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Abstract—In previous works, new families of Pseudo-Random
Noise (PRN) codes of length 1023 chips were proposed in order
to ease the acquisition engine. These studies analyzed several
metrics for code design in order to improve the acquisition but
no analysis was conducted on the estimation performance, which
in turn drives the final position, velocity and timing estimates. The
main goal of this contribution is to assess if these new PRN codes
designed to improve the acquisition engine lose in achievable
time-delay estimation performance with respect to the standard
GPS L1 C/A Gold codes. The analysis is performed by resorting
to a new compact closed-form Cramér-Rao bound expression for
time-delay estimation which only depends on the signal samples.
In addition, the corresponding time-delay maximum likelihood
estimate is also provided to assess the minimum signal-to-noise
ratio that allows to be in optimal receiver operation.

Index Terms—GNSS, time-delay estimation, band-limited sig-
nals, Cramér-Rao bound, signal acquistion.

I. INTRODUCTION

Designing new Global Navigation Satellite Systems (GNSS)
signals is always a trade-off between improving different
performance criteria. Position accuracy, receiver sensitivity
(acquisition, tracking or data demodulation thresholds) or the
time to first fix (TTFF) are examples of those GNSS receiver
design criteria. In previous works [1]–[3], it was shown that a
new acquisition signal could help to improve both acquisition
and sensitivity of a GNSS receiver. In those studies several
aspects were considered in order to improve the performance
of the acquisition stage such as designing new spreading
modulations [1], [2], or generating a new navigation message
structure [3]. Moreover, in [2] new families of Pseudo-Random
Noise (PRN) codes of length 1023 chips were proposed in
order to ease the acquisition engine. Those families were
shown to provide better performance in terms of different
acquisition criteria [4] w.r.t. GPS L1 C/A Gold codes [5].

On the other hand, in standard two-step GNSS receiver
architectures, the final position, velocity and timing (PVT)
estimation performance is directly linked to the corresponding
time-delay and Doppler estimation. The optimal estimation
performance of a locally unbiased estimator is given by the
Cramér-Rao bound (CRB) [6], which provides an accurate
lower bound on the mean square error (MSE) sense under
certain conditions (for instance, in the high signal-to-noise
ratio (SNR) regime). In this article, we aim to evaluate the
achievable time-delay estimation performance (i.e. assuming
no external errors such as atmospherics delays, orbital or

satellite clock errors, or environment-specific effects) of the
new PRN codes proposed to improve the acquisition engine,
and compare such results to the standard GPS L1 C/A Gold
codes used as a performance benchmark. To provide this
performance assessment we resort to a recently proposed time-
delay estimation compact-form CRB expression which only
depends on the signal samples [7]. This new CRB is computed
for the three new families of PRN codes of interest (balanced
Gold, large Kasami and random sequences) along with the
the GPS L1 C/A PRN family. Finally, in order to validate the
CRB and obtain the minimum SNR which allows an optimal
receiver operation point, we also provide the corresponding
time-delay maximum likelihood estimate (MLE), which is
known to be asymptotically efficient.

The article is organized as follows: Section II presents the
signal model, Section III explains how to implement the three
PRN families proposed in [2] to ease the acquisition engine,
Section IV introduces the time-delay CRB for band-limited
signals along with the MLE, and Section V summarizes the
results. Conclusion are drawn in Section VI.

II. SIGNAL MODEL

We consider the transmission of a band-limited GNSS
signal cptq (bandwidth B), so-called PRN code in the GNSS
terminology, over a carrier frequency fc (λc “ c

fc
), from a

transmitter (satellite) T at position pT ptq “ pT ` vT t to
a receiver R at position pRptq “ pR ` vRt. The complex
analytic signal at the output of the receiver’s antenna can be
written as xAptq “ αRcRptq`nAptq, with nAptq a zero-mean
white complex Gaussian noise, and where the gain αR de-
pends on the transmitted signal power, the transmitter/receiver
antenna gains and polarization vectors, and the radial distance
between T and R, pTR ptq [8], [9]. If this radial distance can
be approximated by a first order model,

}pTR ptq} fi }pR ptq ´ pT pt´ τ ptqq} “ cτ ptq » d` vt,

with τ ptq “ τ ` bt, τ “ d{c and b “ v{c. Using the standard
narrow-band assumption then

cR ptq “ c pt´ τq e´j2πfcτej2πfcp1´bqt, (1)

and the baseband output of the receiver’s Hilbert filter is

x ptq “ αc pt´ τq e´j2πfcbt ` n ptq , (2)

with nptq a complex white Gaussian noise within the filter
bandwidth with unknown variance σ2

n, and α “ αRe
´j2πfcτ .
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The discrete vector signal model is build from N “ N2 ´

