Scientific Production

SEARCH

Search

PhD Thesis

Systèmes et Algorithmes de Traitement d'Images pour l'Estimation de Déformées de Structures d'Avion en Vol

Author: Demoulin Quentin

Defended on April 30, 2021.

DOWNLOAD DOCUMENT

Contexte industriel Quels seront les moyens de transport aérien de demain ? Quelle technologie de rupture permettra de réaliser l’avion du futur ? L’industrie aérospatiale actuelle est confrontée à l’énorme défi de rendre ses véhicules plus durables, c’est-à-dire de créer des avions plus propres, plus écologiques et plus silencieux. Afin de relever ce défi, un important projet de développement d’Airbus consiste à concevoir des ailes plus intelligentes, dont les formes peuvent être optimisées pour les conditions de vol à la manière des oiseaux, ou à utiliser de nouveaux matériaux qui modifient les propriétés physiques de l’avion. Dans le cadre de la qualification et de la certification des avions, de nouveaux instruments doivent donc être proposés pour permettre ces évolutions technologiques. En particulier, de nouveaux moyens de mesure ou d’estimation des déformations des ailes doivent être proposés, permettant une meilleure compréhension des capacités des ailes et de leur comportement aérodynamique, grâce à une reconstruction 3D dynamique et dense en vol. En outre, ces recherches doivent être intégrées dans le plan de développement du centre d’essais en vol, dont les axes sont : • la réduction du cycle de certification des avions d’essai par l’accélération du développement et de l’installation des équipements, • la réduction de l’empreinte des instruments de mesure sur l’avion et de leurs contraintes opérationnelles, • la réduction des coûts d’installation des instruments d’essai en vol. Objectifs et enjeux Dans ce contexte industriel, l’objectif de cette thèse est de développer une nouvelle méthode de mesure de déformations des ailes répondant aux spécifications du centre d’essais en vol d’Airbus et de démontrer la faisabilité d’un système industriel. Dans un premier temps, le système proposé doit être capable de mesurer la flexion (élévation de l’aile) avec une incertitude inférieure à 10cm au bout de l’aile, pour une aile d’environ 30m de long, 10m de large, et capable de se déplacer dans un volume de 10m de haut. Deuxièmement, ce système devrait pouvoir effectuer des mesures pendant toute la durée d’un vol, c’est-à-dire jusqu’à 4 heures d’enregistrement, permettant l’acquisition de phénomènes dynamiques, soit une fréquence d’acquisition de l’ordre de 1 à 30Hz. Enfin, pour être intégré dans l’environnement d’essai en vol et suivre la ligne directrice du domaine, le système doit être rapide et facile à installer tout en restant aussi peu intrusif que possible, à savoir qu’il ne doit pas perturber ni le fonctionnement de l’avion et des autres essais ni l’équipage. Parallèlement, le monde des essais en 1 vol présente ses propres défis. La méthode proposée doit fonctionner dans un environnement non contrôlé, avec des variations de luminosité, d’éventuelles réflexions et ombres, des vibrations et des déformations de l’ensemble de l’avion. Il est à noter que les capteurs utilisés pour acquérir les mesures ne peuvent pas être installés n’importe où, et sont contraints d’être positionnés sur les hublots de l’avion.

Signal and image processing / Aeronautical communication systems

READ MORE

PhD Defense Slides

Systèmes et Algorithmes de Traitement d'Images pour l'Estimation de Déformées de Structures d'Avion en Vol

Author: Demoulin Quentin

Defended on April 30, 2021.

