Cooperative Congestion Control in NDN

Adrien Thibaud*', Julien Fasson*, Fabrice Arnalf, Renaud Sallantin®, Emmanuel Dubois® and Emmanuel Chaput”‘T
*TéSA Laboratory, firstname.name @tesa.prd.fr
TENSEEIHT/IRITﬂJniversity of Toulouse, firstname.name @enseeiht.fr
{Thales Alenia Space, firstname.name @thalesaleniaspace.com
8Centre National d’Etudes Spatiales, emmanuel.dubois @cnes.fr

Abstract—Named Data Networking (NDN), an Information-
Centric Network (ICN) architecture, is based on caching, mul-
tipath and multi-producers retrieving. These properties provide
new opportunities for a single user to increase its Quality of
Experience (QoE). However, handling multiple flows, each of
them having its own multiple paths, is more complex. To tackle
this challenge, we highlight three main principles a solution
should include. Nodes should cooperate, supervise their output
queues and, eventually, wisely manage the multipath capacities
of NDN. These three elements are the core of our proposition:
Cooperative Congestion Control (CCC). More than a solution,
CCC is proposed as a framework where each principle could
be implemented in multiple ways. The ultimate objective is to
fairly distribute the flows on the network and maximize QoE
of users. We choose basic algorithms in order to evaluate the
overall framework. We evaluate our solution with simulations
and compare their results with a theoretical model.

Index Terms—ICN, NDN, QoE, Max-min fairness, Multipath
flows, Congestion Control

I. INTRODUCTION

A new approach, the Information Centric Network paradigm
(ICN), has recently emerged and defines a network layer that
is content-oriented instead of location-oriented. Among the
ICN architectures, Named Data Networking (NDN) [1] seems
promising and increasingly draws the attention of the research
community. NDN uses the mechanisms that made the success
of HTTP, CDN (Content Delivery Network) and P2P (Peer-to-
Peer network) directly as a basis for the network layer. NDN
is a receiver-driven architecture. As in HTTP with its GET
message, the user (or the consumer in the NDN terminology)
sends an Interest message requesting a piece of data. Multiple
producers (as in P2P) and multiple paths might be available
and used, but everything is transparent from the end-users
point of view. Furthermore, each forwarding node is able to
opportunistically cache contents and extra nodes might be set
to cache the most popular content at strategical places (as in
CDN). NDN design also integrates security: a data packet is
intrinsically secured and does not depend on the end points. It
thus can be reused for multiple users, facilitating the caching
and multicasting of contents.

The challenge of this architecture is to design a more
compliant network with user needs through a data-oriented
approach. We consider here a network where multipaths are
common and that is potentially overloaded (i.e. the global
consumers need is above the network capacity). Indeed, as
pictured in Fig. 1, consumer A can retrieve its requested

(==

100M (%
Producer Al

g 50M
k

Consumer A

L]
S2

Consumer B

50M

100M

Producer A2

Fig. 1: Illustrative network topology

content through two different paths. But the network capacity
is not able to satisfy consumers A and B simultaneously.

Given this context, our goal is to maximize the Quality
of Experience (QoE) of all the users. In this paper, we only
consider content-oriented applications that need a targeted rate.
The QoE is evaluated through the received rate of the users. A
user is increasingly satisfied with the rate he gets (capped by its
personal objective rate). The competition of multiple users on
the network rises a fairness problem. In our example in Fig. 1,
the consumer A is in competition with the consumer B on the
R1-R3 path, while the other path could have sufficient unused
bandwidth to satisfy consumer A without bothering other users
on the congested path. Ultimately, we search to distribute the
flows of the users with a fairness concern, through all the paths
available and with regards to the resources constraints.

