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Abstract: The derivation of tight estimation lower bounds is a key tool to design and assess the performance of new estimators. In
this contribution, first we derive a new compact Cramér-Rao bound (CRB) for the conditional signal model, where the deterministic
parameter’s vector includes a real positive amplitude and the signal phase. Then, the resulting CRB is particularized to the delay,
Doppler, phase and amplitude estimation for band-limited narrowband signals, which are found in a plethora of applications, mak-
ing such CRB a key tool of broad interest. This new CRB expression is particularly easy to evaluate because it only depends on
the signal samples, then being straightforward to evaluate independently of the particular baseband signal considered. We exploit
this CRB to properly characterize the achievable performance of satellite-based navigation systems and the so-called Real-Time
Kinematics (RTK) solution. To the best of our knowledge this is the first time these techniques are theoretically characterized from
the baseband delay/phase estimation processing to position computation, in terms of the CRB and maximum likelihood estimation.

1 Introduction

Time-delay estimation has been a research topic of significant inter-
est in many fields such as radar, sonar, communications and naviga-
tion [1-6], to name a few, mainly because this drives the first stage
of the receiver in order to localize and track radiating sources [7]. In
addition, phase estimation is also a fundamental part in many appli-
cations, for instance, Global Navigation Satellite Systems (GNSS)
precise navigation approaches rely on the exploitation of the signal
phase information. Indeed, the phase measurement is linked to the
wavelength which in this case is much smaller than the baseband
signal resolution. This is also the case in precise GNSS remote sens-
ing altimetry applications [8—10], where the phase must be exploited
to achieve cm altimetric precision. In a broader perspective, these
applications typically deal with complex circular observation vectors
[11]. Within this class, an important estimation problem is the iden-
tification of the components of a noisy observation vector x formed
from a linear superposition of ) sources c in noise w [12—-15],

x=An)a+w, x,weC, A (n) ecV*@ aec? )

where the mixing matrix A (n) depends on an unknown determin-
istic parameter vector 1) € R, with N, Q the number of samples
and sources respectively. Within the framework of modern array
processing [11, 15] two different signal models are considered:
the conditional signal model (CSM) and the unconditional signal
model [13]. We adopt the less constrained CSM framework. Find-
ing the relationship between the baseband CSM used in GNSS
and the performance of GNSS positioning techniques ignited this
contribution.

1.1 From Muiti-source to Single Source Estimation

The analog side of a classical GNSS receiver architecture includes
a low noise amplifier (LNA), and a downconversion to an interme-
diate sampling frequency Fs, followed then by an analog-to-digital
converter (ADC). At this stage, one works with a multi-source sig-
nal as (1), e.g., data samples from all the signal types broadcasted
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by the satellites in view. Due to the similar incoming energy and
the low cross-correlation among GNSS signals, the multiple signal
can be easily split into single source CSMs. The estimation of single
source CSM and its relation to the performance of GNSS positioning
techniques is, in turn, the main focus of this work.

Despite nearly optimal properties (in the asymptotic regime,
i.e., in the large sample regime [13] and/or high signal-to-noise
(SNR) regime [16]) of conditional maximum likelihood estimators
(CMLEs) on CSMs, these estimators suffer from a large compu-
tational cost, as they typically require solving a non-linear multi-
dimensional (possibly high-dimensional) optimization problem. To
circumvent this problem, several suboptimal techniques have been
introduced: i) substituting the multidimensional search with a sim-
pler one-dimension search, e.g., Capon or MUSIC methods [17], ii)
restricting to a single source search, e.g., CLEAN [18] or Alternating
Projection algorithms [19], or iii) exploiting the EXtended Invari-
ance Principle (EXIP) [20], which is based on a re-parametrization
of the problem that simplifies the ML criterion to be maximized.
In EXIP, the efficiency property of the original ML is maintained
(at least asymptotically) through a Weighted Least Square (WLS)
refinement step by using a matched weighting matrix. The EXIP
approach has been used in array [21] and/or radar [22] processing
applications, and more recently in the context of GNSS [23].

In GNSS, the EXIP applied to the ML direct position estima-
tion (DPE) [24, 25] leads to the widespread suboptimal two-step
positioning approach, with the aim of providing position, velocity
and time (PVT) estimates: i) first, the delay and Doppler for each
satellite-to-receiver link are estimated independently; and then ii)
delay and Doppler estimates are translated into the so-called pseu-
dorange and pseudorange rate observations, the latter fused to obtain
the user PVT thanks to a WLS minimization. In standard GNSS
receivers these two steps are typically done sequentially and the use
of pseudorange and pseudorange rate measurements is not directly
linked to the baseband signal processing. That is, delay/Doppler esti-
mation are an input to the WLS, and their corresponding covariances
set somehow empirically, sometimes based on the satellite elevation
or the estimated carrier-to-noise density (C'/Ny) at the receiver [26—
28]. The optimal estimation performance of the WLS stage can only
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Fig. 1: Overview of the contribution for the PVT (i.e., SPP and RTK) performance characterization. From the narrowband CSM, the compact
CRBs for time-delay, Doppler, phase and amplitude estimation are derived. From these signal model unknown parameters, GNSS code and
phase observations are obtained and fed to the PVT estimator. Then, the CRB and the ML estimates for SPP and RTK are discussed and the
overall positioning performance is addressed in direct relation to the sampling frequency and the SNR.

be assessed if the performance of the first synchronization stage is
optimally determined. It is thus of the outmost importance to char-
acterize asymptotic performance of such CMLE first step associated
to the single source CSM,

x=a(n)a+w, x,wGCN,a(n)e(CN,ae(C. (2a)

The CMLE’s asymptotic performance in the mean square error
(MSE) sense is accurately described by the Cramér-Rao bound
(CRB). So, it is not surprising that several CRB expressions for the
single source estimation problem have been derived, for finite [29—
33] or infinite [34] bandwidth signals, where the starting point is
often either the Slepian-Bangs fomulas [35] or general theoretical
CRB expressions for Gaussian observation models [15, 17, 36].
When the use of GNSS precise positioning approaches are
required (i.e., in intelligent transportation systems or safety-critical
applications [37]), such as the so-called Real-Time Kinematics
(RTK) [38, Ch. 26] or Precise Point Positioning (PPP) techniques
[38, Ch. 25], the solution involves exploiting, together with delay
and Doppler, the signal phase information as well. As a consequence,
with respect to (w.r.t.) the single source CSM in (2a), in addition to
7, precise positioning requires estimation of the signal amplitude
and phase, and thus the following reparametrization can be used

x=a(n)pd? +w, x,weC" a(m) ec, peRT. @b

To the best of our knowledge, no compact CRB formula for the joint
estimation of €' = (0;21,, Dy Py 17T), where a%, is the power of the
white noise vector w (such that w ~ CA/(0, O’%UI N)). seems to be
available in the open literature [13-15, 17, 29-36, 39-46]. Only by
assessing the performance of CMLE at the single source CSM, the
stochastic modeling of PVT observables can be determined.

