
for each set of trajectories (see Section III-D for details). In
order to appreciate the performance of the method, Fig. 3
displays examples of anomaly scores provided by the proposed
algorithm for one dataset En. Anomaly scores tend to be small
for all the normal samples and are significantly higher for
the anomalies. Quantitative results reported in Table I and
Fig. 6 allow the performance of the proposed method to be
appreciated. A comparison with the reference method [4] and
a previously proposed method is also possible using the results
of Table II. Note that the proposed method is not compared
to deep learning AD strategies such as [1], [2] since the size
of the database is too small for an appropriate learning. Our
conclusions are summarized below:

1) PCA allows the detection performance to be improved
in all cases, which shows that dimensionality reduction is
interesting for detecting anomalies in trajectories, 2) DTW
seems to provide better results than TWED in most cases,
with the advantage of being less computationally intensive, 3)
the performance of the proposed DTW-based FIF is globally
very satisfactory with an F1-score close to 90% in the best
case (highlighted in bold in Table I) and is comparable to the
results obtained from [3].

C. Incomplete trajectories with different lengths

This section considers incomplete trajectories obtained after
removing some points of each trajectory randomly. More
precisely, for each trajectory, a number of points (to be
removed) was chosen uniformly at random between 0 and 5.
The removed points were chosen randomly as well, yielding

Fig. 3. Example of FIF scores (anomalies in red).

Fig. 4. Trajectories before AD.

Fig. 5. Trajectories after AD (with one false positive and one false negative).

trajectories with different lengths. The detection performance
obtained with these trajectories is shown in Fig. 7, as well as in
Table IV, which can be compared to Table III. Due to missing
data, the detection performance is slightly reduced when
compared to the previous section but remains satisfactory
and at least as efficient as the state-of-the-art. TWED-based
measures seem to be more sensitive to the removal of points
than DTW-based measures.

V. CONCLUSION

This work showed the interest of combining dynamic time
warping with functional isolation forest for the detection
of anomalies in trajectories for maritime surveillance. The
different similarities proposed allow for the computation of

Fig. 6. Precision-Recall curves for complete data.



TABLE I
PERFORMANCES WITH FIF FOR COMPLETE DATA.

Precision Recall F1 Acc
DTW 70.28% 77.31% 73.62% 97.87%

simDTW 72.89% 80.98% 76.36% 98.09%
cosDTW 78.84% 86.72% 82.59% 98.59%
GKDTW 62.32% 68.55% 65.29% 97.20%
TWED 71.00% 78.10% 74.38% 97.93%

simTWED 63.64% 70.00% 66.67% 97.31%
cosTWED 75.46% 83.01% 79.06% 98.31%
GKTWED 44.95% 49.44% 47.09% 95.73%

DTW PCA 86.41% 95.04% 90.52% 99.23%
simDTW PCA 81.44% 89.58% 85.31% 98.81%
cosDTW PCA 81.54% 89.69% 85.42% 98.82%
GKDTW PCA 85.67% 94.24% 89.75% 99.17%
TWED PCA 80.68% 88.75% 84.52% 98.75%

simTWED PCA 84.66% 93.13% 88.70% 99.09%
cosTWED PCA 80.55% 88.60% 84.38% 98.74%
GKTWED PCA 81.73% 89.90% 85.62% 98.84%

TABLE II
METRICS FROM THE STATE-OF-THE-ART FOR COMPLETE TRAJECTORIES.

Precision Recall F1 Acc
SHNN-CAD [4] − − − 97.09%

One-Class SVM [4] 58.78% 24.63% 31.82% 96.17%
One-Class SVM [7] 93.83% 66.32% 76.31% 98.51%

DBSCAN + LCSS [3] 96.20% 97.04% 96.45% 99.72%

TABLE III
METRICS FROM THE STATE-OF-THE-ART FOR INCOMPLETE

TRAJECTORIES.

Precision Recall F1 Acc
One-Class SVM [7] 93.97% 64.39% 75.21% 98.47%

DBSCAN + LCSS [3] 96.83% 94.59% 95.49% 99.66%

Fig. 7. Precision-Recall curves for incomplete data.

different anomaly scores for the purpose of AD. The best
performance measures obtained with this method are globally
very satisfactory with F1 scores close to 90% in the best cases.
These performances are close to the state-of-the-art, with only
a slight decrease in the F1. Some applications require to detect
in real time abnormal ship behaviour (eg. piracy, illegal fishing,
etc.), which will be considered in future work.

TABLE IV
PERFORMANCES WITH FIF FOR INCOMPLETE DATA.

Precision Recall F1 Acc
DTW 60.77% 66.85% 63.67% 97.07%

simDTW 64.18% 70.60% 67.24% 97.35%
cosDTW 76.04% 83.64% 79.66% 98.36%
GKDTW 54.83% 60.31% 57.44% 96.56%
TWED 43.06% 47.37% 45.11% 95.57%

simTWED 66.75% 73.43% 69.93% 97.57%
cosTWED 68.03% 74.83% 71.27% 97.68%
GKTWED 31.36% 34.50% 32.86% 94.58%

DTW PCA 84.38% 92.82% 88.40% 99.06%
simDTW PCA 67.87% 74.66% 71.10% 97.67%
cosDTW PCA 74.57% 82.03% 78.12% 98.23%
GKDTW PCA 85.65% 94.21% 89.73% 99.17%
TWED PCA 51.91% 57.10% 54.38% 96.32%

simTWED PCA 80.97% 89.07% 84.83% 98.77%
cosTWED PCA 68.78% 75.66% 72.06% 97.74%
GKTWED PCA 61.65% 67.81% 64.58% 97.14%
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