Therefore, the problem can be seen as a joint congestion
and fairness problem. In classical IP networks, two methods
are used to handle this issue: an end-to-end one and a hop-
by-hop one. The best known example of the first method
is TCP. The intelligence of this approach is located in the
sender. The receiver only sends acknowledgment that are used
by the sender to evaluate the network congestion level. The
goal of the sender is to reach the best rate possible, possibly
in an aggressive way. The second method is implemented
through AQM solutions (Active Queue Management). For this
approach, the intelligence is located in every node on the
network. The nodes are able to detect when a congestion
occurs and take action to avoid it. On the one hand, end-to-end
methods cannot efficiently evaluate congestion phenomenon
and tend to increase the rate of the user in order to increase
their QoE, and on the other hand, hop-by-hop methods tend

to decrease it in order to reduce the congestion. Even if those
two kinds of method sometimes implement opposite actions,
they actually cohabit in the Internet and have shown some
efficiency. We thus believe that a NDN based solution should
take the best of these two schemes. However, we think that
they should be implemented in a single framework in order to
be more consistent and thus, hopefully, effective. Furthermore,
multipath retrieving is not natively handled in IP. MPTCP is
the TCP solution for multipath, but it only works when one of
the ends is multi-homed (with Fig. 1 example, MPTCP would
not be feasible).

NDN provides the opportunity to manage multipath delivery
on the network level and we are convinced that such a feature
should be used in our framework. In this paper, we propose
a new solution, Cooperative Congestion Control (CCC), that
tackles these joint problems (congestion and fairness) in a
more cooperative and effective way. CCC is based on a per
node approach where the main elements are: a two ways
cooperation between nodes, a local supervision of the output
queues and a smart utilization of the multipath possibilities.
Combined, these three principles can support a fair distribution
of the flows.

The remaining sections of this paper are organized as
follows. In Section II, we survey the related work. Then,
Section III, we study the theoretical problem. Section IV
presents the principles of CCC and how we implement it. In
Section V, we present the evaluations of our solution. Lastly,
the paper is concluded in Section VI.

II. RELATED WORKS

In term of congestion control, they are two main families of
solutions: the end-to-end and the hop-by-hop type of solutions.
A third and hybrid solution has quickly emerged since it allows
to take advantage of NDN natural hop-by-hop processing
while maintaining an end-to-end control like in IP with TCP-
like protocols. All the solutions presented here are compared
with our proposition in Sec. V.

Interest Control Protocol [2] (ICP) is the best known solu-
tion for congestion control, since it is an adaptation of TCP
behavior for NDN. It is receiver-driven as well as an end-to-
end solution. The consumer handles a congestion window for
the content to be retrieved. The size of this window evolves
using an Additive Increase Multiplicative Decrease mechanism
(AIMD). When a Data packet arrives at the consumer, it
additively increases the size of the congestion window. This
additive increase corresponds to the congestion avoidance
phase of legacy TCP: the congestion window increases of one
in a round-trip time (RTT). When congestion is detected by a
timeout, the consumer decreases the window multiplicatively
(divided by two here). The Retransmission Timeout (RTO) in
ICP is computed as the mean between the minimum and the
maximum of the measured RTTs.

A Practical Congestion Control Scheme [3] (PCON) is an
hybrid solution that defines how consumer sends its requests
(end-to-end) and how nodes in the network handle Data and
Interests (hop-by-hop). The end-to-end part is based on a

congestion window at the consumer side whereas the hop-
by-hop part is a forwarding strategy on each NDN nodes.
We respectively name them PCON-CS and PCON-FS in
this paper. PCON-FS uses the CoDel approach [4] to detect
the congestion: the nodes measure the sojourn time of each
packet in their queue. If the minimum detected over a given
period is higher than a threshold, the interface is considered
as congested. The interface marks Data packets rather than
dropping them in order to trigger an explicit adaptation from
the upstream nodes. With the marks it receives, the traffic
is progressively load balanced on the other available paths.
The PCON-CS consumer has the same behavior as ICP: a
congestion avoidance phase and the RTO computation from
RFC 6298 [5]. In addition, a marked Data is considered as a
congestion notification and triggers a multiplicative decrease.

