Publications

Articles, Thèses, Brevets, Séminaires, Livres, Notes techniques

Recherche

Article de conférence

Binary Root Protograph LDPC Codes for CSK Modulation to Increase the Data Rate and Reduce the TTD

Auteurs : Ortega Espluga Lorenzo, Poulliat Charly, Boucheret Marie-Laure, Aubault-Roudier Marion et Al Bitar Hanaa

In Proc. ION Global Navigation Satellite Systems (GNSS), Miami, Florida, USA, September 16-20, 2019.

Télécharger le document

New generation of GNSS systems seeks to provide new features in order to create or to improve their currents services. Between those possible features; the increase of the data rate is necessary in order to to provide services such as authentication, precise positioning or reduce the Time-To-First-Fix (TTFF). On the other hand, the data availability in harsh environment suggest the need of error correcting technologies. Then, based on previous works over the Code-Shift Keying (CSK) modulation and in Root Protograph LDPC code to reduce the TTFF, in this paper, it is presented the optimization of Root Protograph LDPC codes for the CSK modulation in a Bit-Interleaved Coded Modulation context and the optimization of Root Protograph LDPC codes for the CSK modulation in Bit-Interleaved Coded Modulation Iterative Decoding context. Both optimization where base on the Protograph EXIT chat algorithm, providing promising results.

Lire la suite

Communications numériques / Localisation et navigation et Systèmes spatiaux de communication

Optimal Channel Coding Structures for Fast Acquisition Signals in Harsh Environment Conditions

Auteurs : Ortega Espluga Lorenzo, Poulliat Charly, Boucheret Marie-Laure, Aubault-Roudier Marion et Al Bitar Hanaa

In Proc. ION Global Navigation Satellite Systems (GNSS), Miami, Florida, USA, September 16-20, 2019.

Télécharger le document

In this article, we provide the method to construct two error correcting structures for GNSS systems, which are capable to provide Maximum Distance Separable (MDS), full diversity and rate-compatible properties. Thanks to those properties, the GNSS receiver is capable to reduce the Time-To-First-Fix (TTFF) and to enhance the robustness of the data demodulation under low Carrier to Noise ratio environments, urban environments and pulsed jamming environments. The proposed error correcting structures are then simulated and compared with the GPS L1C subframe 2 error correcting scheme under the precedent transmission environments. Simulations show an outstanding improvement of the error correction capabilities (which reduce the TTFF in harsh environments) mainly caused by the rate-compatible and the full diversity properties. Moreover, thanks to the MDS property a high reduction of the TTFF under good environments is appreciated.

Lire la suite

Communications numériques / Localisation et navigation et Systèmes spatiaux de communication

Managing Aircraft Mobility in a Context of the ATN/IPS Network

Auteurs : Tran N'Guyen Hoang Alexandre, Pirovano Alain et Larrieu Nicolas

In Proc. 38th Digital Avionics Systems Conference (DASC), San Diego, California, September 8-12, 2019.

Télécharger le document

For the sake of Air Traffic Management modernization, civil aviation organizations are currently developing IPS for Aeronautical Safety Services in the new ATN/IPS infrastructure. This includes to define new airborne and ground- based communication systems capable of managing both air traffic services (ATS) and aeronautical operational communications (AOC) safety services. One of the main challenges in this new ATN/IPS network is the IPv6 mobility problem. This paper proposes a solution which takes both advantages of ground based Locator/Identifier Separation Protocol and Proxy Mobile IPv6 to manage all the aircraft mobility scenarios. A dedicated OMNeT ++ simulation model is also provided and shows the performances of our solution.

Lire la suite

Réseaux / Systèmes de communication aéronautiques

Cardiac Motion Estimation Using Convolutional Sparse Coding

Auteurs : Diaz Nelson Eduardo, Basarab Adrian, Arguello Fuentes Henry et Tourneret Jean-Yves

In Proc. 27th European Signal Processing Conference (EUSIPCO), Coruna, Spain, September 2-6, 2019.

Télécharger le document

This paper studies a new motion estimation method based on convolutional sparse coding. The motion estimation problem is formulated as the minimization of a cost function composed of a data fidelity term, a spatial smoothness constraint, and a regularization based on convolution sparse coding. We study the potential interest of using a convolutional dictionary instead of a standard dictionary using specific examples. Moreover, the proposed method is evaluated in terms of motion estimation accuracy and compared with state-of-the-art algorithms, showing its interest for cardiac motion estimation.

Lire la suite

Traitement du signal et des images / Autre

Fast Surface Detection in Single-Photon Lidar Waveforms

Auteurs : Tachella Julian, Altmann Yoann, McLaughlin Stephen et Tourneret Jean-Yves

In Proc. 27th European Signal Processing Conference (EUSIPCO), Coruna, Spain, September 2-6, 2019.

Télécharger le document

Single-photon light detection and ranging (Lidar) devices can be used to obtain range and reflectivity information from 3D scenes. However, reconstructing the 3D surfaces from the raw waveforms can be very challenging, in particular when the number of spurious background detections is large compared to the number of signal detections. This paper introduces a new and fast detection algorithm, which can be used to assess the presence of objects/surfaces in each waveform, allowing only the histograms where the imaged surfaces are present to be further processed. The method is compared to state-of-the-art 3D reconstruction methods using synthetic and real single-photon data and the results illustrate its benefits for fast and robust target detection using single-photon data.

