
Estimation of Instrument Spectral Response
Functions in Presence of Radiometric Errors

Jihanne El Haouari
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Abstract—High resolution spectrometers, such as the
CNES/UKSA MicroCarb instrument, are widely used in remote
sensing applications to retrieve atmospheric trace gas concentra-
tions. Potential radiometric errors or errors in the approximation
of the Instrument Spectral Response Function (ISRF) can induce
significant errors in the determination of these gas concentra-
tions. This paper presents a new strategy for the joint estimation
of a spectrometer ISRF and the potential radiometric errors
affecting the spectrometer measurements. These radiometric
errors are modeled as polynomial functions of the error-free
spectrum. An iterative algorithm is then proposed to estimate
the coefficients of these polynomials and the spectrometer ISRFs.
This algorithm alternates between ISRF estimation steps using
the orthogonal matching pursuit algorithm and a radiometric
error estimation step using the least squares method.

Index Terms—Instrument spectral response function (ISRF),
radiometric errors, sparse representations, OMP.

I. INTRODUCTION

The instrument spectral response function (ISRF) is a key
quantity in remote sensing for trace gas retrieval. An imperfect
knowledge of the ISRF generally leads to significant errors in
the determination of gas concentrations. For the CNES/UKSA
MicroCarb mission, relative ISRF approximation errors are
expected to be upper bounded by 1%. This bound is not
guaranteed by conventional ISRF estimation methods, in-
cluding those based on the standard Gauss and Super-Gauss
models of [1]. Thus, new estimation methods need to be
developed, which is the main objective of this paper. The
spectrum S(λl) acquired at wavelength λl by the spectrometer
is the convolution between a known high-resolution theoretical
spectrum Sth and the ISRF Il centered at λl [2], [3]:

s(λl) = (sth ∗ Il)(λl) =

∫ λmax

λmin

sth(λl − u)Il(u)du. (1)

The shape of the ISRF Il depends on the central wavelength
λl, which makes the ISRF estimation problem ill-posed, since
there is only one measurement per ISRF. To overcome this
problem, we assume that the ISRFs do not vary much in an

interval around λl, which allows all the observations of this
interval to be used to estimate the ISRF at λl.
In addition to the ill-posed inverse problem (1), radiometric er-
rors can affect the spectrometer measurements at some specific
frequencies. This paper introduces a new inverse problem al-
lowing the ISRFs of a spectrometer to be estimated in presence
of radiometric errors. In the state-of-the-art, the estimations of
the ISRF and the radiometric errors are conducted separately
prior to launch [4] through extensive measurement sequences.
During in-flight calibration, radiometric errors are mainly
considered to be a dark offset and certain gains. Nonlinear
radiometric errors are often neglected [5] or approximated
using look-up tables (as for the MicroCarb mission).
Goals and contributions. The objective of this work is
to solve the ISRF approximation problem in presence of non-
linear radiometric errors affecting the error-free spectrum. The
first contribution of this paper is to propose a new model allow-
ing the joint estimation of spectrometer ISRFs and radiometric
errors at each wavelength λl from the measured spectrum (cf.
Section II). The second contribution is an iterative method,
described in Section III, which estimates the spectrometer
ISRFs and the associated radiometric errors. The ISRFs are
approximated using sparse linear combinations of atoms from
a known and fixed dictionary and the radiometric errors are
estimated using multiple known theoretical spectra. This ISRF
estimation method can be used for in-flight calibration. Section
IV presents experiments conducted on simulated data from
generic models generated by the Centre National d’Etudes
Spatiales (CNES) and applied to MicroCarb spectra, which
allows the performance of the proposed estimation method to
be evaluated. Conclusions are reported in Section V.

II. ISRF APPROXIMATION AND ESTIMATION OF
RADIOMETRIC ERRORS

A. Radiometric errors

High-resolution atmospheric sounding missions rely on pre-
cise on-ground radiometric and spectral calibration [6]. Radio-
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Fig. 1. Examples of non-linear gains for three different pixels with their
associated polynomial approximations of degree 2.

metric errors due to the instrument optics are usually estimated
from lamp measurements at different radiance levels, during
a calibration campaign in a thermal vaccum chamber that
simulates the on-orbit environment [7]. These errors are then
monitored on orbit using dark, solar and lamp observations.
Conversely, this paper introduces a model and its estimation
algorithm for estimating ISRFs from a spectrum corrupted
by radiometric errors. This section introduces the radiometric
errors considered in this work.