Multipath-aware ICN Rate-based Congestion Control [6]
(MIRCC) has similar goals than CCC. It targets to achieve
a max-min fairness using the network at its full capacity.
For this purpose, the authors propose an adaptation of RCP
[7] for NDN with multipath compatibility. Their algorithm is
partially distributed: every node computes two stamping rates
(as in RCP but with a second for multipath support) and each
consumer chooses the paths it wants to use and at which rate
(with the help of the two stamping rate). As opposed to our
solution, MIRCC puts a lot of intelligence in the consumers
and less in the nodes.

ITII. MODEL

In this part, we search the theoretical optimal solution for
our problem. For this purpose, we define a model where
we compute the fairest flow distribution on the considered
network. This will help us to analyze our simulation results.
We split our approach in two steps. In the first step, we
maximize the throughput of the users and thus their QoE.
In the second step, we distribute this throughput fairly to
satisfy as many users as possible. Indeed, we prefer an average
satisfaction for each user than to have a few users with the
maximum QoE and some users with the worst. These two parts
represent one optimization problem each and are described in
the following sub-sections.

A. Maximum Multi-Commodity Flow problem

The first part is an adaptation of the common Maximum
Multi-Commodity Flow problem [8]. It can be formulated with
the following objective:

maxZFk (L
k
and the following constraints:

Fk L= Sk
foj_z.fﬁi: 0 @ F Sk bk s 2)

k k —Fk’l 7= tk,l

V(i,j) € EVl=1,...,Ly,Vk=1,.... K

> O fF <, Vi, §) €E 3)

k

where K is the number of competing flow on our network,
F* is the total size of the kth flow, L, is the number of nodes
providing the kth flow, E is the set of edges of the network,
sy is the node requesting the kth flow, ¢;; is the Ith node
providing the kth flow, F*! is the size of the Ith path of the
kth flow, fi’fj is the size of the kth flow on the edge (i,j) (i
and j are vertices of the network) and wu; ; is the capacity of
this same edge. (2) represents the flow conservation constraints
while (3) represents the capacity constraints. Furthermore, we
suppose that our users have explicit rate objectives:

FF<FL Vk=1,... K 4)

O

where Fokbj is the objective size of the kth flow.
The solution of this optimization problem gives the maxi-
mum aggregate throughput for all users and can be formulated

as a new constraint:
> PR =2 5)
k

where z* is the solution found. We thus define a new version
of the optimization problem aiming to optimize fairness.

B. Fuairness concern

Despite the fact that the aggregate throughput is maximized,
the rate distribution might not be fair. Indeed, one user may
have a very good throughput and penalizing another user at
the same time. A fair share may decrease reasonably the
QoE of this user and increase significantly the one of the
unsatisfied users. It is therefore necessary to search for the
fairest distribution, but without changing the optimal objective
we found in the previous formulation. We decide to use
the max-min fairness because it allows our users to get the
maximum fair share possible without limiting them to get more
if available. The second part of our model is then formulated
with this new objective:

maxt (6)
and these new constraints:
FF_t>0,Vk=1,.,K (7

where t represents the minimum of the F*, through the Eq.
(7). Solving the optimization problem presented by (6) as
objective and (2), (3), (4), (5) and (7) as constraints gives
one of the possible fairest distributions and the minimum size
each flow should have in order to have an optimal distribution.
Both optimization problems can be solved using the simplex
algorithm.

IV. COOPERATIVE CONGESTION CONTROL
A. Principles

The algorithm we propose, Cooperative Congestion Control
(CCC), defines a cooperative way to distribute the concurrent
flows on a network. It works on a per node approach and aims
at avoiding the congestion and using the multipath capacity of
NDN efficiently. Our purpose is to give each flow the QoS it
needs while preserving the network resources. To do so we will

Producer 1

—
Downstream

Consumer ----

Fig. 2: Node context

use both pacing (i.e. delay between consecutive transmission
within the same flow) and multipath (i.e. the use of different
available paths for the same flow). Our solution is based on
three main principles: (i) a cooperation between nodes that
takes the form of the exchange of applications objectives and
networks constraints, (ii) a queue supervision to estimate its
state and (iii) a smart decision making upon those pieces of
information to allocate bandwidth to flows.

