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Abstract—Multiple sensors, such as AIS and radar, are used to
monitor nearby ships during maritime surveillance operations.
The data from these sensors must be associated so as to accurately
locate the targets and identify their behavior, while taking
into account the presence of potential sensor biases. Several
algorithms exist in the state-of-the-art to solve this association
problem. However, few of them allow the sensor biases to be
corrected. This paper adapts the coherent point drift method
to the association of AIS and radar tracks while taking into
account the radar uncertainty. The proposed adaptation is based
on an expectation-maximization algorithm that jointly estimates
the bias of the radar sensor with respect to the AIS sensor (in
polar coordinates), the radar and AIS uncertainties and solves
the association problem. The performance of this algorithm is
evaluated using AIS and radar tracks obtained from numerous
scenarios yielding promising results.

Index Terms—AIS, Radar, Track, Association, Coherent Point
Drift, Bias, Uncertainty

I. INTRODUCTION

Context. Many operations are conducted by sea and are
susceptible to disruption or can be sources of illegal activity.
Thus, maritime surveillance missions have to be carried out to
ensure the security of national interests. However, due to the
large number of vessels, the analysis of vessel behavior cannot
be done manually and must be automated [1], especially
if multiple sensors are combined. Different sensors exist to
track the ship movement, the common combination being AIS
(Automatic Identification System) and radar. The motivation
for such a combination is that AIS, while being precise and
containing a large amount of information, is not mandatory
on all vessels and can be illegally turned off or falsified.
This paper addresses the problem of simultaneous association
and re-calibration of radar and AIS data, which remains an
important research topic.
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State-of-the-art. Several association algorithms have been
proposed in the literature [2], [3], [4], [5] among which Co-
herent Point Drift (CPD) [6] is a very efficient strategy. CPD
is based on an Expectation-Maximization (EM) algorithm [7]
that iteratively estimates an additive bias between two sets of
points and the association probabilities of the observations.
Objectives, contributions and organization. This paper
investigates a new EM algorithm for AIS and radar data
association inspired by CPD. Instead of working in Cartesian
coordinates, we propose to consider polar coordinates, allow-
ing a possible angle mismatch between the AIS and radar
sensors to be considered. Under these assumptions, closed-
form expressions for the angular bias between AIS and radar
and the uncertainties of the two sensors are obtained. This
leads to a fast AIS and radar association algorithm, which
is interesting for maritime surveillance applications. The EM
algorithm requires a sufficiently accurate initialization of its
parameters. This paper studies a new initialization maximizing
a likelihood corresponding to assigning each radar observation
to all the AIS data with the same probabilities.

The paper is organized as follows: Section II introduces
the sensors that are considered in this work for maritime
surveillance. Section III recalls the principles of the CPD
algorithm and explains how to adapt this algorithm to the
association of AIS and radar data. Section IV is devoted to
the study of convergence of the CPD algorithm. Experiments
illustrating the results of the proposed algorithm are given in
Section V. Conclusions are reported in Section VI.

II. AIS AND RADAR FOR MARITIME SURVEILLANCE

This paper investigates an algorithm allowing AIS and radar
data to be associated with the aim of using the complementary
properties of the two sensors (accuracy of the AIS system
and reliability of the radar data). This section briefly reminds
some properties of AIS and radar sensors before presenting
the coordinate system considered in this work.



A. AIS

Though initially used to prevent collisions between ships,
AIS has become a widespread system for monitoring vessels,
with data constantly available everywhere in the world1. AIS
messages provide a large amount of information, such as the
position in Cartesian coordinates with an error less than 10
meters, speed and heading (both relative and absolute) of
vessels, as well as vessel identifiers, dimensions, point of
departure and arrival. The frequency of AIS varies from 2
seconds to 6 minutes, depending on the speed and maneuver
[8]. Only ships above a certain size are required to emit AIS
whereas it is only recommended for smaller vessels. Moreover,
AIS messages can be non-available or subjected to spoofing.
Thus, AIS information has to be complemented by another
sensor, such as the radar presented in the next section.

B. Radar

This work assumes that radar data are available in addition
to AIS tracks, providing the range and angle of the vessels
contained in a common region of interest for both sensors.
Uncertainties are also introduced for the radar data, modeling
the fact that the further away a vessel is from the radar, the
less accurate the tracks associated with this target. In polar
coordinates, the uncertainty matrix for the radar is expressed
as Σ = diag(σ2

r , σ
2
θ) where σ2

r and σ2
θ are the variances of the

radar range and azimut, and “diag” transforms these variances
into a diagonal matrix. The values of σ2

r and σ2
θ should reflect

the fact that radars are more accurate in range than in azimut
[9]. Furthermore, since the zero for the azimut has to be
calibrated, a small bias exists along this dimension. While it
is common to estimate associations and biases one after the
other [4], this paper focuses on introducing a statistical model
allowing these quantities to be estimated jointly.