1.2 Contributions

e The derivation of a new compact CRB for the general CSM in (2b)
is provided in Section 4. A noteworthy feature of the new compact
CRB is its ease-of-use for problems where the CRBs on 17 and «
(complex amplitude instead of amplitude and phase) have already
been computed.

e The particularization of the compact CRB for the general CSM
for the GNSS narrowband signal model is presented. Such CRB
constitutes the extension of the preliminary results in [47], where
a CRB for time-delay estimation under constant transmitter-to-
receiver propagation delay (i.e., no Doppler effect and static sce-
nario) was considered. In this contribution the more comprehensive
case of joint delay, Doppler, phase and amplitude estimation is con-
sidered, with the corresponding CRB being derived in Section 5.
Indeed the general problem is encountered in a multitude of appli-
cations, therefore a tractable CRB for this problem constitutes a key
tool of broad interest. The new CRB is obtained for the standard nar-
rowband signal model, where the Doppler effect on the band-limited
baseband signal is not considered and amounts to a frequency shift.
o The CRB is expressed in terms of the signal samples, making it
especially easy to use irrespective of the considered baseband signal
such that the actual sample values are used.

e Leveraging recent results on the CRB for a mixture of real-
and integer-valued parameter vectors [48], summarized in Section
6 for completeness, we exploit both CRBs to properly character-
ize the ultimate GNSS SPP and RTK performance. To the best of
our knowledge this is the first time these positioning techniques
are theoretically characterized from the baseband signal model in
terms of the CRB and CMLE. Important findings are i) the achiev-
able SPP performance with large GNSS bandwidth signals, and the
corresponding receiver operation point which allows to reach the
PVT asymptotic behavior, and ii) the impact of such GNSS signals
in the RTK asymptotic behavior and the CMLE threshold region.
Pictorial support for the narrowband CSM to PVT performance
characterization is provided in Fig. 1.

1.3 Notation and Organization

The notation convention adopted is as follows: scalars, vectors and
matrices are represented, respectively, by italic, bold lowercase and
bold uppercase characters. The scalar/matrix/vector transpose and
conjugate transpose are indicated by the superscripts ()—r and ()H .
I is the identity matrix. [A B] and [f] denote the matrix result-
ing from the horizontal and the vertical concatenation of A and B,
respectively. Re(+) and Im(+) refer to the real and imaginary part.
|| - || describes an Euclidean norm and the norm w.r.t. Ais || - ||o =
(-)TA_l( -). tr(-) represents the trace operator and diag(-) refers to
a diagonal matrix whose entries are given by (-).

The article is organized as follows. The narrowband signal model
is detailed in Section 2, and both SPP and RTK are introduced in
Section 3. The new CRB for the generic CSM is given in Section 4.
The CRB for the joint delay, Doppler, phase and amplitude estima-
tion for narrowband signals is derived in Section 5. The main results
for the mixed real-integer parameters CRB [48] are summarized in
Section 6. Finally, a complete discussion on the GNSS SPP and RTK
performance is given in Section 7. Conclusion and final remarks are
drawn in Section 8.

2 Standard Narrowband Signal Model

Given a generic band-limited signal ¢ (¢) with bandwidth B (for
instance, it can represent the so-called Pseudo-Random Noise (PRN)
code in the GNSS terminology), it can be expressed in time and
frequency as

c(t) = Y02y, ¢ (nTs) sinc (wFy (t — nTy)) =

c(f)= (Ts o2, € (nTy) (fszmT’) s 5 (), Ga

where Fs > B, ¢ (nT%s) are the samples of ¢ (¢), N1, N2 € Z, N1 <
Ny and = refers to the time-frequency pair. We consider the trans-
mission of this band-limited signal c¢(t) over a carrier frequency
Je (such that A¢ = ¢/ f¢, with ¢ the speed of light in vacuum),
from a transmitter T to a receiver R. Both transmitter and receiver
are in uniform linear motion: their respective positions evolve as
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pr(t) = pr + vrtand pr(t) = pr + VRt, where p and v repre-
sent the corresponding position and velocity vectors. In this context,
we tackle the case where the propagation delay ¢ (¢) due to the rel-
ative radial movement between T and R can be approximated, during
the observation time, by a first order distance-velocity model

Iprr ) = P (t—70 () = PR (D]l = cTo () =~ d + vt
d v

T=2b=-, (3b)
c

= 70 (t) ~ 1+, .

where d is the T-to-R relative radial distance, v is the T-to-R relative
radial velocity, and b is a delay drift related to the Doppler effect.

This so-called relative uniform radial movement is character-
ized by the time-delay (7) due to the propagation path and
the dilation (1 —b) induced by the Doppler effect. Under the
narrowband hypothesis, i.e., B < fc, the Doppler effect on the
band-limited baseband signal ¢ (¢¥) may be considered negligible:
c((L=0)(t—7)) =~ c(t— 7). In this case, for an ideal transmit-
ter, propagation channel and receiver, the signal at the output of the
receiver’s Hilbert filter (I/Q demodulation, bandwidth F) is well
approximated as [29, (2.1)]1[33, (3)]:

w(t) 2w (tim) =ac(t—r)e 7T Lw(), (3¢)
2
_ 2 _ _ %w b Es
Ry (1) = oysine (nFsT) = Ry (f) = Fs,fe[ 5 2}

where we = 27 fe, nT = (1,b), and « is a complex amplitude
which includes all the transmission budget terms. The Fourier pair
Ry (1) = Ruw (f) is the model for the correlation function and the
power spectrum density of white noise over the band Fs. If we
consider the acquisition of N’ = N5 — Nj + 1 (Ny < Ny, N} >
No) samples at Ts = 1/F, then the discrete vector signal model is
given by (2a), or equivalently (2b), with

x:a(n)pej(erw,peRJr,0§<p§27'r, (3d)
x' = (..., a(n'Ts),..),
al () = (..., c(n'Ts — ) It Tomm)

w' = (.., wn'Ts),...),

for N| <n' <N} (dimension N’). We also define c¢' £
(...,e(nTs),...), for Ny <n < Na (dimension N). Notice that
c(t) can be directly a PRN code with a Binary Phase Shift Keying
(BPSK) modulation where there is no subcarrier, as in the case of
the GPS L1 C/A signal, or a subcarrier modulated PRN, i.e., using
a Binary Offset Carrier (BOC) [49] type modulation such in the
modernized GPS L1C or Galileo E1 Open Service signals. The sub-
carrier has a direct impact on the correlation function, therefore on
the estimation performance. On top of that, the signal may have data
bits or not, depending if it belongs to a data component or a pilot
component.

