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ABSTRACT
This paper introduces a convolutional sparse model for anomaly de-
tection in mixed continuous and discrete data. This model, referred
to as C-ADDICT, builds upon the experiences of our previous AD-
DICT algorithm. It can handle discrete and continuous data jointly,
is intrinsically shift-invariant, and crucially, it encodes each input
signal (either continuous or discrete) from a joint activation and uni-
form combinations of filters, allowing the correlation across the in-
put signals to be captured. The performance of C-ADDICT, is evalu-
ated on a representative dataset composed of real spacecraft teleme-
tries with an available ground-truth, providing promising results.

Index Terms— Anomaly detection, convolutional sparse repre-
sentation, dictionary learning, shift-invariant.

1. INTRODUCTION

Anomaly detection (AD) is a wide area of research given its di-
verse applications [1, 2]. Motivated by the success of sparse coding
(SC) and convolutional sparse coding (CSC) in many fields [3, 4, 5],
these techniques have been applied to AD in images [6, 7, 8], videos
[9, 10] or univariate and multivariate time-series [7, 11, 12, 13]. In
this context, a univariate anomaly can be defined as an abnormal
behaviour (never seen before) of a specific time-series, whereas a
multivariate anomaly corresponds to a change in the relationships
between several time-series. Note that a multivariate anomaly can-
not be detected by the observation of a single time-series.

Most AD methods based on SC or CSC consider a semi-
supervised learning and build the dictionary from training data
composed of normal patterns (i.e., data without anomalies). New
data can then be decomposed into the dictionary allowing poten-
tial anomalies to be detected by analyzing the sparse codes of this
decomposition [8] or its residuals [7, 13]. In particular, for AD in
mixed continuous and discrete time-series, several algorithms have
been previously proposed (see Section 4 and [14, 15, 16, 17, 12]).
For instance, we highlight that, in our previous work, the Anomaly
Detection strategy based on a sparse decomposition on a DICTionary
(ADDICT) provided state-of-the-art results to detect anomalies in
mixed telemetry [13]. The ADDICT algorithm was able to capture
univariate and multivariate anomalies by analyzing the residuals
from the sparse coding phase and also benefited from analyzing
shifted versions of the input data.

This paper introduces a new convolutional sparse model and
its estimation algorithm referred to as convolutional ADDICT (C-
ADDICT, see Section 3). The main motivation for C-ADDICT is to
integrate in a single model all the ADDICT’s goodness (see Section
3.1 for differences between the two models), resulting in an intrinsi-
cally shift-invariant algorithm that encodes each input signal (either
continuous or discrete) from a joint activation and uniform combi-
nations of filters, capturing correlations across input signals.

2. CSC AND DICTIONARY LEARNING
Convolutional sparse representations [18], also referred to as CSC,
approximate a 1D or 2D signal s as a sum of convolutions between
filters dm and coefficient maps xm. The most common formula-
tion of this convolutional model is an extension of the basis pursuit
denoising (BPDN) problem

arg min
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2

+ λ
∑
m

‖xm‖1 (1)

where * denotes convolution, the regularization parameter λ controls
the sparsity induced by the `1-norm and dm is a set of pre-trained
filters. The corresponding convolutional dictionary learning (CDL)
problem is

arg min
{xm,k}{dm}
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dm∗xm,k − sk

∥∥∥2
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+ λ
∑
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∥∥∥xm,k∥∥∥
1

s.t. ‖dm‖2 ≤ 1 ∀m (2)

where the `2-norm constraint on the filters dm avoids scaling ambi-
guities between the filters and the coefficient maps. The CDL prob-
lem (2) is non-convex jointly with respect to (dm,xm,k). How-
ever, it can be recast as an alternating optimization of two convex
problems. Due to the high complexity associated with the convolu-
tional operators in the data fidelity terms of (1)-(2), many algorithms
have been proposed to solve the problem in the frequency domain
[19, 20, 21, 22, 23]. For instance, these algorithms use the alternat-
ing direction methods of multipliers (ADMM) [24] and an acceler-
ated gradient descent (APG) [25] as main frameworks.

3. DETECTING ANOMALIES USING CSC
This section describes the proposed C-ADDICT algorithm, which is
a multivariate AD method for mixed data, based on a convolutional
sparse representation extension to the multiple measurement vector
(MMV) [26] problem. MMV is a generalization of sparse signal
representation techniques, including BPDN, in which a collection of
K signals1 are simultaneously represented by the same dictionary.