C. Coordinate system

Before introducing the proposed statistical model, an ap-
propriate representation of the positions has to be chosen.
This work only considers ship positions but other features,
such as speed and heading, could be added in the model to
improve the association performance. Though tracks are often
provided in Cartesian coordinates, both AIS and radar data are
considered in this work in polar coordinates to build a simple
Gaussian Mixture Model (GMM) [9]. In a given time window,
we consider a set of AIS points XAIS = [xa

1 , . . . ,x
a
K ] and a

set of radar points Xradar = [xr
1, . . . ,x

r
N ], where xa

i and xr
i

contain the ith range rai and azimuth θai of the AIS track, and
the ith range rri and azimut θri of the radar track, K is the
number of AIS data and N is the number of radar data. The
motivations for this choice will be detailed in Section III-A.
Note that the AIS and radar data correspond to the same region
of interest, which corresponds to the field of view of the radar.

1www.marinetraffic.com/en/ais/home/

III. AIS / RADAR ASSOCIATION

This section recalls the theory behind the CPD algorithm
used to estimate the association probabilities and the unknown
bias in Sections III-A1 and III-A2. The CPD theory is then
extended to AIS / radar association with unknown uncertainty
in Section III-A2. When sets of points need to be associated,
the CPD algorithm uses one of these sets to define the
means of a GMM and defines the covariance matrices of this
GMM using some knowledge about the relationships between
the different sets of points. The unknown parameters of the
resulting GMM (including the associations probabilities) are
then estimated using the EM algorithm.

A. Proposed CPD Model and Parameter Estimation

1) Statistical model: The two sets of points XAIS and
Xradar are assumed to contain the different positions (in polar
coordinates) of the vessels observed by the AIS and radar
at a fixed time t. As explained in Section II, the radar data
are observed with a small angular bias denoted as θ that has
to be estimated. Since AIS data are generally more precise
than the radar, the following model is used for AIS/Radar
data association:

p(xr
n) = p(xr

n|XAIS) = (1−w)

K∑
k=1

πkp(x
r
n|xa

k)+
w

πR2
, (1)

with n = 1, ..., N , πk = 1
K the prior probability of xa

k and

p(xr
n|xa

k) = N (xr
n|[0, θ]T + xa

k,Σ), (2)

where θ is the unknown angular bias of the radar, N (x|µ,Σ)
denotes the Gaussian distribution of mean µ with covariance
Σ and p(xr

n|K+1) = 1
πR2 is the probability density function

(pdf) of a uniform distribution on the region of interest, which
is introduced to cope with all the outliers, as in [3]. Note
that the weight w can be chosen by the user to reflect the
quantity of outliers contained in the observed radar data. In
the application targeted by this paper, the numbers of observed
AIS and radar data at the instant t are known.

2) EM algorithm: After initializing the different parameters
to be estimated (see Sections IV-C and V-B for details), the
EM algorithm iterates between the following E and M steps:

• Expectation step: At a given iteration l ≥ 1, the E step
calculates the posterior probabilities γl(znk) with znk =
1 if data n belongs to the class k, 0 otherwise:

γl(znk) =
πkp

l−1(xr
n|xa

k)

pl−1(xr
n)

, (3)

where pl−1(xr
n|xa

k) and pl−1(xr
n) are obtained from (1)

and (2) and the estimated parameters at iteration l − 1.
• Maximization step: Once the posterior probabilities

γl(znk) have been calculated, the model parameters are
re-estimated during the M step. This is accomplished by
maximizing the following Q function [7] with respect to
the unknown parameters:

Q = −
N∑

n=1

K+1∑
k=1

γ(zlnk) ln
[
πkp

l(xr
n|xa

k)
]
. (4)



Straightforward computations allow the Q function to be
expressed as:

Q = −
N∑

n=1

K∑
k=1

γ(zlnk)

[
ln

1

2πKσrσθ
− (rrn − rak)

2

2σ2
r

− (θrn − θak − θ)2

2σ2
θ

]
. (5)