Linear gains. The linear gain model is composed of an
absolute gain, which is used to convert digital numbers (at
a detector pixel level l) to radiances in order to obtain the
measured spectra (acquired from solar acquisition), and an
inter-pixel relative gain, which is independent of luminance
and applies to the useful signal. These two gains are multiplied
with the actual spectrum. Note that there is one value of the
linear gain per pixel.

Dark current. The dark current is the signal measured by
the spectrometer when no light reaches the instrument input.
It is an additive error that is added to the spectrum after
multiplication by the two linear gains. Note that there is one
value of dark current per pixel.

Non-linear gain. A non-linear gain characterizes the pres-
ence of non-linearities in the detector. It is defined by a
response curve for each pixel as a function of radiance,
and is applied to the spectrum with the two kinds of errors
described above. This study assumes that for each pixel, the
non-linear gain can be modeled accurately by a polynomial.
Indeed, from a theoretical point of view, it is well-known
that any continuous function defined on an interval can be
uniformly approximated by a polynomial function (according
to the Stone-Weierstrass approximation theorem [8]). A more
practical motivation for using a polynomial model for the non-
linearity is that it allows radiometric errors to be approx-
imated with a good accuracy for small polynomial orders.
As an illustration, Fig. 1 shows three examples of non-linear
gains that can be found in high fluxes and their associated
polynomial approximations. Clearly, the non-linear gains can
be approximated by second order polynomials with a good
accuracy.

B. Problem formulation

Observation model. As seen previously, only one measure-
ment is available for each wavelength λl, which leads to a
non-identifiable problem. In order to overcome this issue, we
make the following assumptions:

• The ISRFs do not vary much within a small window
Wl =

{
λl−L

2
, ..., λl+L

2

}
of L+ 1 measurements around

the wavelength λl.
• A sufficiently large number Q of theoretical spectra and

their associated measurement vectors associated with the
same radiometric errors and the same ISRF are available.

These measured spectra can be obtained during in-flight cali-
bration from some specific scenes (Sun, Moon, etc.) where the
theoretical spectrum is rather known. The previous assump-
tions lead to a vector I l ≜

[
Il(−N

2 ∆), ..., Il(
N
2 ∆)

]T ∈ RN+1

for each wavelength λl, describing the ISRF in the sliding win-
dow Wl, where ∆ is the ISRF wavelength grid. As explained
before, we assume that for each pixel l, the nonlinear gain is
a polynomial that is applied to the error-free spectrum with
multiplicative and additive errors. These radiometric errors
only depend on the instrument used and remain the same for
all spectra. The following observation model is thus obtained
at each wavelength λl:

xl,q = fl (sl,q) =

P∑
p=0

dlp

[
s
(q)
th,lI l

]p
, ∀q = 1, ..., Q, (2)

where fl is a polynomial of order P , xl,q and sl,q are the lth
measurements in presence and absence of radiometric errors
respectively, and s

(q)
th,l =

[
s
(q)
th (λl − n∆)

]
−N

2 ≤n≤N
2

∈ RN+1

where ∆ is the wavelength grid. The following notations are
then introduced for the L+1 measurements of Wl and the Q
theoretical spectra:

• S
(q)
th,l ≜

[
s
(q)
th,l′

]
l−L

2 ≤l′≤l+L
2

∈ R(L+1)×(N+1) is the

matrix containing the qth theoretical spectrum samples,
• Sl ≜ [sl′,q]l−L

2 ≤l′≤l+L
2 ,q=1,...,Q ∈ R(L+1)×Q is the

matrix of measurements in absence of radiometric errors,
• X l ≜ [sl′,q]l−L

2 ≤l′≤l+L
2 ,q=1,...,Q ∈ R(L+1)×Q is the

matrix of measurements in presence of radiometric errors,
• dl ∈ R(P+1)(L+1) is the vector containing the polynomial

coefficients of (2) such that dT
l ≜

[
dl
0, ...,d

l
P

]
.