DOWNLOAD DOCUMENT

Contexte industriel Quels seront les moyens de transport aérien de demain ? Quelle technologie de rupture permettra de réaliser l’avion du futur ? L’industrie aérospatiale actuelle est confrontée à l’énorme défi de rendre ses véhicules plus durables, c’est-à-dire de créer des avions plus propres, plus écologiques et plus silencieux. Afin de relever ce défi, un important projet de développement d’Airbus consiste à concevoir des ailes plus intelligentes, dont les formes peuvent être optimisées pour les conditions de vol à la manière des oiseaux, ou à utiliser de nouveaux matériaux qui modifient les propriétés physiques de l’avion. Dans le cadre de la qualification et de la certification des avions, de nouveaux instruments doivent donc être proposés pour permettre ces évolutions technologiques. En particulier, de nouveaux moyens de mesure ou d’estimation des déformations des ailes doivent être proposés, permettant une meilleure compréhension des capacités des ailes et de leur comportement aérodynamique, grâce à une reconstruction 3D dynamique et dense en vol. En outre, ces recherches doivent être intégrées dans le plan de développement du centre d’essais en vol, dont les axes sont : • la réduction du cycle de certification des avions d’essai par l’accélération du développement et de l’installation des équipements, • la réduction de l’empreinte des instruments de mesure sur l’avion et de leurs contraintes opérationnelles, • la réduction des coûts d’installation des instruments d’essai en vol. Objectifs et enjeux Dans ce contexte industriel, l’objectif de cette thèse est de développer une nouvelle méthode de mesure de déformations des ailes répondant aux spécifications du centre d’essais en vol d’Airbus et de démontrer la faisabilité d’un système industriel. Dans un premier temps, le système proposé doit être capable de mesurer la flexion (élévation de l’aile) avec une incertitude inférieure à 10cm au bout de l’aile, pour une aile d’environ 30m de long, 10m de large, et capable de se déplacer dans un volume de 10m de haut. Deuxièmement, ce système devrait pouvoir effectuer des mesures pendant toute la durée d’un vol, c’est-à-dire jusqu’à 4 heures d’enregistrement, permettant l’acquisition de phénomènes dynamiques, soit une fréquence d’acquisition de l’ordre de 1 à 30Hz. Enfin, pour être intégré dans l’environnement d’essai en vol et suivre la ligne directrice du domaine, le système doit être rapide et facile à installer tout en restant aussi peu intrusif que possible, à savoir qu’il ne doit pas perturber ni le fonctionnement de l’avion et des autres essais ni l’équipage. Parallèlement, le monde des essais en 1 vol présente ses propres défis. La méthode proposée doit fonctionner dans un environnement non contrôlé, avec des variations de luminosité, d’éventuelles réflexions et ombres, des vibrations et des déformations de l’ensemble de l’avion. Il est à noter que les capteurs utilisés pour acquérir les mesures ne peuvent pas être installés n’importe où, et sont contraints d’être positionnés sur les hublots de l’avion.

Signal and image processing / Aeronautical communication systems

READ MORE

Patent

Procédé de réduction des erreurs liées aux multi-trajets d'un signal acquis bruité

Authors: Marmet François-Xavier, Robert Thierry, Michel Patrice and Jardak Nabil

n° FR3101710 A1, April 9, 2021.

Signal and image processing / Localization and navigation

READ MORE

Talk

Optimisation of Internet Throughput in Constellations of Satellites

Authors: Lamothe François, Rachelson Emmanuel, Hait Alain, Baudoin Cédric, Gineste Mathieu and Dupé Jean-Baptiste

Seminar of TeSA, Toulouse, March 16, 2021.

DOWNLOAD DOCUMENT

Recently, internet providers have turned their attention toward, telecommunication constellations of satellites. These complex systems implie new challenges concerning the management of telecommunication ressources. In this context, the goal is to provide a maximum internet throughput to the constellation but also having a reliable service. This challenge was modeled with a NP-hard optimization problem known as the dynamic unsplittable flow with path-change penalties, we present and analyze several resolution methods and discuss their practical application to a constellation context.

Networking / Other

READ MORE

Journal Paper

On the Impact and Mitigation of Signal Crosstalk in Ground-Based and Low Altitude Airborne GNSS-R

Authors: Lubeigt Corentin, Ortega Espluga Lorenzo, Vilà-Valls Jordi, Lestarquit Laurent and Chaumette Eric

Remote sensing, vol. 13, issue 6, p. 1085, March, 2021.