N1 ` 1 samples at Ts “ 1
Fs

,

x “ αa pηq ` n, (3)

x “ px pN1Tsq , . . . , x pN2Tsqq
J,

n “ pn pN1Tsq , . . . , n pN2Tsqq
J,

c pτq “ pc pN1Ts ´ τq , . . . , c pN2Ts ´ τqq
J,

a pηq “ ppc pτqq1e
´j2πfcbN1Ts , . . . , pc pτqqNe

´j2πfcbN2TsqJ,

where η “ rτ, bsT , n „ CN
`

0, σ2
nIN

˘

. Since the trans-
mitter/receiver antenna gains and polarization vectors are in
general unknown, α is assumed to be an unknown complex pa-
rameter as well [9]–[13]. Thus, the unknown deterministic pa-
rameters [14] can be gathered in vector ε “ rσ2

n, τ, b, α, α
˚sT ,

where α˚ is the complex conjugate of α.

III. ACQUISITION CODE FAMILIES

In [2], three families of PRN sequences were proposed as
possible candidates for a new acquisition aiding signal. Those
sequences are of length 1023 chips since a short time to
acquire the signal is required in order to reduce the signal
acquisition time:
‚ PRN Gold family [15, Chapter 2],
‚ PRN large Kasami family [15, Chapter 2],
‚ PRN random sequence applying the method in [16].
Notice that the Gold family is already used in the design of

GNSS signals (i.e., GPS L1 C/A [5]). The other two families
are large Kasami codes and the methodology proposed in [16]
to generate efficient memory codes. The latter consist in max-
imizing a cost function under constraints in order to optimize
some properties or design criteria. In the sequel, we present the
theoretical background and practical implementation aspects
of these three families of codes.

A. Gold codes

Gold codes are one important class of periodic sequences
which provides reasonably large sets of codes with good
periodic cross-correlation and autocorrelation properties. Gold
codes have a code period of 2n ´ 1 chips and have N ` 2
codes in the set. These codes are constructed from selected m-
sequences [15, Chapter 2] and particularly by preferred pairs
of m-sequences [15, Chapter 2] of length N . The following
conditions are sufficient to construct a preferred pair, a and b,
of m-sequences of length N “ 2n ´ 1:
‚ n ‰ 0 mod 4 that is to say, n is odd or n “ 2 mod 4.
‚ b “ arqs, where q is odd and either has the value q “

2k ` 1 or q “ 22k ´ 2k ` 1.

‚ gcd pn, kq “

$

&

%

1 for n odd.

2 for n “ 2 mod 4.

Theorem 1: [15, Chapter 2, Theorem 2] Given a preferred
pair of m-sequences a and b of period N “ 2n´ 1 generated
by primitive binary polynomials f1pxq and f2pxq with no
common factor and where n ‰ 0 mod 4. The sequences
defined by Gpa, bq are called Gold codes, with

Gpa, bq “ ta, b, a` b, a`Tb, a`T 2b, . . . , a`TN´1bu, (4)

where T xa denotes the operator that produces the sequence
whose k-th element is given by ak`x. It should be noted that
Gold codes are generated via Linear Feedback Shift Registers
as their structure undertakes two binary polynomials [5].

A.1) Balanced Gold codes
A code with odd length is said to be balanced when the

number of “ones” exceeds the number of “zeros” by one.
This kind of codes have desirable spectral properties, however
not all Gold codes are balanced codes. In order to obtain a
family of balanced Gold codes, the following procedure must
be followed [15, Chapter 2]:

1) First select a preferred pair of m-sequences a and b of
length N “ 2n ´ 1.

2) The initial conditions for shift register 2 are obtained
by long division of the ratio gpxq

fpxq ,where fpxq is the
characteristic polynomial of sequence b and gpxq is
defined as: gpxq “ fpxq ` dxfpxq

dx .
3) The initial conditions for shift register 1 affects only the

first tap, which must be 0.
4) The set of Gold codes is formed by modulo-2 addition

of the two registers, 1 and 2.