On what follows, we first highlight the differences between AD-
DICT and C-ADDICT (Section 3.1), to then proceed to describe the
detection and learning stages of the latter (Sections 3.2 and 3.3).

3.1. Key differences between ADDICT and C-ADDICT

On what follows we describe a toy example in order to highlight the
key differences between ADDICT [13] and C-ADDICT.

1The collection of signals can be composed by K independent signals or
K windows of fixed size obtained from a single signal.



ADDICT, as well as C-ADDICT, use a set of two (learn) dictio-
naries which are used to encode a set of continuous s1 and discrete
s2 signals respectively. Let {ΦC , ΦD} and {Φ̂C , Φ̂D} respresent
such matrix and convolutional dictionaries respectively.

In a simplistic fashion, ADDICT will encode the input signal as[
s1
s2

]
=

[
ΦC

ΦD

] [
x1

x2

]
=

[
ΦCx1

ΦDx2

]
. (3)

In order to capture univariate and multivariate anomalies, ADDICT
includes a pre-processing stage (shifted versions of {s1, s2}) as well
as a post-processing stage (mainly, residual analysis). For an explicit
description of such stages, see [13, Section 4]).

In contrast, due to the use of convolutional dictionaries, C-
ADDICT is intrinsically shift-invariant. Moreover, it encodes the
input signal as[

s1
s2

]
=

[
Φ̂C
Φ̂D

]
x

(
equivalent to

[
Φ̂Cx1

Φ̂Dx2

]
s.t. x1 = x2

)
. (4)

Here we highlight that {s1, s2} are encoded via a joint activation
of dictionary atoms (i.e. uniform combinations of filters) and thus
it captures correlations across the input signals. Furthermore, the
alternative formulation (text in parenthesis) of (4) allows us to use
a consensus approach (fully desccribed in Section 3.2) to ease the
additional computational cost associated with C-ADDICT.

3.2. Proposed anomaly detection strategy

Consider P 1D-signals denoted as sp, p = 1, ..., P that can be af-
fected by univariate and multivariate anomalies. Each signal sp is
segmented into K windows of fixed size w denoted as sk,p ∈ Rw,
k = 1, ...,K. Inspired by [13, 7], each window sk,p is decomposed
onto M dictionaries (of size L) dm,p ∈ RL, m = 1, ...,M as

sk,p =
∑
m

dm,p ∗ xm,k,p + ek,p + bk,p (5)

where ek,p is an anomaly vector (possibly equal to 0) for sk,p and
bk,p is an additive noise. In order to identify both univariate and
multivariate anomalies, we propose to build a multivariate dictionary
dm = [dTm,1, ...,d

T
m,P ]T composed of the M filters dm,p describ-

ing the normal behaviours of the different signals sp.
The proposed AD problem (see also Section 3.1) is defined as

arg min
{xm,k,p},

{ek,p}

1

2

∑
p,k

∥∥∥∑
m

dm,p ∗ xm,k,p + ek,p − sk,p

∥∥∥2
2

+λ
∑
p,k,m

‖xm,k,p‖1 + β
∑
p,k

‖ek,p‖2

s.t. xm,k,1 = xm,k,2 = · · · = xm,k,P (6)

where λ and β are parameters that control the level of sparsity of
xm,k,p and ek,p. This formulation reflects the fact that nominal
signals can be well approximated by a sum of convolution between
few filters and coefficient maps and that anomalies are rare. Given
the equality constraint on the coefficient maps, the different sig-
nals are approximated using the same combination of multivariate
filters allowing relationships between signals to be preserved and
multivariate anomalies to be detected.