DOWNLOAD DOCUMENT

Global Navigation Satellite System Reflectometry (GNSS-R) is a powerful way to retrieve information from a reflecting surface by exploiting GNSS as signals of opportunity. In dual antenna conventional GNSS-R architectures, the reflected signal is correlated with a clean replica to obtain the specular reflection point delay and Doppler estimates, which are further processed to obtain the GNSS-R product of interest. An important problem that may appear for low elevation satellites is signal crosstalk, that is the direct line-of-sight signal leaks into the antenna dedicated to the reflected signal. Such crosstalk may degrade the overall system performance if both signals are very close in time, similar to multipath in standard GNSS receivers, the reason why mitigation strategies must be accounted for. In this article: (i) we first provide a geometrical analysis to justify that the estimation performance is only affected for low height receivers; (ii) then, we analyze the impact of crosstalk if not taken into account, by comparing the single source conditional maximum likelihood estimator (CMLE) performance in a dual source context with the corresponding Cramér–Rao bound (CRB); (iii) we discuss dual source estimators as a possible mitigation strategy; and (iv) we investigate the performance of the so-called variance estimator, which is designed to eliminate the coherent signal part, compared to both the CRB and non-coherent dual source estimators. Simulation results are provided for representative GNSS signals to support the discussion. From this analysis, it is found that: (i) for low enough reflected-to-direct signal amplitude ratios (RDR), the crosstalk has no impact on standard single source CMLEs; (ii) for high enough signal-to-noise ratios (SNR), the dual source estimators are efficient irrespective of the RDR, then being a promising solution for any reflected signal scenario; (iii) non-coherent dual source estimators are also efficient at high SNR; and (iv) the variance estimator is efficient as long as the non-coherent part of the signal is dominant.

Signal and image processing / Localization and navigation

READ MORE

Automated Machine Health Monitoring at an Expert Level

Authors: Martin Nadine, Mailhes Corinne and Laval Xavier

Special issue of Acoustics Australia on Machine Condition Monitoring, Springer, 2021.

DOWNLOAD DOCUMENT

Machine health condition monitoring is evidently a crucial challenge nowadays. Unscheduled breakdowns increase operating costs due to repairs and production losses. Scheduled maintenance implies taking the risk of replacing fully operational components. Human expertise is a solution for an outstanding expertise but at a high cost and for a limited quantity of data only, the analysis being time-consuming. Industry 4.0 and digital factory offer many alternatives to human monitoring. Time, cost and skills are the real stakes. The key point is how to automate each part of the process knowing that each one is valuable. Leaving aside scheduled maintenance, this paper copes with condition-based preventive maintenance and focuses on one fundamental step : the signal processing. After a brief overview of this specific area in which numerous technologies already exist, this paper argues for an automated signal processing at an expert level. The objective is to monitor a system over days, weeks, or years with as great accuracy as a human expert, and even better in regard to data investigation and analysis efficiency. After a data validation step most often ignored, any multimodal signal (vibration, current, acoustic, ...) is processed over its entire frequency band in view of identifying all harmonic families and their sidebands. Sophisticated processing such as filtering and demodulation creates relevant features describing the fine complex structures of each spectrum. A time-frequency feature tracking constructs trends over time to not only detect a failure but also to characterize and localize it. Such an automated expert-level processing is a way to raise alarms with a reduced false alarm probability.

Signal and image processing / Other

READ MORE

On Nested Property of Root-LDPC Codes

Authors: Ortega Espluga Lorenzo and Poulliat Charly

IEEE Wireless Communications Letters, Early Access, p.1, 2021.

DOWNLOAD DOCUMENT

We investigate on binary Protograph Root-LDPC codes that can embed an interesting property, called nested property. This property refers to the ability for a coding scheme to achieve full diversity and equal coding gain for any number of received coded blocks and for any configuration of the received code blocks. One can take advantage of this property for “carousel”-type transmissions broadcasting cyclically coded information. For regular Root-LDPC codes, we show that these codes inherently have both properties over the nonergodic block fading channel and when message passing decoding is used. Then, we show that irregular Root-LDPC structures could not provide equal coding gain except if explicit design rules are enforced to ensure that the nested property is fulfilled when designing irregular Root-LDPC codes. Simulation results show that designed nested Root-LDPC codes achieve good performance and full diversity for coding rates R=1/2, R=1/3 and R=1/4.