This model can be used to estimate the ISRF I l and the
vector dl for each wavelength λl. Note that for dl1 = 1 and
dlp = 0 ∀p ∈ {0, 2, ..., P}, (2) reduces to a discretized version
of (1), as described in [9], which can be acceptable for some
wavelengths. However, model (1) is not sufficiently accurate
for other wavelengths, which motivates this study.
Non-linear inverse problem. The ISRF estimation problem
consists in estimating the vector I l for each wavelength λl

from the measured spectra in X l. To do so, we introduce the
diagonal matrix D(q)(I l) = diag (Sl(:, q)) ∈ R(L+1)×(L+1)

containing the qth error-free measurements belonging to the
sliding window Wl (depending on the ISRF) and 1L+1 ∈



R(L+1)×(L+1) the (L+1)×(L+1) identity matrix. Introducing
the following matrix

M (q)(I l) =
[
1L+1 | D(q)(I l) | ... | (D(q)(I l))

P
]

of size (L+1)×(P+1)(L+1), this paper proposes to estimate
the ISRF I l and the vector of radiometric error parameters dl

by minimizing the residual errors between X l(:, q) and its
approximation M (q)(I l)dl, i.e.,

arg min
(Il,dl)

gl(I l,dl) = arg min
(Il,dl)

Q∑
q=1

||X l(:, q)−M (q)(I l)dl||22.

(3)

III. ITERATIVE ESTIMATION METHOD

A. ISRF approximation problem

Sparse representation of ISRFs. Models based on sparse
representations and dictionary learning have been extensively
used in several applications such as image denoising, classi-
fication or restoration [10]–[12]. This paper uses this kind of
model for ISRF estimation. The ISRF I l is modeled as a linear
combination of a small number K of atoms from a dictionary
Φ ∈ R(N+1)×Ndict composed of Ndict atoms, i.e.,

I l ≈ IK
l = Φαl, (4)

where IK
l ∈ RN+1 is the approximation of the ISRF I l

obtained using K atoms, and αl = (αl,1..., αl,Ndict)
T ∈ RNdict

is a sparse vector with K non-zero coefficients for pixel #l.
Inverse problem without radiometric errors. The convo-
lution between the qth theoretical spectrum and the ISRF I l

can be written using the sparse decomposition (4) leading to:

Sl(:, q) ≈ S
(q)
th,lI

K
l = Ψ

(q)
l αl, (5)

where Sl(:, q) is the qth column of Sl and new dictionaries
are obtained from the theoretical spectra as Ψ

(q)
l ≜ S

(q)
th,lΦ ∈

R(L+1)×Ndict . The dictionary Φ and the theoretical spectrum
S

(q)
th,l are assumed to be known and fixed for all q = 1, .., Q,

so that the new dictionaries Ψ
(q)
l are also known. Denote

as Ψl ∈ RQ(L+1)×Ndict the matrix containing the different
dictionaries Ψ

(q)
l . Estimating the ISRFs from the spectra

without radiometric errors concatenated in Sl reduces to a
sparse coding problem, i.e., to finding a sparse coefficient
vector αl yielding a good approximation of Sl. This problem
can be expressed as:

argmin
αl

L(αl, µ) = argmin
αl

||vec(Sl)−Ψlαl||22 + µ||αl||0,
(6)

where the operator vec(·) is introduced to vectorize matrices,
|| · ||0 is the pseudo-norm penalty and µ is an appropriate
penalty parameter. Many approximations and heuristics have
been proposed to solve this non-convex problem. A widely
used family of approaches is based on greedy algorithms, such
as Matching Pursuit (MP) or Orthogonal Matching Pursuit
(OMP) [13], [14]. This paper will focus on the OMP algorithm
that has shown good performance for ISRF approximation

[9] and is fast to compute, which is crucial for the targeted
application. In what follows, this ISRF estimation method in
absence of radiometric errors is referred to as SPIRIT for
“SParse representation of Instrument spectral Responses usIng
a dicTionary” [9].