For convenience of notation, we introduce a Toeplitz matrix
Dm,p such that Dm,pxm,k,p = dm,p ∗xm,k,p and the two matrices

Dp = (D0,p, D1,p, . . .) , Xk.p =
(
xT0,k,p, x

T
1,k,p, · · ·

)T
(7)

allowing (6) to be rewritten using the following simplified form

arg min
{Xk,p},

{ek,p}

1

2

∑
p,k

‖DpXk,p + ek,p − sk,p‖22 + λ
∑
k

‖Xk,p‖1

+ β
∑
p,k

‖ek,p‖2 s.t. Xk,1 = · · · = Xk,P . (8)

By adding an auxiliary variable Yk that is constrained to be equal to
each pth primary variable Xk,p, (8) is a global consensus problem
(9), which can be solved using a consensus ADMM approach, i.e.,

arg min
{Xk,p},{Yk},

{ek,p}

1

2

∑
p,k

‖DpXk,p + ek,p − sk,p‖22 + λ
∑
k

‖Yk‖1

+ β
∑
p,k

‖ek,p‖2 s.t. Xk,p = Yk ∀p . (9)

Using the scaled ADMM model, the associated updates are given by

X
(i+1)
k,p = arg min

{Xk,p}

1

2

∑
p,k

‖DpXk,p + e
(i)
k,p − sk,p‖22

+
ρ

2

∑
k

‖Xk,p −Y
(i)
k + U

(i)
k,p‖

2
2 (10)

Y
(i+1)
k = arg min

{Yk}
λ
∑
k

‖Yk‖1 +
ρ

2

∑
k

∥∥∥X(i+1)
k,p −Yk + U

(i)
k,p

∥∥∥2
2

(11)

e
(i+1)
k,p = arg min

{ek,p}

1

2

∑
p,k

‖DpX
(i+1)
k,p + ek,p − sk,p‖22 + β

∑
p,k

‖ek,p‖2

(12)

U
(i+1)
k,p =U

(i)
k,p + X

(i+1)
k,p −Y

(i+1)
k . (13)

The update of Yk has a closed form expression defined using a soft-
thresholding operator Sγ(x) = sign(x)�max(0, |x| − γ), i.e.,

Y
(i+1)
k = Sλ/ρ

[
1

P

∑
p

(X
(i+1)
k,p + U

(i)
k,p)

]
. (14)

The update equation of ek,p is obtained using a shrinkage operator
Tb on the reconstruction residue

e
(i+1)
k,p = Tβ

[
sk,p −DpX

(i+1)
k,p

]
(15)

where Tβ(x) =

{( ‖x‖2−β
‖x‖2

)
x if ‖x‖2 > β

0 otherwise.
.

As in [19], we propose to efficiently address the update equation
of Xk,p in the frequency domain. However, the current formula-
tion (10) that is based on independent windows, which can generate
many boundary artefacts if the window size is small and comparable
to the filter size. Considering that the CSC model is commonly op-
timized for entire signals (in which artefacts can be negligible), we
assume that the set of coefficient maps Xp that encodes a complete
signal sp is approximately equal to the concatenation of coefficient
maps Xk,p corresponding to the subsequent windows sk,p, defined
as XP = [X1,P X2,P · · · XK,P ]. Based on these comments,
we can reformulate problem (10) in the frequency domain as

arg min
{X̂p}

1

2

∑
p

‖D̂pX̂p − r̂p‖22 +
ρ

2
‖X̂p − Ẑ(i)

p ‖22 (16)



where r̂
(i)
p = ŝp − ê

(i)
p , Ẑ(i)

p = Ŷ(i) − Û
(i)
p , and D̂p, X̂p, r̂p and

Ẑp denote the frequency domain variables that are obtained after
applying the discrete Fourier transform (DFT) to the variables Dp,
Xp, rp and Zp. The resulting linear system obtained from (16) after
simple algebra has a similar structure as the one obtained in [19],
which can be solved using the Sherman-Morrison formula.

3.3. Correlated filters using convolutional dictionary learning

Convolutional dictionary learning can be used to estimate groups of
filters dm,p that accurately reconstruct the nominal signals sk,p and
can be plugged in the CSC-based anomaly detector investigated in
the previous section. The proposed CDL extension of (6) is

arg min
{xm,k,p}

{dm,p}

1

2

∑
p,k

∥∥∥∑
m

dm,p ∗ xm,k,p − sk,p

∥∥∥2
2

+ λ
∑
k,m

‖xm,k,p‖1

s.t. ‖dm,p‖2 ≤ 1 ∀m, p
xm,k,1 = xm,k,2 = · · · = xm,k,P . (17)

As mentioned in Section 2, a non-convex CDL problem can be
usually split in two convex sub-problems. For (17), we obtain

arg min
{xm,k,p}

1

2

∑
p,k

∥∥∥∑
m

dm,p ∗ xm,k,p − sk,p

∥∥∥2
2

+ λ
∑
k,m

‖xm,k,p‖1

s.t. xm,k,1 = xm,k,2 = · · · = xm,k,P (18)

arg min
{dm,p}

1

2

∑
p,k

∥∥∥∑
m

dm,p ∗ xm,k,p − sk,p

∥∥∥2
2

s.t. ‖dm,p‖2 ≤ 1 ∀m, p . (19)

Problem (18) can be solved as (6) without considering the anomaly
term, while problem (19) can be efficiently solved in the frequency
domain using the accelerated proximal gradient approach previously
proposed in [21, 27].

