Scientific Production

SEARCH

Search

Conference Paper

Aircraft Vibration Detection and Diagnosis for Predictive Maintenance using a GLR Test

Authors: Urbano Simone, Chaumette Eric, Goupil Philippe and Tourneret Jean-Yves

In Proc. IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), Warshaw, Poland, August 29-31, 2018.

DOWNLOAD DOCUMENT

This paper studies a statistical approach to detect and diagnose a particular type of vibration impacting the control surfaces of civil aircraft. The considered phenomenon is called Limit Cycle Oscillation (LCO). It consists of an unwanted sustained oscillation of a control surface due to the combined effect of aeroelastic phenomena and an increased level of mechanical free play in the elements that connect the control surface to the aerodynamic surface. The stateof-the-art for LCO prevention is mainly based on regular free play checks performed on ground during maintenance operations. The detection is mainly achieved by the crew, and especially the pilot who can fill in a so-called “vibration reporting sheet” to describe the phenomena felt during the flight. Thus, the pilot sensitivity to vibration is still the only reference for LCO detection. In the Flight Control System (FCS) of modern aircraft there exist already several certified algorithms for the detection of vibrations of different nature, which use dedicated local sensors to monitor the control surface behaviour. The same kind of sensors have been chosen in a local approach, which eases the isolation of the vibration sources. This paper studies a new statistical approach based on the Generalized Likelihood Ratio Test (GLRT) in order to improve the state-of-the-art for LCO detection and diagnosis. The test and its theoretical performance are derived and validated. A straightforward method compliant with real-time implementation constraint for LCO prediction is proposed. A Monte Carlo test campaign is performed in order to assess the robustness and the detection/diagnosis performance of the proposed algorithm under different operating conditions.

Signal and image processing / Aeronautical communication systems and Space communication systems

READ MORE

A Frequency-Domain Band-MMSE Equalizer for Continuous Phase Modulation over Frequency-Selective Time-Varying Channels

Authors: Chayot Romain, Thomas Nathalie, Poulliat Charly and Boucheret Marie-Laure

In Proc. European Signal Processing Conference (EUSIPCO), Rome, Italy, September 3-7, 2018.

DOWNLOAD DOCUMENT

In this paper, we consider single carrier continuous phase modulations (CPM) over frequency selective time-varying channels. In this context, we propose a new low-complexity frequency-domain equalizer based on the minimum mean square error (MMSE) criterion exploiting efficiently the band structure of the associated channel matrix in the frequency domain. Simulations show that this band-MMSE equalizer exhibits a good performance complexity trade-off compared to existing solutions.

Digital communications / Aeronautical communication systems and Space communication systems

READ MORE

Journal Paper

A New Decision-Theory-Based Framework for Echo Canceler Control

Authors: Imbiriba Tales, Bermudez José, Tourneret Jean-Yves and Bershad Neil

IEEE Transactions on Signal Processing, vol. 66 , issue 16 , pp. 4304-4314, August 2018.

A control logic has a central role in many echo cancellation systems for optimizing the performance of adaptive filters, while estimating the echo path. For reliable control, accurate double-talk and channel change detectors are usually incorporated to the echo canceler. This work expands the usual detection strategy to define a classification problem characterizing four possible states of the echo canceler operation. The new formulation allows the use of decision theory to continuously control the transitions among the different modes of operation. The classification rule reduces to a low-cost statistics, for which it is possible to determine the probability of error under all hypotheses, allowing the classification performance to be accessed analytically. Monte Carlo simulations using synthetic and real data illustrate the reliability of the proposed method.

Signal and image processing / Localization and navigation

READ MORE

Multifractal Analysis of Multivariate Images using Gamma Markov Random Field Priors

Authors: Wendt Herwig, Combrexelles Sébastien, Altmann Yoann, Tourneret Jean-Yves, Mclaughlin Stephen and Abry Patrice

SIAM Journal on Imaging Sciences, vol. 11, issue 2, pp. 1294-1316, 2018.