3 GNSS SPP/RTK Problem Formulation

3.1 GNSS Baseband Signal Processing

As already stated, using the EXIP principle within the ML DPE [24]
leads to the standard GNSS two-step positioning approach [23]. The

first step relies on the CMLEs of delay, Doppler and phase for each
individual satellite, which are expressed as

2

} ; (42)

P —u{ (2 @am) A" @xp. @

(" matm) o (m)x

7] = arg max {
n

Notice that the phase CMLE is given by the argument of the cross-
ambiguity function evaluated at the delay and Doppler CMLE:s.
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Then, if the delay-Doppler CMLE reached its asymptotic perfor-
mance then so does the phase estimate.

3.2 GNSS Code and Phase Observables

From the delay and phase CMLEs introduced in Section 3.1, together
with the navigation data demodulation, one constructs the so-called
code and phase observables. More precisely, we are interested in the
pseudorange p; and phase ®; observables, which for the i-th satellite
are modeled as

0; = i = |lp1; — PRI + ¢ (6lr — ;)
trop

+ Ot + et P + ey, (%)
~ Ae ~
D, = ﬁcpi = |lp; — PrI| + c(tr — 0t;)

— oo 4 C&Emp + AN + € 4, (6)

where [|pr, — prll = V(zi — 2r)? + (yi — yr)? + (2: — 2r)?
is the geometrical distance between the receiver and the ¢-th satellite;
p£ = [zR, YR, zr) and p}i = [x4,Y;, z;] are the position coordi-
nates of the receiver and the i-th satellite, respectively; the R-to-T

unitary line-of-sight vector is u;(pg) = %; 8ty and Ot;
i tipno
K3

are the receiver and satellite clock offsets w.r.t. the GNSS time. §
and 5t;mp are the ionospheric and tropospheric delays, respectively.
Since in the asympotic region, i.e., at high SNR, the CMLE becomes
unbiased, efficient and Gaussian distributed [16], €, ; and €g ; are
zero-mean white Gaussian noise terms. A¢ is the carrier wavelength
and N; is an ambiguous term related to the (unknown) number of
phase cycles. The latter has a fractional part B; which depends on
the initial phase of the i-th satellite clock, a fractional part 5;- due to
initial phase at the receiver, and an integer part Ny, ; which is related
to the satellite to receiver distance, then N; = B; + By + Nipt.s-
Notice that the variance of €, ; and € ; is driven by the performance
of 17 and $(7), respectively.

3.3 GNSS Code-based SPP PVT

Let us consider M satellites being tracked, then the set of M
pseudoranges is y;)r = [01, ..., 0p]- The unknown parameters are
gathered in vectory | = [p}, ¢t,], which includes the 3D receiver
position and receiver clock offset. From ¢, ; we define the complete
noise term as n;)r = [eo,15---€p,M ], With covariance Cn,o. The
nonlinear observation model is then expressed as yo, = h (7y) + n,.
The standard way to solve this problem is to consider an initial
position p0 (i.e., typically equal to 0) and then linearize the obser-
vation function around this point, ||pr, — pr|| = ||pr, — P°|| —
ui(po)ép, with §p = pr — p’. Additionally, from the navigation
message we have (an estimate of) dt;, §/1°™ and 4t} P, then we can
build a new observation vector, y,, whose elements are corrected
accordingly. For instance, the i-th element is modeled as

Ui = 0 + ety — ot — coti™ — |lpr, — P, (Ta)

for 1 < ¢ < M. Therefore, the nonlinear measurement function is
approximated by the following linearized measurement matrix

—uf (p°) 1
Hp")=| aE (70)
—uy(p?) 1
The observation model is approximated as y, ~ H(p®)é + n,
with § = [6; c6tr] ", for which the WLS solution is
S . > /.0
Bwrs = argmin{ |y, ~ H(p")5] )

- (AT EOWARY) AT )Wy, (o



which can be easily reformulated as an iterative WLS (i.e., iterate
until the solution between two consecutive iterations - that is, j and
j§ + 1 -is smaller than a predefined threshold ¢, ||p/ T —
The weighting matrix W is related to the measurement €rToT. If
errors among measurements are uncorrelated W is diagonal. Con-
sidering that the corrections obtained from the navigation message
are perfect, then the WLS is the best linear unbiased estimator
(BLUE) it W = C_,Q

3.4  GNSS Code/Phase-based RTK Positioning

RTK is a differential positioning approach for which the location
of the receiver of interest is referred to that of a nearby base sta-
tion. Due to the proximity between the target and base receivers,
these are influenced by the same propagation errors. Thus, code and
carrier double-differencing (i.e., subtracting the measurements from
the rover receiver w.r.t. the base station and a pivot satellite) leads
to the elimination of nuisance parameters (e.g., atmospheric delays,
clock and instrumental errors) and phase observations influenced by
an integer number of ambiguities. The problem of mixed integer and
real parameter estimation has been extensively studied within the
GNSS community [50-52] and its resolution typically combines a
WLS and an Integer LS (ILS).