3.4. Remarks

Consider the P 1D-signals, previously denoted as sp, can have dis-
tinct ranges of amplitudes between them, and the `2-norm corre-
sponding to the `1,2-norm penalty term is a restriction based on en-
ergy. In the problem (12) where β

∑
p,k ‖ep,k‖2 = β‖e‖1,2 and a

single regularization parameter is used, it is easy to note that it would
be necessary to choose different values of the regularization param-
eters for each signal to avoid suppressing low energy components
(anomalies) associated to low amplitude signals. However, in or-
der to avoid the selection of too many regularization parameters and
avoid possible low energy suppression by using a single regulariza-
tion parameter, the training and test signals are normalized using the
maximum and minimum values of each corresponding the training
signal composed by nominal data.

4. EXPERIMENTAL RESULTS

4.1. Simulation scenario

The proposed C-ADDICT algorithm has been applied to telemetry
time-series for spacecraft health monitoring (see [12, 14, 15, 16, 17]
for description of the application). Spacecraft telemetry data in-
volves hundreds to thousands of parameters describing the evolu-
tion over time of physical quantities (such as temperature, pressure,
voltage, ...) or of equipment operating modes (such as antenna posi-
tion, status ON/OFF, ...). The training and test datasets consist of 7
continuous telemetry parameters and 3 discrete ones obtained from

real satellite telemetry. For the training stage, the dictionary com-
posed of 100 filters of length 100 per parameter was learnt from
two months of telemetry describing normal behaviour of spacecraft.
Furthermore, the proposed learning algorithm uses a regularization
parameter λ = 0.01 and 5000 iterations. For the test stage, the pro-
posed C-ADDICT algorithm was evaluated on 18 days of telemetry
data with 7 gathered anomaly partitions displayed in Fig. 1. This
algorithm used fixed windows of size w = 200 with regularization
parameters λ and β which were adjusted by a grid-search. In order
to properly compare performance of the proposed C-ADDICT algo-
rithm with state-of-the-art methods, we use a detection rule (defined
in Section 4.1), in which the estimated anomaly signals are divided
into windows of size w = 50.
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Fig. 1: Examples of univariate (1,2,3,5,6) and multivariate (4,7)
anomalies in telemetry data (red boxes).

The C-ADDICT algorithm was compared to four state-of-the-art
methods which were evaluated on the same dataset
• The ADDICT algorithm [13] which is a multivariate anomaly

detection based on a sparse representation. In this experiment
the shift-invariant option of the algorithm was activated with
a maximum shift τmax = 5.

• The W-ADDICT algorithm [28]. It is an extension of the
ADDICT method which allows external information to be in-
cluded via appropriate weights obtained from the correlation
coefficient between the test signal and its decomposition into
the dictionary.

• The one-class support vector machine (OC-SVM)[29] tested
in a multivariate framework with the ADDICT preprocessing.

• The mixture of probabilistic principal component analy-
sers and categorical distribution (MPPCAD) algorithm [10],
which is a multivariate anomaly detection method based on
probabilistic clustering and dimensionality reduction. The
MPCCAD strategy approximates the joint distribution of
continuous variables by a mixture of Gaussian distributions
and the joint distribution of discrete variables by a mixture of
categorical distributions.

4.2. Anomaly detection rule

The proposed AD rule (also used in [13]) is based on the estimated
anomaly signal ek = [e′1,k, ..., e

′
P,k]′, where P is the number of

time-series acquired by the telemetry system. An anomaly score is
defined as the norm of the anomaly signal, i.e., a(sk) = ‖ek‖2. This
anomaly score is compared to a threshold and an anomaly is detected
if the score exceeds the threshold, i.e.,



Anomaly detected if a(sk) > SPFA (20)

where SPFA is a threshold depending on the probability of false-alarm
of the anomaly detector. This threshold was tuned by cross valida-
tion from data with an available ground truth.