B. Node behavior

Fig. 2 represents a NDN node with one flow. Interests arrive
from the Consumer side and are distributed on the n available
paths (Upstream). On the reverse direction, Data arrive from
the Producers and are sent to the Consumer (Downstream).
Our solution is based on the control of the interests pace
(Interests per second) on the upstream, in order to offer the
compliant downstream data rate. On the Fig. 2, Interests arrive
at the incoming pace p; on the interface O of our node. The
Dok (K = 1,...,n) represents the outgoing pace of Interest
through the path k. With the size of the Data packet of the
flow, our algorithm is able to estimate the rate induced by the
transmission pace of Interests.

For each flow it manages, a node receives a pacing ob-
jective, p;_obj, from its neighbor on the consumer side and
a constraint on this pacing, p;_maz, from its neighbors on
each producer side. The objective represents the application
needs and tends to increase the rate allocated to the flow.
The constraint represents the network limitation and tends to
restraint the rate allocated to the flow. This represents the
cooperation part of the algorithm. Each node has to respect
the pace constraint and tries to satisfy the pace objective it
receives. Then, it has to send its own constraint and objectives.

A node receives an objective for a flow p;_obj and can dis-
tribute it among the multiple output interfaces (p, ;_obj, k =
1,...,n). Eq. 8 represents the conservation of the objective
through a node. No objective is created anywhere on the
network. Thus, at a global scale, the sum of the received
objective by all the producers is equal to the initial objective
emitted by the consumer.

Pi_obj =Y poj_obj ®)
k=1

On the downstream, nodes receive n incoming constraints for
a flow (p; x_max,k =1,...,n) and send their own outgoing
constraint p,_max such as :

n
Po_mar < Zpi,k_max)
k=1

Eq. 9 represents the aggregation of the incoming constraints.
It is not an equality because some local issue may reduce
the outgoing constraint p,_max. On our scheme, Consumers
and Producers network layer also uses CCC. As a result, the
application stack has to follow the constraints and creates
objective that satisfies their user needs.

The local issue represents a misuse of the bandwidth by
the node. For this problem, nodes set up a supervision of
theirs downstream output interfaces (here interface O in Fig. 2).
This allows nodes to estimate if congestion is happening or if
unused bandwidth is remaining. Depending of the case, a node
may reduce the constraints for each active flow or distribute the
available bandwidth. Nodes have to respect Eq. 9 even when
a constraint is increased, i.e. an outgoing constraint cannot
be increased more than the aggregate incoming constraints.
With this mechanism, NDN nodes try to reach the objective
of each flow. Such a behavior may be unfair, so we need to
implement a fairness algorithm. Furthermore, if all the active
flows are satisfied and there is still some unused bandwidth,
nodes are allowed to increase the outgoing constraints above
their incoming objective. This permits the previous node to
have more opportunities to balance its traffic.

Indeed, nodes have n output interfaces for the considered
flow and they have to choose how to use them efficiently.
Interests arrive at the incoming pace p; and nodes have
to determine the outgoing pace for all n output interfaces
(po,ksk = 1,...,n). The only restrictions are the received
constraints:

Do,k Spi,k_maka: 1,...,TL (10)

Finally, when an Interest arrives, nodes have to choose which
output interface to use. Each output interface eventually paces
Interests with their outgoing pace p, .

C. Algorithm

The overall behavior of each node implementing is the

following:

o the node receives pacing objectives (p;_obj) and use
an "Objective distribution" algorithm to compute the
outgoing objectives (p, x_obj, Vk) ;

« it forwards Interest based on a pacing policy enforced by
the "Load balancing" algorithm ;

e pacing is updated by a couple of "Pace increase" and
"Pace decrease" algorithms ;

« these algorithms are triggered by a "Queue supervision"
algorithm which is fed by a "Queue status" algorithm and
a bandwidth estimation (Eq. 12).

As a consequence an effective CCC implementation consists
in six sub-algorithms. We describe here a very straightforward
implementation for each of them.