B. Estimation and correction of errors for known ISRFs

For a known ISRF, (3) reduces to estimate the vector dl

containing the polynomial coefficients. Since the radiometric
errors are the same for different theoretical spectra, this paper
proposes to estimate these errors using the least squares
problem

argmin
dl

gl(Φαl,dl),

that has a closed form expression since gl(Φαl,dl) is a
quadratic function of dl. Once the vector dl has been deter-
mined, the vectors Sl(l

′, :) (l′ row of Sl) for l′ = 1, ..., L+1
can be estimated by searching the roots of the L+1 polynomial
equations X l(l

′, :)−fl′ (Sl(l
′, :)) = 0 ∀l′ = 1, ..., L+1, which

results from (2). The solutions of these polynomial equations
can be viewed as a way of correcting the radiometric errors.

C. Joint estimation of ISRFs and radiometric errors

Algorithm 1 introduces an iterative algorithm for estimating
the ISRFs in presence of radiometric nonlinear errors. This
algorithm first performs an initial estimation of the vectors
αl and thus of ISRFs I l using the SPIRIT algorithm. This
algorithm was presented in Section III-A to estimate ISRFs
in absence of radiometric errors. In presence of radiometric
errors, SPIRIT provides rough ISRF estimations. After initial-
ization, the algorithm iterates three steps until convergence:

• Step 1: estimation of radiometric errors from the previous
ISRF estimates and the strategy presented in Section
III-B. In practice, the vector dl is estimated using the
MATLAB function polyfit to determine the P +1 coeffi-
cients of the polynomials for the wavelengths belonging
to the analysis window,

• Step 2: correction of radiometric errors by determining
the zeroes of X l(l

′, :)−fl′ [Sl(l
′, :)] (using the MATLAB

function roots). This operation aims at removing the
radiometric errors from the observations X l

• Step 3: re-estimation of the sparse vector αl from the
estimated error-corrected measurements.

This iterative method is an extention of the SPIRIT method
that will be referred to as SPIRITUAL for “SParse represen-
tation of Instrument spectral Responses usIng a dicTionary
assUming polynomiAL radiometric errors”.

IV. NUMERICAL EXPERIMENTS

A. Data description

The data used in this paper results from simulations carried
out by the CNES for the MicroCarb mission. The instrument
considered in this work is a spectrometer with high spectral
resolution that has two infrared absorption bands (B2: 1.596−
1.618µm and B3: 2.023− 2.051µm) to recover CO2 absorp-
tion lines, and two near-infrared bands (B1:0.758− 0.769µm



Algorithm 1 Iterative ISRF estimation for each window.

Input: Measured spectra Xl, Theoretical spectra S
(q)
th,l,

Concatenated dictionaries Ψl, Desired cardinality K, Number of iterations J
Output: ISRF estimation Îl, Corrected spectral measurements Ŝl

1: Initialize d̂l = [0L+1,1L+1,0L+1, ...,0L+1]
T ;

2: α̂l = OMP (vec(Xl),Ψl,K);
3: vec(Ŝl) = Ψlα̂l;
4: while not convergence do

▷ Estimation of radiometric errors using least squares:
5: Update: d̂l = argmindl

gl(Φα̂,dl);

▷ Error correction by inverting the functions fl′ from d̂l using (2);

6: for l′ = 1, ..., L+ 1: do
7: Ŝl(l

′, :) = argminŜl(l
′,:) ||Xl(l

′, :)− fl′ [Ŝl(l
′, :)]||2;

8: end for
▷ Re-estimation of the sparse vector:

9: Update: α̂l = OMP
(

vec(Ŝl),Ψl,K
)

;
10: end while

▷ ISRF estimation:
11: Îl = Φα̂l

▷ Determination of corrected spectral measurements:
12: Ŝl(:, q) = S

(q)
th,lÎl ∀ q = 1, ..., Q

and B4: 1.264− 1.282µm) to measure oxygen concentration.
For space reasons, only results for the data from the first band
(B1) are reported. The theoretical spectrum is obtained using
the radiative transfer software 4A/OP [15]. The ISRFs and
observed spectra are constructed using a simulator. For this
article, the radiometric errors are simulated as polynomials of
degree P = 3 and Q = 41 theoretical spectra are used for
estimating the radiometric errors.