DOWNLOAD DOCUMENT

Texture characterization of natural images using the mathematical framework of multifractal (MF) analysis, enables the study of the fluctuations in the regularity of image intensity. Although successfully applied in various contexts, the use of MF analysis has so far been limited to the independent analysis of a single image, while the data available in applications are increasingly multivariate. This paper addresses this limitation and proposes a joint Bayesian model and associated estimation procedure for MF parameters of multivariate images. It builds on a recently introduced generic statistical model that enabled the Bayesian estimation of MF parameters for a single image and relies on the following original key contributions : First, we develop a novel Fourier domain statistical model for a single image that permits the use of a likelihood that is separable in the MF parameters via data augmentation. Second, a joint Bayesian model for multivariate images is formulated in which prior models based on gamma Markov random fields encode the assumption of the smooth evolution of MF parameters between the image components. The design of the likelihood and of conjugate prior models is such that exploitation of the conjugacy between the likelihood and prior models enables an efficient estimation procedure that can handle a large number of data components. Numerical simulations conducted using sequences of multifractal images demonstrate that the proposed procedure significantly outperforms previous univariate benchmark formulations at a competitive computational cost.

Signal and image processing / Earth observation

READ MORE

Conference Paper

Smooth Bias Estimation for Multipath Mitigation Using Sparse Estimation

Authors: Lesouple Julien, Barbiero Franck, Faurie Frédéric, Sahmoudi Mohamed and Tourneret Jean-Yves

In Proc. 21st International Conference on Information Fusion (FUSION), Cambridge, England, July 10-13, 2018.

DOWNLOAD DOCUMENT

Multipath remains the main source of error when using global navigation satellite systems (GNSS) in constrained environment, leading to biased measurements and thus to inaccurate estimated positions. This paper formulates the GNSS navigation problem as the resolution of an overdetermined system, which depends nonlinearly on the receiver position and linearly on the clock bias and drift, and possible biases affecting GNSS measurements. The extended Kalman filter is used to linearize the navigation problem whereas sparse estimation is considered to estimate multipath biases. We assume that only a part of the satellites are affected by multipath, i.e., that the unknown bias vector is sparse in the sense that several of its components are equal to zero. The natural way of enforcing sparsity is to introduce an `1 regularization associated with the bias vector. This leads to a least absolute shrinkage and selection operator (LASSO) problem that is solved using a reweighted-l1 algorithm. The weighting matrix of this algorithm is designed carefully as functions of the satellite carrier to noise density ratio and the satellite elevations. The smooth variations of multipath biases versus time are enforced using a regularization based on total variation. An experiment conducted on real data allows the performance of the proposed method to be appreciated.

Signal and image processing / Localization and navigation

READ MORE

Multipath Mitigation in Global Navigation Satellite Systems using a Bayesian Hierarchical Model with Bernoulli Laplacian Priors

Authors: Lesouple Julien, Tourneret Jean-Yves, Sahmoudi Mohamed, Barbiero Franck and Faurie Frédéric

In Proc. IEEE Worshop on Statistical Signal Processing (SSP), Freiburg Im Breisgau, Germany, June 10-13, 2018.

DOWNLOAD DOCUMENT

A new sparse estimation method was recently introduced in a previous work to correct biases due to multipath (MP) in GNSS measurements. The proposed strategy was based on the resolution of a LASSO problem constructed from the navigation equations using the reweighted-l1 method. This strategy requires to adjust the regularization parameters balancing the data fidelity term and the involved regularizations. This paper introduces a new Bayesian estimation method allowing the MP biases and the unknown model parameters and hyperparameters to be estimated directly from the GNSS measurements. The proposed method is based on BernoulliLaplacian priors, promoting sparsity of MP biases.

Signal and image processing / Localization and navigation

READ MORE

Journal Paper

QoE enhancements on Satellite Networks through the Use of Caches

Authors: Thibaud Adrien, Fasson Julien, Arnal Fabrice, Pradas David, Dubois Emmanuel and Chaput Emmanuel

International Journal of Satellite Communications and Networking, pp. 1-13, June, 2018.

DOWNLOAD DOCUMENT

A high throughput does not necessarily translate to a good Quality of Experience, especially in a satellite context. The round trip time, for instance, also has a tremendous impact on the reactivity of applications and thus on the Quality of Experience. Content delivery networks are massively used for over‐the‐top services in terrestrial network: They reduce the load of network and the delay as they draw the content closer to the end user. In a satellite system, the content delivery network presents a good opportunity for enhancing the end users' Quality of Experience and can change the conventional use of performance‐enhancing proxies. This paper investigates the satellite as access link for home networks or a backhaul link for small cells for a 5G perspective. We analysed the impact of caching on both gateway side and satellite terminal side for 2 on‐trend services: web browsing and adaptive video streaming (dynamic adaptive streaming over HTTP). The main contribution is an evaluation of transparent caching through a satellite platform. The caching policy is out of the scope of this paper. One large part of the testbed is based on an open‐source platform, OpenSAND that emulates the satellite system. To confirm the results, some real experiments have been conducted on a commercial satellite link. As expected, the transparent caching at the satellite terminal side can increase the Quality of Experience to its upper border as long as the content is available in the cache. For the satellite gateway cache, the performances exceed the expectations. Although the application experiences the satellite delay in this case, the traversal time of different Internet service provider networks also delays the delivery of content. Then it may have a greater impact on reactivity than the satellite itself. Through careful analysis of the different results, we noticed some issues. Transparent caching is unable to cache encrypted or dynamic content. Moreover, a misuse of caching can provoke bad behaviour of dynamic adaptive streaming over HTTP mechanisms and severely decrease the Quality of Experience. We designed a solution that in addition to solving the issue, alleviates the storage space of satellite terminal caches.