First, Interests carry the objective of the flow. When a node
receives it, it does not know if it is the global objective of the
consumer or if it is only a part of it. The only requirement of
the node is the conservation of the objective (Eq. 8) and thus
have to distribute it when multiple path are available:

Algorithm 1 Objective distribution

Require: p;_obj =Y ;_, pox_obj
Ensure: p;_obj = > "}_, Po,k_0bj
for all output interface do
Set the outgoing objective at an equal share of the
received objective
end for

For this first implementation, we decide to assign an equal
part of the received objective to each output interface:

pi_obj
n

\Vk (11)

With the objective distribution, the nodes try to encourage
the use of multipath. But the load balancing is done by the pace
distribution (Algo. 2) and driven by the received constraints.

po,k_Obj =

Algorithm 2 Load balancing

Input: pace_to_distribute
while pace_to_distribute is not null do
Get an output interfaces not full (po 1 < Pik_maz)
Increase its output pace to its constraint (with respect to
residual pace_to_distribute)
Update the pace_to_distribute
end while

It is used to distribute the incoming pace p; and to distribute
a potential overflow to an output interface (when a new
constraint p; ,_max is received and is below the current
output pace p,). Indeed, when a more restrictive constraint
arrives, the Eq. 10 may not be respected. The output pace is
then decreased to the new constraint and the overflow has to
be distributed among the other output interface. If it is not
possible, it is Eq. 9 that may not be respected. The outgoing
constraint is then updated to respect the aggregation property.

For downstream and as for Interests, Data piggyback the
constraint of its flow. The nodes have to do the aggregation
of the constraints. They just have to ensure that the outgoing
constraint respects the Eq. 9.

The nodes also set up a local supervision on each of their
output interfaces (Algo. 3).

Algorithm 3 Queue supervision

Get queue status (Algo. 4)
if congestion then

Reduce the pace of each active flow (Algo. 5)
else

Evaluate available bandwidth (Eq. 12)

Distribute it equally between active flow (Algo. 6)
end if

They use a drop-based mechanism to detect congestion
(Algo. 4): if some packets on the emission queue are dropped
during the supervision period, the queue is considered as
congested. The supervision is done periodically.

Algorithm 4 Queue status

if at least one packet dropped then
Return True

end if

Return False

If a congestion is detected, the nodes need to decrease
the constraint of its active flows. The outgoing constraint of
each flow is then set to 90% of the current incoming pace of
Interests (as described in Algo. 5). The overall estimation of
the link use is thus reduce by ten percent.

Algorithm 5 Pace reduction

for each active flow do
Reduce outgoing constraint by ten percent
end for

If no congestion is detected, the nodes compute the current
estimation of the link use :

bandwidth_estimation = Z pf_max * data_sizeF (12)

flowF
If the bandwidth estimation is below the capacity of the link,
the nodes can distribute the available bandwidth with Algo. 6.

Algorithm 6 Pace augmentation

Input: available_bandwidth
Input: constraint of active flows
for each active flow do
Give an equal part of the available bandwidth
end for

The single aspect of fairness of these algorithms is to
manage each flow equally. Indeed, Algo. 5 and Algo. 6 have
an obvious impact on the fairness of the flows distribution.
But all six of these algorithms play a role in the fairness
balance and with interdependence between each other. The
relative simplicity of the proposed algorithms allows to reduce
this interdependency and thus to analyze the performance the
overall framework. In future works, we will study the use of
advanced implementations in order to enhanced the fairness
of our solution or propose multiple kinds of fairness.

V. EVALUATIONS

We have implemented CCC on the ndnSIM simulator [9].
All the codes and environment parameters are available! in
order to be able to reproduce our results. We have chosen two
scenarios to evaluate our solution.