The minimum of (5) with respect to the bias has a closed form
expression, since

∂Q

∂θ
= 0 ⇒ θ̂ =

∑N
n=1

∑K
k=1 γ(z

l
nk)(θ

r
n − θak)∑N

n=1

∑K
k=1 γ(z

l
nk)

. (6)

Similarly, setting to zero the partial derivatives of Q with
respect to the uncertainties σ2

r and σ2
θ leads to:

∂Q

∂σ2
r

= 0 ⇒ σ̂2
r =

∑N
n=1

∑K
k=1 γ(z

l
nk)(r

r
n − rak)

2∑N
n=1

∑K
k=1 γ(z

l
nk)

, (7)

∂Q

∂σ2
θ

= 0 ⇒ σ̂2
θ =

∑N
n=1

∑K
k=1 γ(z

l
nk)(θ

r
n − θak − θ̂l)2∑N

n=1

∑K
k=1 γ(z

l
nk)

. (8)

The advantage of working in polar coordinates is clear since
this system of coordinates leads to closed-form expressions for
the unknown model parameters. Consequently, each iteration
of the EM algorithm can be performed very fast, which is
important for maritime surveillance.

B. Track-to-Track Association

The fuzzy associations given by the posterior probabilities
calculated in the E step of the EM algorithm need to be
converted into associations between AIS and radar data. The
Hungarian algorithm [10] is applied to the association matrix
Γ = [γ(znk)]1≤n≤N,1≤k≤K obtained from the last iteration
of EM, as in [3]. Any significant radar outlier, i.e., with
γ(zn(K+1)) ≥ γ(znk),∀k = 1, ...,K is removed from the
association by the Hungarian algorithm.

IV. ALGORITHM CONVERGENCE

Despite being a powerful tool, the EM algorithm requires a
good initialization. This section first studies the sensitivity of
the proposed EM algorithm to its initialization. An initializa-
tion avoiding many convergence issues is then proposed.

A. Simulation scenario

This section considers two datasets referred to as “Baltic”
and “California”. The Baltic Sea set (see Fig. 1) contains
vessel positions that are clearly separated while the California
set (Fig. 2) contains clusters of vessels, which makes it more
difficult to handle. For both of these sets, only the AIS data
is available and was acquired from IEEEDataPort2 for the
Baltic Sea set and from MarineCadastre3 for the California
set. The radar dataset was simulated from the AIS trajectories
according to the statistical model considered in this paper.

2ieee-dataport.org/open-access/vessel-tracking-ais-vessel-metadata-and-
dirway-datasets

3marinecadastre.gov/accessais/

Fig. 1. Surveillance zone using the Baltic Sea set (AIS observations: red
crosses, radar observations: blue circles, sensors: green square).

Fig. 2. Surveillance zone using the California set (AIS observations: red
crosses, radar observations: blue circles, sensors: green square).

For each AIS track defined in polar coordinates, a bias θ
has been added to the AIS azimut coordinate and zero-mean
Gaussian noises have been added to the biased azimut and
range trajectories. Finally, the ship positions are taken at a
time instant to apply the CPD algorithm. In both experiments,
the parameters are set to w = 0.1, σr = 25.51 meters,
σθ = 0.1531◦ (this corresponds to 50 meters and 0.3◦ with
a confidence of 95%) with 100 scenarios generated. Each
scenario uses 60 ship trajectories: 30 trajectories with both
AIS and radar positions and 30 trajectories with only radar
positions (i.e., K = 30 and N = 60). The number of iterations
for the EM algorithm is set to 10.

B. Sensitivity to the initialization step

To study the sensitivity of the EM algorithm to the ini-
tialization step for AIS and radar association, a series of ex-
periments has been performed. This section studies a specific
scenario with an actual angular radar bias θ = 4◦. For each
experiment, the initial estimate of the bias is chosen randomly
between −45◦ and 45◦ and NMc = 200 Monte Carlo runs are
performed. Fig. 3 shows the boxplots of the EM estimates for
the Baltic and California datasets. The EM algorithm does not
always converge towards the global maximum of the likelihood
for a random initialization. Initializing the bias with θ = 0◦

seems to be a decent first guess, as the radar should have a
small bias. However, this initialization does not always lead to



Fig. 3. Bias estimates obtained using different initializations with the Baltic
Sea (left) and California (right) sets.

a global maximum. To overcome this issue and decrease the
execution time (i.e., reducing the number of iterations required
for the EM algorithm), a more clever initialization needs to be
found, as proposed in the next section.