Networking / Space communication systems

READ MORE

Conference Paper

3GPP NB-IoT Coverage Extension using LEO Satellites

Authors: Cluzel Sylvain, Franck Laurent, Radzik José, Cazalens Sonia, Dervin Mathieu, Baudoin Cédric and Dragomirescu Daniela

In Proc. IEEE 87th Vehicular Technology Conference (VTC-Spring), Porto, Portugal, June 3-6, 2018.

DOWNLOAD DOCUMENT

Machine-Type Communications are meeting a growing interest on the consumer market. Dedicated technologies arise to support more robust communications involving a massive number of low cost, low energy-consuming devices This paper discusses the coverage extension of a Low-Powered Wide Area Network using a Low Earth Orbit satellite constellation, benefiting from the improved performance of a recent standard. The transmission complies with the user equipment specifications standardized as NB-IoT by 3GPP in Release 13. This radio technology is an update on LTE standard with enhanced performances : the supported path loss can be 20 dB higher than with legacy LTE. This improvement makes satellite-compatible the small and energy-constrained devices. A specific unidirectional system is defined, and a link budget is derived. Also, a receiver architecture is presented, that takes into consideration satellite channel specific impairments.

Digital communications / Space communication systems

READ MORE

Evaluation de l’impact de caches pour de la video adaptative par satellite

Authors: Thibaud Adrien, Fasson Julien, Arnal Fabrice, Pradas David, Dubois Emmanuel and Chaput Emmanuel

In Proc. CORes, Roscoff, France, May 28-29, 2018.

DOWNLOAD DOCUMENT

Aujourd’hui, le satellite géostationnaire propose à ses clients un accès Internet haut débit (de l’ordre de 20Mbit/s). Cependant le délai induit engendre une baisse de réactivité pour la plupart des applications. En particulier, le protocole de streaming vidéo adaptatif DASH ne parvient pas à s’y adapter. Au contraire, il sous-évalue les capacités du réseau et fournit le service minimal disponible. Pour réduire les délais, le CDN rapproche les données de l’utilisateur final grâce à la mise en place de caches. Ce service a fait ses preuves pour la navigation web et le téléchargement de fichiers dans Internet. Cet article propose d’analyser l’impact du CDN pour un service de streaming vidéo adaptatif et dans un contexte satcom, deux points qui, ensemble, divergent de l’utilisation habituelle du CDN. De cette première analyse, nous pouvons différentier trois situations. La première propose des performances optimales. Dans la deuxième, le CDN n’apporte rien. Enfin, dans la dernière situation, le CDN a un impact néfaste sur les performances. Ces deux derniers cas sont induits par une mauvaise politique de mise en cache qui leurre le client DASH sur les qualités à demander. Nous résolvons ce problème par le déploiement d’un proxy transparent indiquant les qualités disponibles dans les caches.

Networking / Space communication systems

READ MORE

Patent

PROCÉDÉ ET SYSTÈME DE TRANSMISSION DE PAQUETS DE DONNÉES À TRAVERS UN CANAL DE TRANSMISSION (RA) À ACCÈS ALÉATOIRE

Authors: Zamoum Selma, Gineste Mathieu, Lacan Jérôme, Boucheret Marie-Laure and Dupé Jean-Baptiste

n° 071277 FR RQDLV 14-05-18 YTA-LRE, May 2018.

Digital communications / Space communication systems

READ MORE

Activity Report

READ MORE

TeSA in Miami

Philippe Paimblanc, TeSA Researcher, Julien Lesouple and Lorenzo Ortega, TeSA PhD students, presented papers at ION GNSS+ 2018.

TeSA in Berlin

Bastien Tauran and Selma Zamoum, TeSA PhD students, presented papers at ASMS/SPSC 2018.

Yoann Couble becomes a Doctor

Congratulations!