Digital communications / Localization and navigation and Space communication systems

READ MORE

Cramér-Rao Bound for a Mixture of Real -and Integer - Valued Parameter Vectors and its Application to the Linear Regression Model

Authors: Medina Daniel, Vilà-Valls Jordi, Chaumette Eric, Vincent François and Closas Pau

Elsevier, vol. 179, February, 2021.

DOWNLOAD DOCUMENT

Performance lower bounds are known to be a fundamental design tool in parametric estimation theory. A plethora of deterministic bounds exist in the literature, ranging from the general Barankin bound to the well-known Cramér-Rao bound (CRB), the latter providing the optimal mean square error performance of locally unbiased estimators. In this contribution, we are interested in the estimation of mixed real- and integer-valued parameter vectors. We propose a closed-form lower bound expression leveraging on the general CRB formulation, being the limiting form of the McAulay-Seidman bound. Such formulation is the key point to take into account integer-valued parameters. As a particular case of the general form, we provide closed-form expressions for the Gaussian observation model. One noteworthy point is the assessment of the asymptotic efficiency of the maximum likelihood estimator for a linear regression model with mixed parameter vectors and known noise covariance matrix, thus complementing the rather rich literature on that topic. A representative carrier-phase based precise positioning example is provided to support the discussion and show the usefulness of the proposed lower bound.

Signal and image processing / Localization and navigation and Space communication systems

READ MORE

PhD Thesis

Hybridation GNSS/5G pour la navigation en milieu urbain

Author: Tobie Anne-Marie

Defended on February 25, 2021.