A.2) Designing balanced Gold codes
A balanced Gold code is implemented as follows:
1) Select the first polynomial:

‚ f1pxq “ x10 ` x3 ` 1 Ñ 010000001001 Ñ 2011.
2) Select the second polynomial:

‚ k “ 2 Ñ q “ 2k ` 1 “ 5 Ñ gcdp10, 2q “ 2.
‚ Find in [17, Annex C], the decimation of m-

sequence for b “ ar5s.
‚ b “ ar5s Ñ f2pxq “ x10 ` x8 ` x3 ` x2 ` 1 Ñ

010100001101 Ñ 2415.
3) As we want balanced codes we have to obtain the

characteristic phase of the sequence b:
‚ gpxq “ fpxq ` dxfpxq

dx “ x3.
‚ Compute the long division:
x3

˘

x10 ` x8 ` x3 ` x2 ` 1“ x7 ` x5 ` 1.
4) Initial registers:

‚ Inita “ 1111111110.
‚ Initb “ 0010100001.

5) From sequences a and b we can obtain a balanced Gold
code family as given in equation (4).

B. Kasami codes

The large Kasami codes [15, Chapter 2], like the Gold
codes, are a set of periodic sequences with good correla-
tion properties. Large Kasami codes have a code period of
N “ 2n ´ 1 chips under the condition of mod pn, 4q “ 2.
Moreover the family size is equal to pN`2q

?
N ` 1. In order

to construct large Kasami codes, a small set of Kasami codes



[15, Chapter 2] is required. Small Kasami codes, as well as
No [18] and Bent [19] codes, have the most outperforming
correlation properties for a code length of 1023 chips. However
the family size is just

?
N ` 1 “ 32 codes, which may not

be large enough to cope with all the satellites in one GNSS
constellation. As in the case of Gold codes, large Kasami codes
are constructed from selected m-sequences and particularly by
a preferred pair of m-sequences of length N .

Theorem 2: [15, Chapter 2, Theorem 4], Let n be even
and let f1pxq denote a primitive binary polynomial of degree
n that generates the m-sequence a. Let b “ ar2pn{2q ` 1s
denote a m-sequence of period 2pn{2q ´ 1 generated by
the characteristic polynomial f2pxq of degree n{2, and let
f3pxq denote the polynomial of degree n that generates the
decimation sequence [15, Chapter 2] arqs. Then, the set
of sequences of period N generated by the characteristic
polynomial hpxq “ f1pxqf2pxqf3pxq is called the large set
of Kasami sequences and is denoted by KLpaq.

Note that for the specific code length N “ 1023, pn “ 10q,
b is the following decimation sequence:

b “ a
”

2pn{2q ` 1
ı

“ ar33s. (5)

The set of sequences defined by KLpaq is then the set of
Large Kasami sequences:

KLpaq “ Gpa, cq
ď

¨

˝

2pn{2q´1
ď

i“0

tT ib`Gpa, cqu

˛

‚. (6)

The family size is equal to pN`2q
?
N ` 1 “ 32800 codes.

We notice that not all the set of Large Kasami codes have the
balanced property [15, Chapter 2], therefore to generate the
code subset, we select those which have the balanced property
and outperform others in terms of auto/cross-correlation.

B.1) Designing large Kasami codes
The procedure to design large Kasami codes is as follows:

1) Select the first polynomial:
‚ f1pxq “ x10 ` x3 ` 1 Ñ 010000001001 Ñ 2011.

2) Select the second polynomial:
‚ k “ 2 Ñ q “ 2k ` 1 “ 5 Ñ gcdp10, 2q “ 2.
‚ Find in [17, Annex C], the decimation of m-

sequence for c “ ar5s.
‚ c “ ar5s Ñ f2pxq “ x10 ` x8 ` x3 ` x2 ` 1 Ñ

010100001101 Ñ 2415.
3) Select the third polynomial:

‚ b “ a
“

2pn{2q ` 1
‰

“ ar33s.
‚ Find in [17, Annex C], the decimation of m-

sequence for b “ ar33s.
‚ c “ ar33s Ñ f2pxq “ x5 ` x4 ` x3 ` x2 ` 1 Ñ

000000111101 Ñ 0075.
4) From sequences a, b and c we can obtain a Kasami code

family as given in equation (6).