Let us consider M + 1 satellites being tracked simultaneously at
the base and rover receivers. Subscripts 0 and superscript B are used
to refer to the pivot satellite and the base station, respectively. Super-
script R refers to quantities from the rover receiver. Code and carrier
double differences are built as follows

~R,B ~ ~. ~ ~
org” =of —of — (of —2b) (82)
SIP =B 3P - (FISEF - cfn?) : (8b)

and the vectors stacking the M double-difference code and car-

rier observations are defined as yg = [@fOB ,...,@f/lﬁ] and
yg = d)? OB Y CDARI 0] , respectively. Under the assumption that

the unitary steermg vector to the satellites is shared across the
base and rover receivers, the RTK observation model is generally
presented in the following linearized form

_ _ |ve _|b
O, T
T

—(u1(pr) —uo(pB))

B A
D_[B 0}73— : § A=A,
—(up(pB) — uo(pPB))
(9b)
with the noise terms
C C
nCD-,Q = |:?lqo):| ) Cn = |:C;]|_:<1;1 S‘Zane ) (9C)
14 yilo e
2
0'{(1)70}0 0 -
Cn{q,,g) - [_11\/1,1 I] . [_1M71 I]
2
0 9{®,0}m
(9d)

where z in (9a) is the set of unknown parameters constituted by
the baseline vector between rover and base station, b = prp — pp,
and the vector of double difference integer ambiguities a. Notice
that the contribution of ambiguity fractional parts B; and B, in (6)
disappears due to double-differencing. The covariance matrix Cpn
comprises the covariance matrices of the double difference phase
and code observations, as well as the cross-correlations between
them. The individual variances of the phase and carrier observations

a%q, for e =0,..., M, are conditioned to the signal used and
can be accurately derlved from the CRB in Section 5.

RTK positioning can be cast as a minimization problem over
mixed integer-real parameters, whose argument is the integer double
difference ambiguities a and the baseline vector b, as

~ 2
b
b ’y -D { } (10)
cR® a
M

~| = arg min
(2] = arg min
aczZ

Cn

z

A closed-form solution to (10) is not known, due to the integer
nature of the ambiguities. Instead, a three-step decomposition of the
problem is typically considered [50], and the resulting minimization
problems are sequentially resolved as [53]

2 —1 112
min |y — D [b} zHy—D {t_)] (11a)
bei’ alllc, allle,
aczM
. = 2
4+ min ||a—a| & 11b
min & - a2, (11b)
T 2
+I§IEI}R?3 Hb|a— bHCB|a , (11¢)

where the first term (11a) corresponds to the WLS solution where
the ambiguities are treated as real numbers (mStead of integer quan-
tities). The output of this estimate z' = [b',a ] is referred to as
float solution and its associated covariance matrix is

_ [ Cg CE,:‘;}

The second term (11b) in the decomposition corresponds to the ILS,
for which an integer solution a for the ambiguities a is found. A
profound discussion on estimators for integer estimation problems
can be found in [38, Ch. 23] and therein. Finally, the third term (11c)
is the fix solution, consisting on enhancing the localization estimates
upon the estimated integer ambiguities, resolved applying a WLS
adjustment

b=b-Cp,C,' (a—a). (12)

The improvement in the positioning accuracy is due to constrain-
ing the real ambiguities to integer values. An important remark is
that the fixed solution will be biased whenever the estimated integer
ambiguities do not match the true ones. The precision of the solution
improves only when the correct ambiguities are correctly found [54].

4 A Compact CRB for the Single Source CSM

First, we provide new results on the CRB for the general CSM in
(2b), which can be reparameterized as

x=a'()p+n a (O)=ame®. 6" =(pn"). (3

and we recall that €' = (a%,p,ga,n—r) is to be estimated. The
corresponding CRB for the estimation of € is given by*

2

)2
CRB, = — 2 (142)
2l (n)|?
.
o] o
ZRC{aH (n) 2tn >}CRB Re {a” ) ;E’ﬁ}

Fp

)

a (m)]*

*Let S = span (A), with A a matrix, be the linear span of the set of its
column vectors, S+ the orthogonal complement of the subspace S, TIp =
A (AEA) AH the orthogonal projection over S, and TIx =1 —TI4.

IET Research Journals, pp. 1-12
© The Institution of Engineering and Technology 2020



1 2
CRBy; = ~ (a,%) , (14b)
_ [ CRrB, CRB,,
CRBy — [ CRB,, CRB, |’ (14o)

where the different terms in CRBg are computed as

2 . H p -1
o da(n) 1 Oa(n)

CRB,;, = #Re{( T ) |1 By o (14

2

o 1
CRBy, = 2% —— (14e)
7207 Ja(n)?
.
. Im {aH (m) %} CRByIm {aH (m) 8;;;2)
a (m)||* ’
.
tm {a' (n) S}
CRB,,, = CRBy 5 (14f)
lla (n)]]

Proof: see Appendix 10.

Surprisingly, to the best of our knowledge, the compact CRB for-
mulas (14a)-(14f) for the joint estimation of el = a%, P, P, nT
do not seem to have been released in the open literature. A
noteworthy feature of this compact CRB is its ease-of-use for
problems where the CRBs on m and « (the complex ampli-
tude instead of amplitude and phase) have already been com-
puted. Indeed, since all (m) %ﬁ naturally appears to compute
o

%l Hi‘(n) a(;;ﬂ) in (14d), the CRB for these problems can
be readily updated in order to incorporate (14e)-(14a). A use case is
shown in Appendix 10.

5 Narrowband Signal Model Delay, Doppler,
Phase and Amplitude Estimation CRB

The SNR at the output of the CMLE is defined as

o) B la)? cfe - cle

SNRout =

2 - 2 ’ -~ 1
(#) o "

and using the results in Section 4, the CRB for the estimation of

e = (U%,p, v, nT) considering the model in (3d) is

1 -1
CRB, = ——A 15
T 2SNRoye " (152)
2
(A _ 2 cHVci cAc
ML= S | TeHe clHe
2
(Ag] _w_?: cHch_ cTDc
ni2,2 = F2 clHe cHe
H H H
c'DAc c¢"Dcc’Ac
[An]m:[An]Z,l:“JCIm{ cHe B cHe cHe }
T
- L Folm { e ) — b
¥ 7 2SNRoy %j%li—c
H
Fotm { e} — b
x CRBy o, " De (15b)
F, clic
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FsIm { CHAC} — bwe

CRB,, = CRB, Lele) . (150)
T(: cHc
1
R clAc T R cAc
+p°F2 e{—ﬂc c } CRB, e{ e } :
0 0
2
CRB,> = % (ai) , (15¢)

with D, A and V defined as

D =diag (N1, N1+ 1,..., No—1, Na]),  (l6a)

Y _plerl 2
T R (16b)
n =n: i
, (el
(A)nnz' - n, o 0 (n—n/ s (16c¢)
n=n:

Proof: see Appendix 11.