4.3. Performance evaluation

This section compares the detection performance of the proposed
C-ADDICT algorithm to the four state-of-the-art methods recalled
before. Fig. 2 shows the anomaly scores returned by OC-SVM (a),
MPPCAD (b), ADDICT(c), W-ADDICT (d) and C-ADDICT (e) for
the anomaly dataset with ground-truth marked by red backgrounds.
The MPPCAD algorithm returns few false alarms and detects uni-
variate anomalies corresponding to extreme values of the time-series
(anomalies #3 and #5, see Fig. 1). However the other anomalies
of the dataset are not detected by this method. The OC-SVM algo-
rithm detects anomalies affecting continuous parameters but fails for
discrete anomalies. The C-ADDICT algorithm detects the most seri-
ous anomalies on continuous as well as on discrete data and returns
few false alarms compared to the other methods. Note that the 6th
anomaly is not detected by C-ADDICT. This anomaly is very diffi-
cult to detect since it has a low amplitude and is observed on a limited
time interval. The fact that this anomaly only exists on a small inter-
val will not affect the global probability of detection (as seen in Table
1). Finally, not that the 6th anomaly is only detected by ADDICT
and W-ADDICT, with a preference for W-ADDICT whose weights
are adjusted to each time-series allowing AD to be improved.
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(e) C-ADDICT

Fig. 2: Anomaly scores for test signals of the anomaly dataset with
ground-truth marked by red backgrounds.

Fig. 3 displays the receiver operational characteristics (ROCs)
of the five methods. Quantitative results in terms of probability
of detection PD, probability of false alarm PFA and area under the

curve (AUC) are also summarized in Table 1 (for a manually se-
lected threshold satisfying the best compromise for spacecraft health
monitoring). AD methods based on standard (ADDICT and W-
ADDICT) or convolutional (C-ADDICT) sparse representations are
more competitive than the other approaches for this dataset. Indeed,
ADDICT and W-ADDICT provide high probabilities of detection
(PD = 80.4% for ADDICT and PD = 85.1% for W-ADDICT) and
low probabilities of false alarm (PFA = 4.43% for ADDICT and
PFA = 2.7% for W-ADDICT). Despite one missed detection, C-
ADDICT seems to be even more competitive with PD = 94.7% and
PFA = 1.7%. Furthermore, an interesting property of C-ADDICT
is the possibility of setting the detection threshold to a small value
thanks to a better sparsity of the anomaly signal ek. This represents a
real advantage with respect to the other methods, for which it is nec-
essary to adjust an appropriate threshold using a ground-truth (that
is not always available in operating context).

Table 1: Values of PD, PFA and Area Under Curve (AUC) for OC-
SVM, MPPCAD, ADDICT, W-ADDICT and C-ADDICT.

Method Threshold PD PFA AUC
OC-SVM 0.019 80.9% 7% 0.9413
MPPCAD 76 81.9% 25.9% 0.8779
ADDICT 4.1 81% 3% 0.937

W-ADDICT 4.5 85.1% 2.7% 0.9703
C-ADDICT 0 94.7% 1.7% 0.9706
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Fig. 3: Roc curves of ADDICT, W-ADDICT, G-ADDICT, W-G-
ADDICT and C-ADDICT.

5. CONCLUSION

This paper introduced a new anomaly detection method based on
convolutional sparse coding (referred to as C-ADDICT), generaliz-
ing an existing anomaly detection method, for mixed signals (dis-
crete and continuous), based on a sparse representation in a dictio-
nary of normal patterns (ADDICT). Due to the optimization prob-
lems associated with C-ADDICT, it is intrinsically shift-invariant
and enforces correlation across the mixed signals. The performance
of C-ADDICT was evaluated for anomaly detection in spacecraft
telemetry data and showed its competitiveness with respect to the
state-of-the-art. An interesting property of C-ADDICT is the sim-
plicity of adjusting the detection threshold, which is interesting for
practical applications. Future works include an evaluation of the
method in an operational context including hundreds to thousands
time-series. However, it will not affect the global probability of de-
tection since it. Including weights into the proposed anomaly detec-
tion rule based on CSC would be also interesting.
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