C. Random sequences

A method to create a set of PRN sequences with good
correlation properties is provided in [16]. The method consists
in building an initial set of random bits pattern, where each bits
pattern represents a potential PRN sequence. Then, from the
initial set of codes, we apply an iterative algorithm where the
updated set of PRN sequences provide enhanced performance
compared to the initial set. Following this methodology, the
final goal consists in selecting an optimized final set of
PRN sequences. A cost function must be defined in order to
determine if the current iteration provides a PRN sequence
set which is better than the precedent one. Since a new
acquisition aiding signal is the design goal, a cost function
which penalizes unwanted correlation peaks (those which
increase the acquisition error probability) is hence proposed
[16]. Then, any correlation value which exceeds the Welch
bound [20] represents a system degradation. The cost function
used to generate the family of random sequences is,

Fi “

N´1
ÿ

τ“1,
ACF pτqąΦbound

pACF pτq ´ Φboundq
2

`
ÿ

j‰i

N´1
ÿ

τ“1,
CCF pτqąΦbound

pCCF pτq ´ Φboundq
2
, (7)

where ACF and CCF stand for autocorrelation and cross-
corrleation, respectively, and Φbound represents the Welch
bound, defined in (8). The Welch bound represents the theo-
retical minimum of the maximum value of the autocorrelation
and cross-correlation functions, given a subset of L sequences
of length N ,

Φbound “ N

c

L´ 1

NL´ 1
. (8)

Each algorithm iteration consist in two steps: a chip flip
within the PRN sequence and the cost function evaluation.
If the chip flip minimizes the cost function when compared
to the precedent iteration, the chip flip is accepted; otherwise
the chip flip is rejected. The flow diagram of the algorithm is
illustrated in Figure 1.

Fig. 1: Diagram flow for optimization of random sequence.

Finally, It is well known that both balanced and minimum
ACF side-lobe properties are desired spreading codes charac-
teristics. These properties can be set as initial requirements



for the initial set of codes. However, after flipping some of
the bits, those qualities may not be preserved. In order to
guarantee those desired properties, two pre-required conditions
[16] are imposed on the flipping bit step. The first one is
the balanced invariance condition [16] where bits are always
flipped in pairs, i.e. one bit with null value and one bit with
value 1 are flipped to ensure that the code remains balanced.
The second condition is to minimize the ACF side-lobe. This
property can be ensured by the following equation (9),

ak´1 ` ak`1 “ aj´1 ` aj`1, (9)

where ak and aj are the flipping bits.

IV. TIME-DELAY CRB FOR BAND-LIMITED SIGNALS AND
MAXIMUM LIKELIHOOD ESTIMATION

A. CRB for Time-delay Estimation

In a recent contribution [7] we derived a new compact
closed-form CRB for the time-delay estimation of a generic
band-limited signal, given by

Fτ |ε pεq “ 2SNRoutF
2
s

˜

cHVc

cHc
´

ˇ

ˇ

ˇ

ˇ

cHΛc

cHc

ˇ

ˇ

ˇ

ˇ

2
¸

“
real signal

2SNRoutF
2
s

ˆ

cHVc

cHc

˙

, (10)

where SNRout “
|α|2E
pσ2
n{Fsq

“
|α|2

σ2
n

cHc and E the energy of the
signal. Λ and V are defined as (for N1 ď n, n1 ď N2)

pVqn,n1 “

ˇ

ˇ

ˇ

ˇ

ˇ

n1 ‰ n : p´1q|
n´n1| 2

pn´n1q2

n1 “ n : π
2

3

(11a)

pΛqn,n1 “

ˇ

ˇ

ˇ

ˇ

ˇ

n1 ‰ n : p´1q|n´n
1|

pn´n1q

n1 “ n : 0
. (11b)

Notice that this CRB expression is especially easy to use
because it depends only on the signal samples, the PRN code
samples in our case.

B. Maximum Likelihood Time-delay Estimator

Considering the signal model (3), the time-delay MLE is
defined as1 [13]

τ̂ “ arg min
τ

!

xHΠK
cpτqx

)

“ arg max
τ

$

’

&

’

%

ˇ

ˇ

ˇ
c pτq

H
x
ˇ

ˇ

ˇ

2

c pτq
H

c pτq

,

/

.

/

-

“ arg max
τ

$

’

&

’

%

ˇ

ˇ

ˇ

ş`8

´8
c pt´ τq

˚
x ptq dt

ˇ

ˇ

ˇ

2

ş`8

´8
|c ptq|

2
dt

,

/

.

/

-

, (12)

which is useful to determine the value of SNRout (threshold)
which allows to reach the CRB, because it is known that such
estimator is asymptotically efficient (e.g., in the high SNR
regime) for the conditional signal model of interest [21] [22].

1Let S “ span pAq, with A a matrix, be the linear span of the set of its
column vectors, SK the orthogonal complement of the subspace S, ΠA “

A
`

AHA
˘

AH the orthogonal projection over S, and ΠK
A “ I´ΠA.