DOWNLOAD DOCUMENT

Over the past few years, the need for positioning, and thus the number of positioning services in general, has been in constant growth. This need for positioning has been increasingly focused on constrained environments, such as urban or indoor environments, where GNSS (Global Navigation Satellite System) is known to have significant limitations: multipath as well as the lack of Line-of-Sight (LOS) satellite visibility degrades the GNSS positioning solution and makes it unsuitable for some urban or indoor applications. In order to improve the GNSS positioning performance in constrained environments, many solutions are already available: hybridization with additional sensors, [1], [2] or the use of signals of opportunity (SoO) for example, [3], [4], [5], [6], [7], [8]. Concerning SoO, mobile communication signals, such as the 4G Long Term Evolution (LTE) or 5G, are naturally envisioned for positioning, [3], [9], [10]. Indeed, a significant number of users are expected to be “connected-users” and 5G systems offers promising opportunities. 5G technology is being standardized at 3GPP [11]; the first complete release of 5G specifications, Release-15, was provided to the community in March 2018. 5G is an emerging technology and its positioning performance, as well as a potential generic receiver scheme to conduct positioning operations, is still under analysis. In order to study the potential capabilities provided by 5G systems and to develop a 5G-based generic positioning module scheme, the first fundamental step is to develop mathematical models of the processed 5G signals at each stage of the receiver for realistic propagation channel models: the mathematical expression of the useful received 5G signal as well as the AWG (Additive White Gaussian) noise statistics. In the Ph.D., the focus is given to the correlation operation which is the basic function implemented by typical ranging modules for 4G LTE signals [12], DVB signals [7], [8], and GNSS [13]. In fact, the knowledge of the correlation output mathematical model could allow for the development of optimal 5G signal processing techniques for ranging positioning. Previous efforts were made to provide mathematical models of received signals at the different receiver signal processing stages for signals with similar structures to 5G signals – Orthogonal Frequency Division Multiplexing (OFDM) signals as defined in 3GPP standard, [14]. OFDM signal-type correlator output mathematical model and acquisition techniques were derived in [7], [15]. Moreover, in [8], [15], tracking techniques were proposed, analyzed and tested based on the correlator output mathematical model of [7]. However, these models were derived by assuming a constant propagation channel over the duration of the correlation. Unfortunately, when the Channel Impulse Response (CIR) provided by a realistic propagation channel is not considered to be constant over the duration of the correlation, the correlator output mathematical models are slightly different from the mathematical models proposed in [7], [8]. Therefore, the first main point considered in the Ph.D. consists in the development of mathematical models and statistics of processed 5G signals for positioning. In order to derive accurate mathematical models, the time evolution impact of the 5G standard compliant propagation channel is of the utmost importance. Note that, in the Ph.D., the continuous CIR will be approximated by a discretized CIR, and the continuous time-evolution will be replaced by the propagation channel generation sampling rate notion. This approximation makes sense since, in a real transmission/reception chain, the received time-continuous signal is, at the output of the Radio-Frequency (RF) front-end, sampled. Therefore, a preliminary step, prior to derive accurate mathematical models of processed 5G signals, consists in determining the most suitable CIR-generation sampling interval for a selected 5G standard compliant propagation channel, QuaDRiGa: trade-off between having a realistic characterization and its complexity. Complexity is especially important for 5G compliant channels with multiple emitter and receiver antennas, and high number of multipath. Then, the impact of a time-evolving propagation channel inside an OFDM symbol duration is studied. A method to select the most appropriate CIR sampling interval for accurate modelling of symbol demodulation, correlator outputs and delay tracking will also be proposed. Based on the correlator output mathematical models developed for realistic multipath environments for both GNSS and 5G systems, ranging modules are then developed. These ranging modules outputs the pseudo ranging measurements required to develop navigation solution. In order to improve the positioning availability and GNSS positioning performance in urban environment through the exploitation of 5G signals, both systems, GNSS and 5G communication systems, must be optimally combined. In fact, in order to achieve this optimal combination, both types of signals must be optimally processed, and the mathematical model of their generated pseudo range measurements must be accurately characterized. The second main objective of the Ph.D. aims thus at realistically characterizing GNSS and 5G pseudo range measurement mathematical models and at developing hybrid navigation modules exploiting/adapted to the derived pseudo range measurements mathematical models. In order to validate, the mathematical models developed in the Ph.D., a simulator is designed. The pseudo range measurements mathematical models are derived from a realistic simulator which integrates a typical GNSS receiver processing module and a typical 5G signal processing module proposition; moreover, in order to achieve a realistic characterization, the simulator implements highly realistic propagation channels for GNSS, SCHUN [16], and for 5G, QuaDRiGa [17] is developed. The hybrid navigation modules to be implemented and compared in this work are an Extended Kalman Filter (EKF) and an Unscented Kalman Filter (UKF). The performances of these hybrid navigation modules are then studied to quantify the improvements bringing by 5G TOA measurements.

Signal and image processing and Digital communications / Localization and navigation

READ MORE

PhD Defense Slides

Hybridation GNSS/5G pour la navigation en milieu urbain

Author: Tobie Anne-Marie

Defended on February 25, 2021.