Lire la suite

Traitement du signal et des images / Autre

Représentation Parcimonieuse Pondérée pour la Détection d’Anomalies dans des Signaux Multivariés

Auteurs : Pilastre Barbara, Boussouf Loïc, d'Escrivan Stéphane et Tourneret Jean-Yves

In Proc. Groupe d'Etude du Traitement du Signal et des Images (GRETSI), Lille, France, August 26-29, 2019.

Télécharger le document

Cet article présente un modèle de représentation parcimonieuse pondérée pour la détection d'anomalies dans des signaux de télémesure satellite multivariés. La méthode proposée est une extension de l'état de l'art par son adaptation au cadre multivarié et l'intégration d'informations externes par l'intermédiaire d'une pondération appropriée permettant d'améliorer les performances de détection.

Lire la suite

Traitement du signal et des images / Autre

Analyse Multicritères des Performances et de la Complexité des Turbo-égaliseurs à Complexité Réduite à base de Treillis et de Filtres

Auteurs : Soubigou Eric, Sahin Serdar, Cipriano Antonio, Poulliat Charly et Chayot Romain

In Proc. 27ème Colloque du Groupe de Recherche sur le Traitement du Signal et des Images (GRETSI), Villeneuve-d'Ascq, France, August 26-29, 2019.

Lire la suite

Communications numériques / Systèmes de communication aéronautiques et Systèmes spatiaux de communication

Article de journal

On LMVDR Estimators for LDSS Models: Conditions for Existence and Further Applications

Auteurs : Chaumette Eric, Vincent François, Priot Benoît, Pages Gaël et Dion Arnaud

IEEE Transactions on Automatic Control, vol. 64, issue 6, pp. 2598-2605, August, 2019.

Télécharger le document

For linear discrete state-space models, under certain conditions, the linear least mean squares (LLMS) filter estimate has a recursive format, a.k.a. the Kalman filter (KF). Interestingly, the linear minimum variance distortionless response (LMVDR) filter, when it exists, shares exactly the same recursion as the KF, except for the initialization. If LMVDR estimators are suboptimal in mean-squared error sense, they do not depend on the prior knowledge on the initial state. Thus, the LMVDR estimators may outperform the usual LLMS estimators in case of misspecification of the prior knowledge on the initial state. In this perspective, we establish the general conditions under which existence of the LMVDRF is guaranteed. An immediate benefit is the introduction of LMVDR fixed-point and fixed-lag smoothers (and possibly other smoothers or predictors), which has not been possible so far. Indeed, the LMVDR fixed-point smoother can be used to compute recursively the solution of a generalization of the deterministic least-squares problem.

Lire la suite

Traitement du signal et des images / Localisation et navigation

Article de conférence

New Results on LMVDR Estimators for LDSS Models

Auteurs : Chaumette Eric, Vincent François, Priot Benoît, Pages Gaël et Dion Arnaud

In Proc. 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, September 3-7, 2019.

Télécharger le document

In the context of linear discrete state-space (LDSS) models, we generalize a result lately introduced in the restricted case of invertible state matrices, namely that the linear minimum variance distortionless response (LMVDR) filter shares exactly the same recursion as the linear least mean squares (LLMS) filter, aka the Kalman filter (KF), except for the initialization. An immediate benefit is the introduction of LMVDR fixed-point and fixed-lag smoothers (and possibly other smoothers or predictors), which has not been possible so far. This result is particularly noteworthy given the fact that, although LMVDR estimators are sub-optimal in mean-squared error sense, they are infinite impulse response distortionless estimators which do not depend on the prior knowledge on the mean and covariance matrix of the initial state. Thus the LMVDR estimators may outperform the usual LLMS estimators in case of misspecification of the prior knowledge on the initial state. Seen from this perspective, we also show that the LMVDR filter can be regarded as a generalization of the information filter form of the KF. On another note, LMVDR estimators may also allow to derive unexpected results, as highlighted with the LMVDR fixed-point smoother.

Lire la suite

Traitement du signal et des images / Localisation et navigation

Article de journal

Minimum Variance Distortionless Response Estimators for Linear Discrete State-Space Models

Auteurs : Chaumette Eric, Priot Benoît, Vincent François, Pages Gaël et Dion Arnaud

IEEE Transactions on Automatic Control, vol. 62, issue 4, pp. 2048-2055, August, 2019.

Télécharger le document

For linear discrete state-space models, under certain conditions, the linear least-mean-squares filter estimate has a convenient recursive predictor/corrector format, aka the Kalman filter. The purpose of this paper is to show that the linear minimum variance distortionless response (MVDR) filter shares exactly the same recursion, except for the initialization which is based on a weighted least-squares estimator. If the MVDR filter is suboptimal in mean-squared error sense, it is an infinite impulse response distortionless filter (a deconvolver) which does not depend on the prior knowledge (first- and second-order statistics) on the initial state. In other words, the MVDR filter can be pre-computed and its behaviour can be assessed in advance independently of the prior knowledge on the initial state.

Lire la suite

Traitement du signal et des images / Localisation et navigation

ADRESSE

7 boulevard de la Gare
31500 Toulouse
France

CONTACT


CNES
Thales Alenia Space
Collins Aerospace
Toulouse INP
ISEA-SUPAERO
IPSA
ENAC
IMT Atlantique