6 CRB for the CSM with a Mixture of Real- and
Integer-valued Parameter Vectors

In this Section we summarize the main results in [48] for the mixed
real-integer parameters CRB in the linear regression problem, that is,
the Gaussian CSM. These results are fundamental to characterize the
second step in the GNSS RTK processing. Let’s consider again the

Gaussian linear observation model (9a), y ~ N (Dz, Cn), where
b e R aczM, K,+ M = K. The CRB in this case is

CRB,, (ZO) = A(z (z0> F (zz))l Ag (zo) , (17a)
F (ZO) - ;(zzo) MS,, (z“) ’
Az (zo) =i ...

with iy, is the kth column of the identity matrix I, and z° a selected
value of the parameter vector z. The terms of the CRB are given by

Fp, (zo) = [ g ]Tcgl { g ] , (17b)

H (zo) = [BT BT] Ca'Dlig, i1 — ki1 .-

i, iK,+1 —iK,+1 - ik — ixl,

ig — iK] s
(17c)
MS,, (ZO) ,forl1<i,j<2M = [MSa|z (ZO)] -
2,7
_ e(z()_zf,_zy)TDTC;lDz()+(z'i’)TDTC;1D(zJ) -1, (17d)

where z! = 20 + (_1)l_1iK,,+L%J’l = {i,j}.

It is worth noting that relaxing the condition on the integer-valued
part of the parameters’ vector, and assuming that both parameters
are real-valued, b € R¥ boae€ R™M | then the standard CRB (.e.,
so-called CRB¢, in the following Section 7) is given by the inverse
of the following FIM,

F,, (zo) -D'C;'D, (18)

which using the appropriate matrices is the SPP second step CRB.



Furthermore, since a and b (i.e., see (12)) are uniformly unbi-
ased estimates of a and b [38, Ch. 23], CRBZ|z is a relevant lower

bound for the vector of estimates # | = BT, sl

regarded as the parameter vector of interest and a a so-called nui-
sance parameter vector. Since it is well known that adding unknown
parameters leads to an equal or higher CRB, then [48]

), where b can be

C; > CRBy,, (zo) > CRBy, (bo) =Fy (zo) , (192)

where CB denotes the covariance matrix of b. In addition, from [38,
Ch. 23], asymptotically at high SNR, i.e., as ¢r (Cn) tends to 0,

. =1 /(0
i G =T (=) (190)

which proves that b is asymptotically efficient. Since the conver-
gence to CRBy,y, is the desired behavior of the fixed-solution b,
it is then of great importance, from an operational point of view, to
assess the SNR threshold where the total MSE, i.c., tr (CB)’ departs

from tr (Fl:|1z (zo) ), so-called CRB ¢y /integer in the following.

7 Simulation Results and Discussion

This section addresses the positioning performance of SPP and RTK
in direct relation to the GNSS receiver effectiveness at estimating
the unknown parameters of the GNSS narrowband signal. Thus, the
experimentation comprises two elements: i) the CRB and associated
CMLE for the unknown delay and phase signal parameters, which in
turn determines the noise levels on the code and carrier pseudorange
observations; ii) the CRB and MLE for SPP and RTK positioning
techniques, given the previously assesed performance of the receiver
at the narrowband signal. For such purpose a variety of GNSS signals
are studied, considering different sampling frequencies and receiver
operating points. Notice that the results in this Section are given w.r.t.
the SNRout, that is, the SNR at the output of the CMLE matched
filter, which is linked to the C'/Ny (i.e., a typical GNSS operation
point indicator) as

Fsa?cfe C
SNRoyt = ———5— = ~

3 TprNLe; (20)
o 0

where Tprn is the single code duration and L. is the number

of codes, therefore, 17 = IprN X Lc is the coherent integration

time. The color/symbol notation followed throghout the section is

summarized in Fig. 2.

GPS C/A F, = 1 MHz
GPS C/A F, =10 MHz e RTK /CRByoal

GPS C/A Fy =24 MHz __A-— RTK CRBreal/integer
GPS L5I F, = 10 MHz RMSE 7

GPS L5I F, = 30 MHz RMSE

Galileo E5 F, = 60 MHz — P ¥

- & -7 VCRB —4¢— RMSE SPP
- v - ¢ VCRB —#— RMSE RTKjoa¢

- © —=SPP VCRB —6— RMSE RTKgxed

Fig. 2: Signals, CRBs and CMLEs colors and symbols.

7.1  Some Representative GNSS Signals Characteristics

In this contribution we are interested in the possible gain provided
by fast codes, i.e., large bandwidths or equivalently narrow corre-
lation functions. For that reason, GPS L1C, GPS L2, Galileo E1
Open Service or Galileo E6 signals are not considered. The GPS
L1 C/A signal is considered as the benchmark. GPS L5 and Galileo
ES are representative large bandwidth signals for both systems. A
brief summary of the signals’ characteristics follows:

e GPS L1 C/A signal: the L1 coarse acquisition (C/A) code is the
legacy GPS signal, with a navigation message at 50 bits/s, a PRN
Gold sequence of 1023 chips with Tpry = 1 ms, that is, a chip rate
of 1.023 MHz, transmitted at f. = 1575.42MHz and which uses a
BPSK subcarrier modulation (i.e. BPSK(1)) [55].

e GPS L5: the L5 signal, transmitted at f. = 1176.45 MHz uses a
BPSK(10) modulation, that is, a chip rate 10 times faster than the L1
C/A signal, 10.23 MHz. The data component (i.e., L5-I) transmits a
navigation message at 100 bits/s [56].

e Galileo ES signal: this signal has four signal components (i.e.,
E5A-1, ESA-Q, E5B-1 and ESB-Q, I for in-phase data components
and Q for quadrature pilot components, each one BPSK(10) modu-
lated) and is allocated in two different frequency sub-bands, denoted
as ESA (f. = 1176.45 MHz) and ESB (f. = 1207.14 MHz). The
E5A-I and E5SB-I data components transmit navigation messages
at 50 bit/s and 250 bits/s, and their PRNs last 20 ms and 4 ms,
respectively. The complete Galileo ES signal is constructed as an
AItBOC(15,10) modulated signal, i.e., the combination of the four
BPSK(10) components [57].

A summary of the different GNSS signals’ main characteristics is
given in Table 1. The autocorrelation function (ACF) for the different
signals in Table 1 is shown in Fig. 3, where the impact of the large
signal bandwidth can be observed as a narrower peak.

Table1 GPS and Galileo signals characteristics.
ACF peak refers to the first zero-crossing of the ACF, Tpgy = 1 ms.