The first scenario is illustrated on the Fig. 1. Both consumers
have larger rate objectives than the network can offer. Each

Thttps://gitlab.tesa.prd.fr/athibaud/ccc-codebase

) E— —-= ICP + PCON-FS
i PCON-CS + DRF
80 ity 8 —— ccc
0 1 B —— Optimal
Q e .
s Fl gt A
= 60 £l B il iE g i
< £HARS dI Tigfa i 'a
= 4 s T
° [] Il\g ‘}!
2 40 ¢ (e ddi]
el i I
c
© |
@ 20 ! i
f i
i
0 i
0 20 40 60 80 100 120 140
Time (s)
(a) Rate of flow A
50
apayanaaraynsad Inli
.‘}!!“! gl ot
__40 l‘l I,'"ﬂ\/ 1§ il !. H\’
2 D n i fil Ll i
Q 'Vfl‘u"i"‘L
§ i inEEn ‘{ i i
=30 ' Mo i
< J1\ i
5 R ,‘If
220 g M1 VR BATE A
2 A 8wt A il
10 il gh b i
ol —
0 20 10 60 80 100 120 140

Time (s)

(b) Rate of flow B
Fig. 3: Comparison between CCC, ICP and PCON

content size is 400 Mbytes and is split in chunks of 8400
bytes. The consumer A begins its request at ¢t = 0s while the
consumer B begins at ¢ = 10s. In this scenario, we compare
our solution to ICP and PCON. As depicted in our previous
work [10], we choose ICP as the end-to-end algorithm with
PCON-FS as the hop-by-hop forwarding strategy and PCON-
CS as the end-to-end algorithm with Dynamic Request For-
warding [11] (DRF) as the hop-by-hop forwarding strategy.
The optimal fair distribution found with the model of Sec.
III is also included. It represents the minimum rate each flow
should reach in order to have a global max-min fairness.
Fig. 3 shows the results of this scenario. Sub-figure 3a
represents the rate of the flow A. When the flow is alone,
it should theoretically reach 100Mbps as pictured by the
optimal curve. However, the rate obtained by CCC is below
the optimal curve. Indeed, 100Mbps is the level 2 link capacity
while we trace the level 3 rate. Therefore, the difference
is due to the overhead of the layer 2. At ¢t = 10s, the
second flow begins and the max-min fair rate (the optimal
curve) drops to S0Mbps for each flow. Our solution is very
stable in comparison to ICP and PCON. Indeed, our consumer
never has to blindly increase its Interests transmission rate
since the network explicitly notifies the procedure to follow.
The convergence time is also very short: approximately one
supervision period to reallocate the bandwidth and a few
supervision periods to decrease the congested link below its
capacity. Therefore, the completion time of both consumers
is lower with our solution. It successfully uses the network
resources with no oscillation and with a fast convergence when
new flows appear or old flows disappear. In term of fairness,
our solution has the same performance than the combination
"ICP + PCON-FS" and the "PCON-CS + DRF". It achieves a
local, per link, max-min fairness: during the competition, both
flows get half the bandwidth of the congestion link (R1-R3).

Singlepath Multipath

g]Ji Prefix 1 ——> e N 11
Prefix 2 21
N Prefix 3——> "

20
18 Repo 19 £V :

Repo 16
s e
77— 8 ﬁ 9

S
%
= 1
¥ ,.3,‘“ g
< Relpo 12
2)
LY

iom

) (amazon)

Fig. 4: Topology abilene [11]

The global fairness is not reached since the flow B is above
the max-min fair rate computed by our model.

The second scenario is done on the Abilene topology of Fig.
4 as used in [11]. This topology represents a bigger and more
realistic network. The figure shows how the routing tables are
filled. We conduct the same experimentation as in [6] and
compare it to the results with MIRCC. Consumer arrival time
follows a Poisson process with mean 3 seconds. It is randomly
set on the nodes 11, 13, 14, 15, 17, 18, 20 or 21 and requests
randomly a content among /amazon, /google and /warner. Each
content size is 9Mbytes and is chunked in 5000 pieces.

Fig. 5 presents the completion times of MIRCC and CCC
solutions. Our solution does not handle requests coming from
multiple interfaces yet. This is why there is no result for
four consumers (C20 for /google, C18 for /amazon, C17 for
/amazon and C11 for /warner). We plan to add this feature in
future work. However, our proposition successfully retrieves
each content faster that the MIRCC solution. This scenario
also demonstrates that CCC is functional on a large scale
simulation.