DOWNLOAD DOCUMENT

Over the past few years, the need for positioning, and thus the number of positioning services in general, has been in constant growth. This need for positioning has been increasingly focused on constrained environments, such as urban or indoor environments, where GNSS (Global Navigation Satellite System) is known to have significant limitations: multipath as well as the lack of Line-of-Sight (LOS) satellite visibility degrades the GNSS positioning solution and makes it unsuitable for some urban or indoor applications. In order to improve the GNSS positioning performance in constrained environments, many solutions are already available: hybridization with additional sensors, [1], [2] or the use of signals of opportunity (SoO) for example, [3], [4], [5], [6], [7], [8]. Concerning SoO, mobile communication signals, such as the 4G Long Term Evolution (LTE) or 5G, are naturally envisioned for positioning, [3], [9], [10]. Indeed, a significant number of users are expected to be “connected-users” and 5G systems offers promising opportunities. 5G technology is being standardized at 3GPP [11]; the first complete release of 5G specifications, Release-15, was provided to the community in March 2018. 5G is an emerging technology and its positioning performance, as well as a potential generic receiver scheme to conduct positioning operations, is still under analysis. In order to study the potential capabilities provided by 5G systems and to develop a 5G-based generic positioning module scheme, the first fundamental step is to develop mathematical models of the processed 5G signals at each stage of the receiver for realistic propagation channel models: the mathematical expression of the useful received 5G signal as well as the AWG (Additive White Gaussian) noise statistics. In the Ph.D., the focus is given to the correlation operation which is the basic function implemented by typical ranging modules for 4G LTE signals [12], DVB signals [7], [8], and GNSS [13]. In fact, the knowledge of the correlation output mathematical model could allow for the development of optimal 5G signal processing techniques for ranging positioning. Previous efforts were made to provide mathematical models of received signals at the different receiver signal processing stages for signals with similar structures to 5G signals – Orthogonal Frequency Division Multiplexing (OFDM) signals as defined in 3GPP standard, [14]. OFDM signal-type correlator output mathematical model and acquisition techniques were derived in [7], [15]. Moreover, in [8], [15], tracking techniques were proposed, analyzed and tested based on the correlator output mathematical model of [7]. However, these models were derived by assuming a constant propagation channel over the duration of the correlation. Unfortunately, when the Channel Impulse Response (CIR) provided by a realistic propagation channel is not considered to be constant over the duration of the correlation, the correlator output mathematical models are slightly different from the mathematical models proposed in [7], [8]. Therefore, the first main point considered in the Ph.D. consists in the development of mathematical models and statistics of processed 5G signals for positioning. In order to derive accurate mathematical models, the time evolution impact of the 5G standard compliant propagation channel is of the utmost importance. Note that, in the Ph.D., the continuous CIR will be approximated by a discretized CIR, and the continuous time-evolution will be replaced by the propagation channel generation sampling rate notion. This approximation makes sense since, in a real transmission/reception chain, the received time-continuous signal is, at the output of the Radio-Frequency (RF) front-end, sampled. Therefore, a preliminary step, prior to derive accurate mathematical models of processed 5G signals, consists in determining the most suitable CIR-generation sampling interval for a selected 5G standard compliant propagation channel, QuaDRiGa: trade-off between having a realistic characterization and its complexity. Complexity is especially important for 5G compliant channels with multiple emitter and receiver antennas, and high number of multipath. Then, the impact of a time-evolving propagation channel inside an OFDM symbol duration is studied. A method to select the most appropriate CIR sampling interval for accurate modelling of symbol demodulation, correlator outputs and delay tracking will also be proposed. Based on the correlator output mathematical models developed for realistic multipath environments for both GNSS and 5G systems, ranging modules are then developed. These ranging modules outputs the pseudo ranging measurements required to develop navigation solution. In order to improve the positioning availability and GNSS positioning performance in urban environment through the exploitation of 5G signals, both systems, GNSS and 5G communication systems, must be optimally combined. In fact, in order to achieve this optimal combination, both types of signals must be optimally processed, and the mathematical model of their generated pseudo range measurements must be accurately characterized. The second main objective of the Ph.D. aims thus at realistically characterizing GNSS and 5G pseudo range measurement mathematical models and at developing hybrid navigation modules exploiting/adapted to the derived pseudo range measurements mathematical models. In order to validate, the mathematical models developed in the Ph.D., a simulator is designed. The pseudo range measurements mathematical models are derived from a realistic simulator which integrates a typical GNSS receiver processing module and a typical 5G signal processing module proposition; moreover, in order to achieve a realistic characterization, the simulator implements highly realistic propagation channels for GNSS, SCHUN [16], and for 5G, QuaDRiGa [17] is developed. The hybrid navigation modules to be implemented and compared in this work are an Extended Kalman Filter (EKF) and an Unscented Kalman Filter (UKF). The performances of these hybrid navigation modules are then studied to quantify the improvements bringing by 5G TOA measurements.

Digital communications / Localization and navigation

READ MORE

Activity Report

READ MORE

TéSA at CNES JC2

Corentin Lubeigt (on the left) and Victor Perrier (on the right)

READ MORE

A new academic member in TeSA: IPSA!

TeSA post-docs hired at ENAC and IPSA

Julien Lesouple starts in October at ENAC and Lorenzo Ortega at IPSA
Congratulation!