Signal Modulation Tiie  ACF Peak
GPSLIC/A  BPSK(1)  20ms =1.023us
GPS L5-1 BPSK(10) 10ms +0.1023us
Galileo E5 AItBOC(15,10) 4ms =£0.0174us
1
05
3
3 0
1S
<
050 —GPSC/A |
—GPS L5l
—Galileo E5
—(-)?2046 ‘ -0.1‘023 ‘ 6 ‘ 0.1623 ‘ 0.2046

time [18]

Fig. 3: GPS L1 C/A, GPS L5-1 and Galileo E5 ACFs.

7.2 First Step: Delay and Phase CRB/CMLE Results

7.2.1  Delay Estimation:

The main time-delay CRB and CMLE results for the different
signals considered in this article (see Table 1) are summarized in
Fig. 4. First, notice that the CMLE asymptotic region threshold
(i.e., the operation point where the MLE starts to rapidly deviate
from the CRB) is around SNRout = 15 dB. From (20), taking into
account that TprN = 1 ms for all the signals considered, this thresh-
old corresponds to a C'/Ng = 45 dB-Hz using 1 code (I7 = 1 ms),
C /Ny = 39 dB-Hz for 4 coherently integrated codes (17 = 4 ms),
C/Ny = 35 dB-Hz with 10 coherently integrated codes (17 = 10
ms) and C'/Ny = 32 dB-Hz for the L1 C/A Ty limit of 20 codes
(It = 20 ms).

Let’s first compare the time-delay estimation results for the GPS
L1 C/A signal considering different Fs = 1,10 and 24 MHz, the
latter being the full signal bandwidth. For a receiver operation point
SNRou = 25 dB, which for a nominal C'/Ng = 45 dB-Hz corre-
sponds to a standard 17 = 10 ms. The time-delay standard deviation
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SNR_, (dB)

24 26

Fig. 4: Time-delay CRB and CMLE: GPS L1 C/A (Fs = 1, 10,24 MHz), GPS L5-1 (Fs = 10,30 MHz), and Galileo ES (Fs = 60 MHz).

is: 0,1 =6.8mfor Fs =1MHz, 0, 11 = 2.3 m for Fs =10
MHz and o, 1 = 1.5 m for Fy =24 MHz, which justifies the
interest of exploiting the full signal bandwidth. The drawback is
that the CMLE convergence to the CRB is slower w.r.t. the Fs = 1
MHz case (i.e., 15 < SNRoyt < 18 for Fs = 10 MHz and 15 <
SNRout < 22 for F's = 24 MHz), but in any case still having a lower
standard deviation w.r.t. lower bandwidths. Second, we can compare
these results with larger bandwidth GPS L5 and Galileo ES5 signals.
Taking as a reference the same receiver operation point SNRout = 25
dB (Fs in MHz), we obtain the following standard deviations:

Reference: 0+ 11 = 1.5 m (Fs = 24 MHz),
07,15 = 64 cm (Fs = 10 MHz),
07,5 =39 cm (Fs = 30 MHz),
or,E5 = 13 cm (Fs = 60 MHz).

These results clearly show the huge time-delay estimation perfor-
mance improvement that one can achieve using signals with a large
bandwidth, and particularly with AItBOC-type signals. For instance,
considering the Galileo E5 signal we gain a factor 11 and 3 in time-
delay standard deviation w.r.t. to the full bandwidth GPS L1 C/A and
L5 signals, respectively.

7.2.2  Phase Estimation:

Notice that the phase CRB in [m] is obtained as Ac/2m,/CRB.
We consider first the same value A\¢ = Ap; = 19.03 cm for all
signals, to understand the asymptotic behavior of the different
phase CMLEs. The phase standard deviation for C/Ny = 45
dB-Hz and different SNRow = {15,18,21,25,28} dB are o, =
{3.8,2.7,1.9,1.2,0.85} mm, which match the RTK literature where
the standard deviation of phase observables is typically in the range
of [1 — 5] mm [58, 59]. It is remarkable that the phase estimation
CRB reads CRB, ~ m (i.e., equality for real signals), which
implies that it does not depend on the broadcast signal but on A¢
and the receiver operation point SNRout, as opposite to the delay
estimation. Therefore using fast codes does not improve the phase
estimation w.r.t. the legacy GPS L1 C/A signal. In addition, from
(4b) we have that the phase CMLE is given by the argument of
the cross-ambiguity function evaluated at the delay and Doppler
CMLESs. Then, we can expect that if the latter converged to the
CRB (i.e., SNRoyt > threshold, around 15 dB, see Section 7.2.1)
the same applies to the phase estimate, which is confirmed by the
CMLE results in Figure 5. Regardless of A¢, all signals share the
same asymptotic behavior for the phase estimation, which is known
to drive the asymptotic RTK performance.
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Fig. 5: Phase CRB and CMLE with A\c = A1: GPS L1 C/A
(Fs = 1, 10,24 MHz), GPS L5-1 (Fis = 10,30 MHz), and Galileo
ES5 (Fs = 60 MHz).
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Fig. 6: Skyplot for the experimentation.

7.3 SPP and RTK Scenario Description

The performance characterization of SPP and RTK is based on snap-
shot of simulated GNSS measurements collected at San Fernando
(target receiver) and San Roque (base station for RTK) IGS sta-
tions on UTC time 04/03/2020 10:00:00. Considering an elevation
mask of five degrees, the resulting constellation was as depicted in
Fig. 6. To segregate the role of geometry and satellite availability
across GPS and Galileo from the performance of the studied signals,
this work considers the satellites from Fig. 6 as generic, common
to GPS and Galileo. Next, the SPP and RTK positioning techniques
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Fig. 7: SPP position CRB (dashed lines) and associated RMSE
(solid lines) versus SNR for GPS L1 C/A (Fs = 1,10,24 MHz),
GPS L5-1 (Fs = 10,30 MHz), and Galileo E5 (Fs = 60 MHz).

will be characterized from a twofold perspective: the estimation of
tight lower CRBs and the associated RMSE for the ML estimates
for both SPP and RTK positioning methods. The resulting RMSE
obtained in the following experiments are, for every signal tested,
product of 10" Monte Carlo runs.