C. Proposed initialization

As explained in [11], when using the EM algorithm to
determine the means of each component of a GMM, the global
maximum of the likelihood is reached if two criteria are met:

• the target Gaussian means are all clearly separated,
• the initialization of the Gaussian centers is close enough

to the target values.
As explained in Section III, the AIS positions in the proposed
statistical model define the Gaussian centers of the GMM. The
proposed initialization consists of finding the value of θ (by
grid search) that maximizes the cost function

c(θ) =

N∑
n=1

ln

(
K∑

k=1

N (xr
n|[0, θ]T + xa

k,Σ)

)
, (9)

which consists of assigning each radar observation to all the
AIS data with the same probabilities.

V. SIMULATION RESULTS

This section evaluates the performance of the proposed
method in two different situations corresponding to known and
unknown uncertainties (for known uncertainties, the variance
estimates in (7) and (8) are removed from the EM algorithm
and these parameters are replaced by their known values).

A. Known uncertainty

The estimation performance obtained for known uncertain-
ties (known values of σ2

r and σ2
θ ) is displayed in Figs. 4 and 5

using box plots of the estimates. First, one can observe that the
EM algorithm improves the bias estimation compared to the
initial estimate calculated using (9). Note that the final estimate
is close to the actual value of θ with an error close to 0.01° in
the vast majority of simulations for the California set and with
an error close to 0.001° for the Baltic Sea set. The Hungarian

TABLE I
ASSOCIATIONS FOR THE BALTIC SEA (B) AND CALIFORNIA (C) SETS

WITH KNOWN (K) AND UNKNOWN (U) UNCERTAINTIES

BK BU CK CU
Averaged
Correct 100 99.97 97.73 94.80

Associations (%)
Standard deviation (%) 0 0.33 2.25 3.69

algorithm applied to the matrix Γ provides the associations
given in Table I. These associations are perfect (no error) for
the Baltic Sea set and correspond to a probability of correct
association above 90% for the California set.

B. Unknown uncertainty

In the case of unknown uncertainties, the parameters σ2
r

and σ2
θ are estimated jointly with the radar bias θ. The initial

values of these variances are generated equally likely in the
intervals [10m, 50m] and [0.01°, 0.26°]. The bias θ is initialized
randomly between −10◦ and 10◦. These intervals for σ2

r and
σ2
θ correspond to values that can be expected from real radars4

and AIS data with a confidence of 95%.
Compared to the previous results, a minor loss in perfor-

mance can be observed in Figs. 4 and 5 (right plots) for
the bias estimation and in Table I for the associations. This
loss of performance was expected since adding two unknowns
to the problem also increases its complexity. Figs. 6 and 7
(left plots) show the uncertainty estimations obtained with
EM that are compared to the true value. Though the results
seem acceptable for the Baltic Sea set, the uncertainties for
the California set have higher variance (even without outliers)
and are overestimated. This overestimation is probably due
to association errors resulting from incorrect values of the
posterior probability associations γ(znk). Indeed, according to
(7) and (8), non-binary association probabilities tend to give
some weight to the neighbors of the actual vessels instead of
considering a single association. The fuzzy associations for
the Baltic dataset are close to be hard decisions, which allows
better uncertainty estimates to be obtained. In order to confirm
this assessment, the uncertainties have been re-estimated using
the associations provided by the Hungarian algorithm. Figs. 6
and 7 (right plots) show the gain in performance obtained
when using the posterior probabilities resulting from the
Hungarian algorithm for uncertainty estimation.

VI. CONCLUSION

This work investigates a new statistical model for track-
to-track association from AIS and radar data. One specificity
of the proposed model is to allow a bias correction for
the radar data and AIS / radar uncertainty estimation within
the association algorithm. Simulations conducted on realistic
datasets showed promising results, with a good precision for
the radar bias estimates and a probability of correct association
greater than 95% in most cases, even with a dense traffic.

4www.radartutorial.eu/01.basics/Radars%20Accuracy.en.html



Fig. 4. Angle estimation errors after multiple iterations for the Baltic Sea set
with (left) and without (right) uncertainties.

Fig. 5. Angle estimation errors after multiple iterations for the California set
with (left) and without (right) uncertainties.

However, the presence of outliers in the reference dataset
has not been handled, even if these are unlikely to affect
the results when computing the posterior probabilities. Future
work will be devoted to including electronic support measure
(ESM) into the analysis. ESM is a passive sensor measuring
angles from incoming signals in a specific bandwidth, usually
corresponding to radar usage. ESM have shown interesting
properties for maritime surveillance, such as identifying friend
and foe or the emitter used by neighboring ships during
operations [12].
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