B. Experimental setup

The dictionary is built using Ndict = 25 singular vectors
associated with the largest singular values of a singular value
decomposition (SVD) of 1024 ISRF examples simulated for
the chosen band. The size of the observation window is set
to L = 80 and the number of iterations for the SPIRITUAL
algorithm is set to 100. The performance is evaluated in terms
of residual error between the actual spectrum Sl and its recon-
struction (from the measured spectrum with radiometric errors
X l) and normalized absolute error for the ISRF approximation
(at a given wavelength), i.e.,

El =

N+1∑
n=1

|I l(n)− Î l(n)| /
N+1∑
n=1

I l(n). (7)

C. Results in absence of radiometric errors

In a first part, spectra without radiometric errors are con-
sidered. Figure 2 compares the two previously mentioned
parametric models of [1] and the model using sparse rep-
resentation with the OMP algorithm referred to as SPIRIT.
As mentioned before, the accuracy required to estimate CO2

concentrations for the MicroCarb mission requires to know the
ISRFs with relative errors less than than 1%. As confirmed in
this simulation, the approximation of ISRFs using parametric
models [1] does not allow this precision to be obtained,
contrary to SPIRIT. The minimum ISRF approximation error
is obtained for K = 4 atoms used from the dictionary.
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Fig. 3. Spectrum reconstruction for multiple polynomials (P ∈ {1, 2, 3, 4}
(top), associated residues (middle) and ISRF approximation errors (bottom).

D. Results in presence of radiometric errors

Estimation of ISRFs and the corresponding spectra. This
section applies the SPIRITUAL method with K = 4 atoms to
estimate radiometric errors, to correct them and to estimate
the ISRFs. The degree of the polynomials associated with the
radiometric errors has been varied such that P ∈ {1, 2, 3, 4}
and the best result in terms of residual error and ISRF
approximation error was chosen. Figure 3 illustrates the results
for one selected spectrum in term of error-free spectrum recon-
struction and ISRF approximation errors for all wavelengths.
The best results are obtained for P ∈ {3, 4}, where the ISRF
approximation errors are below the threshold of 1%.
Examples of estimated ISRFs. Figure 4 shows examples of
estimated ISRFs using SPIRITUAL for different polynomial
degrees. The approximation errors averaged for all ISRFs in
the band B1 are also indicated in the figure. We can see that
the approximation error decreases as P increases, and that the
results obtained for P = 3 and P = 4 are similar. Finally, as
for the mean ISRF approximation error, the value of P = 3
is yielding the lowest error.
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E. Comparison between SPIRIT and SPIRITUAL

This section compares the performance of SPIRIT, which
assumes no radiometric errors (a best-case scenario) and
SPIRITUAL, which accounts for radiometric errors, in terms
of ISRF approximation errors and mean approximation errors.
Figure 5 shows that the SPIRITUAL method manages to
achieve practically the same results as SPIRIT, which is
outstanding. It is also interesting to note that relative approx-
imation errors obtained using SPIRITUAL are less than 1%.

V. CONCLUSION

This paper proposes a new method to estimate the in-
strument spectral response function (ISRF) of a spectrome-
ter from spectral measurements in presence of radiometric
errors. This method, referred to as SPIRITUAL, models ra-
diometric errors using polynomial functions, estimates and
corrects these radiometric errors and finally estimates the
ISRFs using the corrected measurements. This joint estimation
of radiometric errors and ISRF is performed using an iterative
process alternating least-squares estimation of radiometric
errors, correction of radiometric errors by searching the roots
of appropriate polynoms and estimation of sparse vectors

using the OMP algorithm. Simulation results suggest that the
proposed ISRF estimation method performs almost as well
as a method developed for measurements not affected by
radiometric errors. Interesting perspectives include the study of
the estimation accuracy of the radiometric errors for each pixel
of the detector. Future work will also be devoted to analyze
the potential interest of machine learning methods and the
impact of other degradations such as stray light, additive noise
or spectral shifts (that have been neglected in this paper) on
ISRF estimation.
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