7.4  Case I: SPP Performance Analysis

Before analyzing the GNSS RTK positioning and clearly see which
is the ultimate positioning gain with respect to standard GNSS SPP
PVT solutions, we analyze the latter considering the problem formu-
lation in Section 3.3. For this purpose we resort to the CRB derived
from (18) with the appropriate matrices D and Cn, that is, only
considering pseudoranges and not phase observables. Notice that
ionospheric, tropospheric and instrumental delays are disregarded in
the analysis, since it is of our interest to examine the influence of the
different signals, integration times and the receiver operation points
rather than the model mismatch of the different atmospheric models
typically applied. The CRB and CMLE results for the SPP position
computation, considering the different signals in Table 1, are shown
in Fig. 7. Again, considering a receiver operation point SNRout = 25
dB, we obtain the following positioning RMSE:

GPS L1 C/A Fs =1MHz - RMSE =103 m.
GPS L1 C/A Fs =10 MHz - RMSE =33 m.
GPS L1 C/A Fs = 24 MHz - RMSE =2.36 m.
GPSLS5 Fs =10 MHz-RMSE =1 m.

GPS LS Fs = 30 MHz - RMSE = 62.5 cm.
Galileo E5 Fs = 60 MHz - RMSE = 18.5 cm.

For code-based PVT solutions, analogously to the time-delay esti-
mation case in Section 7.2.1, it is clear that using large bandwidth
signals such as GPS L5 or Galileo E5 has a huge impact on the
achievable positioning precision.

7.5  Case ll: RTK Performance Analysis with A\c = A1

As done for the previous SPP case, we want to assess the ulti-
mate achievable performance of RTK positioning techniques and
the impact that different GNSS signals may have in such perfor-
mance. Although it is a common practice for RTK positioning to use
multi-constellation/multi-frequency combinations, we are interested
in observing the performance gain from every individual GNSS sig-
nal. In practice, the characteristics on base and rover receivers may
differ, presenting different operation points and/or integration times.
For the experimental case at hand, the two receivers are assumed to
present the same SNRqy and, therefore, the general stochastic model

in (9d) holds valid. First notice that the RTK float solution (i.e.,
related to the corresponding CRB,,)) refers to the real estimation
part in (11a), that is, disregarding the integer nature of ambiguities.
The RTK estimation process follows the three-step decomposition
described in (11), where the ILS is resolved based on the LAMBDA
method with shrinking search [60]. The RTK fixed solution (i.e.,
related to the corresponding CRB ¢y /ingeger) refers to the estimate of
the mixed real-integer LS in (11c), regardless of whether the ILS cor-
rectly computes the correct ambiguities. The position RMSE results
are summarized in Fig. 8. We can draw the following conclusions:

i) Notice that the RTKyeq solution using the GPS L1 C/A signal
with Fs = 1 MHz is the same as the RTKgy, solution, that is, the
ILS does not correctly fix the ambiguities and therefore the solu-
tion obtained is exploring all the ambiguities around the maximum
of the code ACF. Notice that higher SNRoy: values for the GPS
L1 C/A signal could be considered, which would involve extending
the integration time either coherently or non-coherently. The cur-
rent configuration with an integration of 7y = 20 ms, which is the
coherent integration limit, is not useful for RTK positioning.

ii) From the previous point, it is clear that if RTK has to be imple-
mented using GPS L1 C/A signals, a higher bandwidth must be
considered. For instance, the convergence of the RTKgxeq to the cor-
responding CRB ey /ingeger> using a GPS L1 C/A signal with Fs =
10 MHz, is given by SNRout = 26 dB, which for the maximum
coherent integration time 1’7 = 20 ms corresponds to a C'//Ny = 43
dB-Hz, which is a nominal value in clear sky conditions. Therefore,
a bandwidth around 10 MHz can be taken as a minimum for GPS L1
C/A-based RTK positioning under nominal propagation conditions
(i.e., this value matches standard GNSS receiver architectures which
typically operate in Fs € [8 — 12] MHz).

iii) For any GNSS signal, there exists a threshold receiver operation
point for which the RTKxeq rapidly converges to the RTKgqa solu-
tion. Indeed, once a certain noise level threshold is exceeded (i.e., a
delay/phase estimation precision), the use of ILS to fix the ambigu-
ities is not needed. Remarkably, this threshold does not depend on
the phase estimation precision but on the code-based delay estima-
tion precision. This is clear in Fig. 8 where we can see that using the
Galileo E5 signal we gain {10, 7, 3,2} dB on the SNRoy receiver
operation threshold point w.r.t. the GPS L1 C/A Fs = 10 MHz,
GPS L1 C/A Fs = 24 MHz, GPS L5-1 Fs = 10 MHz and GPS L5-1
Fs = 30 MHz, respectively. Therefore, this clearly justifies the use
of fast codes (i.e., both E5 and L5 signals) to provide an improved
operation range of RTK architectures.

iv) The SNRout = 16 dB RTK threshold for the Galileo E5 sig-
nal suggests the validity of this RTK solution in a wide range of
applications, i.e., in near-indoor weak signal environments.

v) To summarize, if a new GNSS signal was designed for precise
positioning, the recommendation is to use a carrier frequency as high
as possible and a signal modulation with the largest signal band-
width, the former driving the asymptotic RTK performance and the
latter the threshold region.

To complete the discussion, we show that considering the corre-
sponding A for the different signals does not change the asymptotic
behavior, therefore these conclusions are valid irrespective of the
considered signal.

7.6 Case Ill: RTK Performance with A1, A5 and Ags

7.6.1  Phase Estimation:

In practice we have different wavelengths for each signal: A;,; =
19.03 cm, Az5 = 25.48 cm and Ags = 25.15 cm. In this case, the
phase standard deviations are summarized in Table 2, and the cor-
responding phase RMSE is given in Fig. 9. The slightly different
carrier wavelength induce a slight performance loss using lower fre-
quencies, w.r.t. GPS C/A L1 which uses the higher frequency. This
will in turn have an impact on the final RTK performance.
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Fig. 8: RTK position CRBs and RMSE with the same A = \p,1, for GPS L1 C/A (Fs = 1, 10,24 MHz), GPS L5-1 (Fs = 10,30 MHz), and

Galileo E5 (Fs = 60 MHz)

Table 2 Phase Estimation Standard Deviation [mm] for different ...
SNRout in [dB], coherent integration time 7'y in [ms] and C /Ny = 45 [dB-Hz].