VI. CONCLUSIONS

In this paper, we have described the problem of multi-flow
fair distribution on a limited network and its theoretical model.
Then, we have proposed a solution, Cooperative Congestion
Control, based on NDN that tackles this difficult challenge
through a comprehensive set of algorithms. It works in a
distributed way: consumers, producers and nodes exchange
objectives and constraints for each flow, measure local uti-
lization of each link and use these pieces of information to
allocate fairly the rate of the active flows. The implementation
of each algorithm can be changed independently and we have
first defined simple algorithms in order to demonstrate the
efficiency of our design. Our solution successfully uses the
multipath capacity of NDN and maximizes the rate and QoE
of the users. Our local queue supervision ensures a rapid re-
allocation of flows. It provides a fast convergence time when a
flow appears and disappears. Simulation results show that we
can achieve local link max-min fairness: each active flow gets a
fair share of the link bandwidth. This is the case for each link.
As future works, we plan to study the performance of different

MIRCC.21
CCcC.z21
MIRCC.20
CCC.20
MIRCC.18
CCC.18
MIRCC.17
CCC.17
MIRCC.15
CCC.15
MIRCC.14
CCC.14
MIRCC.13
CCC.13
MIRCC.11
CCC.11

Consumer ID

W /warner
/google
B /amazon

0O 5 10 15 20 25 30 35 40 45 50
Delivery time (s)

Fig. 5: CCC/MIRCC comparison on the Abilene topology

implementations for CCC sub-algorithms. A key issue is the
fairness of the system. We have shown that CCC is fair at
the link level. A global fairness is a much more challenging
objective and involves several of these algorithms.

REFERENCES

[1] L. Zhan and al. Named data networking. SIGCOMM Comput. Commun.
Rev., 44(3):66-73, July 2014.

[2] G. Carofiglio, M. Gallo, and L. Muscariello. Icp: Design and evaluation
of an interest control protocol for content-centric networking. In 20712
Proceedings IEEE INFOCOM Workshops, pages 304-309, March 2012.

[3] K. Schneider, C. Yi, B. Zhang, and L. Zhang. A practical congestion

control scheme for named data networking. In Proceedings of the 3rd

ACM Conference on Information-Centric Networking, ACM-ICN ’16,

pages 21-30, New York, NY, USA, 2016. ACM.

K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar. Controlled Delay

Active Queue Management. RFC 8289, January 2018.

[S] M. Sargent, J. Chu, Dr. V. Paxson, and M. Allman. Computing TCP’s
Retransmission Timer. RFC 6298, June 2011.

[6] Milad Mahdian, Somaya Arianfar, Jim Gibson, and Dave Oran. Mircc:
Multipath-aware icn rate-based congestion control. In Proceedings of
the 3rd ACM Conference on Information-Centric Networking, ACM-
ICN ’16, pages 1-10, New York, NY, USA, 2016. ACM.

[7]1 Nandita Dukkipati. Rate Control Protocol (Rcp): Congestion Control to
Make Flows Complete Quickly. PhD thesis, Stanford, CA, USA, 2008.
AAI3292347.

[8] T. C. Hu. Multi-commodity network flows.
11(3):344-360, 1963.

[9] S. Mastorakis and al. ndnSIM 2: An updated NDN simulator for NS-3.
Technical Report NDN-0028, Revision 2, NDN, November 2016.

[10] Adrien Thibaud, Julien Fasson, Fabrice Arnal, Renaud Sallantin, Em-
manuel Dubois, and Emmanuel Chaput. An analysis of NDN Congestion
Control challenges. working paper or preprint, https://hal.archives-
ouvertes.fr/hal-02314169, October 2019.

[11] G. Carofiglio, M. Gallo, L. Muscariello, M. Papalini, and S. Wang. Opti-
mal multipath congestion control and request forwarding in information-
centric networks. In 2013 2Ist IEEE International Conference on
Network Protocols (ICNP), pages 1-10, Oct 2013.

[4

—

Operations Research,