V. RESULTS

In this section, we assess the closed-form CRB in (10) for
four representative families of codes: i) the standard GPS L1
C/A PRN Gold family with codes of length 1023 chips, ii) a
family of balanced Gold codes of length 1023 chips (Section
III-A), iii) a family of large Kasami codes of length 1023
chips (Section III-B), and iv) a family of random sequences
of length 1023 chips generated by the algorithm described in
Section III-C. These signals use a binary phase-shift keying
(BPSK) waveform with a chip frequency rate of 1.023 MHz.
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Fig. 2: ACF for satellite with GPS L1 C/A codes 6, 7 and 8.
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Fig. 3: CRB for satellite with GPS L1 C/A codes 6, 7 and 8,
bandwidth equal to 1.023 MHz

In a first step, we aim to evaluate the CRB for the standard
GPS L1 C/A PRN Gold family. In [23], it was shown that
three different types of autocorrelation function (ACF) with
different main lobe behaviours exist in the GPS L1 C/A code
family. Those ACFs are illustrated in Fig. 2. Note from these
results that the main lobe of the ACF is wider or narrower
depending on the the correlation value on both sides of this
lobe. The CRB (10) associated with these three types of Gold



codes is shown in Fig. 3. As expected, narrower ACFs lead to
lower CRBs, thus to better time-delay estimation. Then, not
all the codes in a given family provide the same achievable
time-delay estimation performance. Now, considering the PRN
codes designed to improve the acquisition engine, [4] proposed
to select codes whose absolute correlation value on both sides
of the main lobe of the ACF was as low as possible (for
a length of 1023 i.e. ACF p1q “ ACF p´1q “ ´1). That
criteria was considered in [2] in order to design PRN codes
to improve the acquisition stage. Then, it is expected that for
these acquisition codes the time-delay CRB is equal to the
GPS L1 C/A code family CRB using PRNs with correlation
value on both sides of the main lobe equal to ´1.

The CRB and the corresponding MLE in (12) are computed
considering α “ p1` jq ¨

a

SNRin{2. The MLE is obtained
from 2000 Monte Carlo runs. These results are summarized
in Fig. 4, where both time-delay CRB and MLE obtained for
the standard GPS L1 C/A PRN Gold family are compared
to the three PRN families proposed to ease the acquisition
engine. Note that Fs “ 1.023 MHz and Fs “ 2.046 MHz
are used to compute both CRB and MLE. From these results
we can conclude that: i) the new families of acquisition codes
do not worsen the estimation capabilities w.r.t. the standard
GPS L1 C/A PRNs, because the CRB obtained is equivalent,
ii) the optimal receiver operation point (SNRout threshold) is
almost the same (i.e. small variations of 1 dB in the case
of Kasami codes). Consequently, we can state that the three
PRN families proposed to improve the acquisition performance
criteria do not penalize the time-delay estimation performance,
which is the main driver on the final PVT performance of the
receiver. Note also from results in Fig. 4 that the receiver
sampling frequency Fs has a direct impact in the final time-
delay estimation performance, because this determines the
signal bandwidth exploited. Then the higher the Fs is, the
better time-delay estimation is obtained, since more energy
of the signal is considered. Finally, we underline that the
MLE algorithm is efficient from SNRout “ 15 dB, which
corresponds to a carrier-to-noise density ratio C{N0 “ 45 dB-
Hz, since the PRN sequence last 1 ms. To be able to deal with
lower C{N0 we need longer integration times, i.e., TI “ 10
ms and SNRout “ 15 dB lead to C{N0 « 35 dB-Hz.

VI. CONCLUSIONS

In this article we provided the answer to a fundamental
question for new GNSS acquisition codes, generated to ease
the acquisition stage, regarding their achievable time-delay
estimation performance with respect to the standard GPS L1
C/A. In order to compare these families of codes a new com-
pact closed-form CRB expression for time-delay estimation
was used. Results show that the same performance is obtained
in terms of time-delay estimation independently of the selected
family of codes, which confirms that the new acquisition codes
do not worsen the final position, velocity and time estimates.
Moreover, time-delay MLE results were also provided in order
to determine the minimum SNR that allows to be in optimal
receiver operation.
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Fig. 4: CRB and MLE for GPS L1 C/A PRN codes, compared
to the CRB and MLE for balanced Gold PRN codes (top),
large Kasami PRN codes (middle) and Random PRN codes
(bottom), for two bandwidths 1.023 MHz and 2.046 MHz.
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