SNRout [dB] Ty [ms] Api,0p [mm]  Aps,00 [mm]  Ags, oy [mm]

15 1 3.8 5.1 5.0
18 2 2.7 3.6 3.6
21 4 1.9 2.6 2.5
25 10 1.2 1.6 1.6
28 20 0.85 1.1 1.1
-5 ; ;
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Fig. 9: Phase CRB and CMLE with the corresponding A7,1, Af,5 and
Ags: GPS L1 C/A (Fs = 1,10, 24 MHz), GPS L5-1 (Fl = 10, 30
MHz), and Galileo E5 (Fs = 60 MHz).

7.6.2  RTK Performance:

As expected, a slight difference in the phase estimation per-
formance, has a slight impact on the RTK solution, but what is
remarkable is that this does not change the asymptotic estimation
behavior. The results for different A are summarized in Fig. 10.
Notice that we preserve the same SNR threshold regions as in Fig.
8, and the same convergence to the RTKg,,; solutions, therefore the
previous conclusions are valid whatever the signal carrier frequency.

8 Conclusions

The main goal of this contribution was to characterize the SPP and
RTK estimation performance from the baseband signals. That is,
from time-delay and phase estimation, to the final position estimate.
Indeed, the input to the standard ML-type positioning solution is the
variance of the so-called pseudorange and phase observables which
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Fig. 10: Figure with different Ay,1, Ar5 and Ag5.

is in turn determined by the corresponding time-delay and phase
estimation precision. In that perspective, a new compact CRB was
derived for the joint time-delay, Doppler, phase and amplitude esti-
mation for the narrowband signal model. This CRB is a particular
case of a new compact CRB for the generic CSM also provided in
this article. A particularly interesting feature is that this new CRB
was expressed in terms of the signal samples, making it especially
easy to use irrespective of the considered baseband signal. In addi-
tion, joint time-delay, Doppler, phase and amplitude estimation using
narrowband signals is encountered in a multitude of applications,
therefore this tractable CRB constitutes a key tool of broad interest.

Considering the legacy GPS L1 C/A signal as a benchmark and
fast codes such as GPS LS5 and Galileo ES signals, it was shown the
impact that the GNSS signal has in the different receiver operation
steps, and the achievable estimation performance for: i) time-delay
estimation, ii) phase estimation, iii) SPP position estimation, and iv)
RTK position estimation. A fundamental point with any maximum
likelihood estimation procedure is the determination of the threshold
region, that is, the SNR value at the output of the matched filter for
which the estimator completely deviates from the CRB. It was found
that irrespective of the signal considered, the SNR threshold for both
time-delay and phase estimation is around 15 dB. This was also the
case for the SPP code-based position estimation, for which it was
shown that using a Galileo ES5 signal can provide a huge performance
gain, potentially reaching standard deviations below 20 cm.

For RTK positioning, the new CRB and the proposed analysis
provided even more interesting results. In fact, it was shown that the
SNR threshold region is driven by the time-delay precision and not



the phase one. Using fast codes we may have up to 10 dB of gain in
the threshold, which in turn implies the validity of such RTK solu-
tions in a wider range of applications. Also, notice that this threshold
can be used to determine for which operation regions it is worth to
exploit phase measurements, because above the threshold the RTK
fixed solution rapidly converges to the float (i.e., real) one. These
results hold whatever the signal carrier frequency. To summarize, if
a new GNSS signal was to be designed for precise positioning, the
recommendation would be to use a carrier frequency as high as pos-
sible and a signal modulation with the largest signal bandwidth, the
former driving the asymptotic RTK performance, and the latter the
threshold region.
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10 Proof of the Compact CRB Expression for the
Single Source CSM in Section 4

In the following: i) y = [Eﬁ Egﬂ ,Vy € CcN1XN2 and ii) for the

sake of simplicity we denote 2’ £ a’ (0), a = a (7). Then (13) can
be recast as

= (o7.p,0").

21
Since x ~ N (mx (€),Cx (€)), the Fisher information matrix
(FIM) is given by the Slepian-Bangs formula [15]

x=2a'(0)p+n, n~N0,o0.I2yn/2),€

)
(R = 2D ot (o 22219
s g (05t 0 25901 (0 2519

In (21), as mx (€) = a’ () p and Cx (€) = 2 /2I5 ., then
. -1

By resorting to the block matrix inversion lemma [61, p 309],
-1 _
{An A12} _ { C; ~A A120 }
A A Cc; 1A21A11 ;! ’
Ci=A11 — ApAL Ay, Co = Agy — Ay AT Ag,
Cr'= A + Al A12Cy Ay AT,

one obtains

o2 T -1
CRB,,:i( ! Hda,a> ,

.
2 o0

2 I\ T ’
o -1 Oa 1 Oa
CRBQ = ﬁ@e y @9 = <807) HgIaOT.

Moreover, since

A'B=Re{A} Re{B}+Im{A}' Im{B}
= Re {AHB}
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then

a7 da’ H b
2 SoT ( 0 Re{ _a} )
da’ 82_1’ ||a|| —JaH 8a
aeT 89T = Re Oa H 83 H 8a

JonT 2 Bnr
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and therefore
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that is, the expressions in (14c)-(14f). Last, to obtain (14a) consider
that
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As an example, we consider the well-known single tone (1)
estimation problem [39]:

a(n) = (1,e>™ .. N=INT la)|? = N,
wda(m) . dammoam) .
P= 22]:_01" = —N(]\;_ 1),
N (N —-1)(2N —1
0- ZN 1,2 ( ()5( )7
which yields
CRB, = 24 L = 6 1
n = 2p (271_)2 Q_PTZ) P N(N —1) (27r)
ol _ o2 aN-1
CRBy = o 5 = %% NI (222)
2

11 Proof of the CRB Expression for the
Narrowband Signal Model in Section 5

First notice that

CRB, = on o1
n 2/)2 n
dam\" 1 da(n)
P, = lim Re — II .
T (VENg) (o0, 0) {( an’ ) alm "o T }

The derivative of a (¢; ) w.r.t. the parameters of interest reads
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where @ = [Tt (1) ¢ (¢)* dt. and w1, w2, Wa 2, W3 3 € R.
From these results, we can write that ®y, is

Py = FsRe{QWQH _ w}

w1
r W3 3 — |w3| We Im {w w,ﬁ)ll% }
= I's
we Im {w — —zqul“‘ } w? (WQ 2 — ﬁ)

where from [47] we already have wy, w3 and W3 3,
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and the remaining terms are computed as
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Finally, the other terms in (15b)-(15d) are also computed from w
as follows:
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