Scientific Production

SEARCH

Search

Conference Paper

Incorporating User Feedback Into One-Class Support Vector Machines for Anomaly Detection

Authors: Lesouple Julien and Tourneret Jean-Yves

In Proc. 28th European Signal Processing Conference (EUSIPCO), Amsterdam, Netherlands, January 18-22, 2021.

DOWNLOAD DOCUMENT

Machine learning and data-driven algorithms have gained a growth of interest during the past decades due to the computation capability of the computers which has increased and the quantity of data available in various domains. One possible application of machine learning is to perform unsupervised anomaly detection. Indeed, among all available data, the anomalies are supposed to be very sparse and the expert might not have the time to label all the data as nominal or not. Many solutions exist to this unsupervised problem, but are known to provide many false alarms, because some scarce nominal modes might not be included in the training dataset and thus will be detected as anomalies. To tackle this issue, we propose to present an existing iterative algorithm, which presents potential anomaly to the expert at each iteration, and compute a new boundary according to this feedback using One Class Support Vector Machine.

Signal and image processing / Space communication systems

READ MORE

Wing 3D Reconstruction by Constraining the Bundle Adjustment with Mechanical Limitations

Authors: Demoulin Quentin, Lefebvre-Albaret François, Basarab Adrian, Kouamé Denis and Tourneret Jean-Yves

In Proc. 28th European Signal Processing Conference (EUSIPCO), Amsterdam, Netherlands, January 18-22, 2021.

DOWNLOAD DOCUMENT

The estimation of wing deformation is part of the certification of an aircraft. Wing deformation can be obtained from 3D reconstructions based on conventional multiview photogrammetry. However, 3D reconstructions are generally degraded by the variable flight environments that degrade the quality of 2D images. This paper addresses this issue by taking benefit from a priori knowledge of the wing mechanical behaviour. Specifically, mechanical limits are considered to regularize the bundle adjustment within the photogrammetry reconstruction. The performance of the proposed approach is evaluated on a real case, using data acquired on an aircraft A350-900.

Signal and image processing / Aeronautical communication systems

READ MORE

Journal Paper

GNSS Data Demodulation over Fading Environments: Antipodal and M-ary CSK Modulations

Authors: Ortega Espluga Lorenzo, Vilà-Valls Jordi, Poulliat Charly and Closas Pau

IET Radar, Sonar & Navigation, January, 2021.

DOWNLOAD DOCUMENT

This article investigates new strategies to compute accurate low-complexity Log Likelihood Ratio (LLR) values based on the Bayesian formulation under uncorrelated fading channels for both antipodal and CSK modulations when no Channel State Information (CSI) is available at the receiver. These LLR values are then used as input to modern error correcting schemes used in the data decoding process of last generation GNSS signals. Theoretical analysis based on the maximum achievable rate is presented for the different methods in order to evaluate the performance degradation with respect to the optimal CSI channel. Finally, Frame Error Rate (FER) simulation results are shown, validating the appropriate performance of the proposed LLR approximation methods.

Signal and image processing / Localization and navigation and Space communication systems

READ MORE

Joint Delay-Doppler Estimation Performance in a Dual Source Context

Authors: Lubeigt Corentin, Ortega Espluga Lorenzo, Vilà-Valls Jordi, Lestarquit Laurent and Chaumette Eric

Remote sensing, vol. 12, issue 3, p. 3894, November, 2020.

DOWNLOAD DOCUMENT

Evaluating the time-delay, Doppler effect and carrier phase of a received signal is a challenging estimation problem that was addressed in a large variety of remote sensing applications. This problem becomes more difficult and less understood when the signal is reflected off one or multiple surfaces and interferes with itself at the receiver stage. This phenomenon might deteriorate the overall system performance, as for the multipath effect in Global Navigation Satellite Systems (GNSS), and mitigation strategies must be accounted for. In other applications such as GNSS reflectometry (GNSS-R) it may be interesting to estimate the parameters of the reflected signal to deduce the geometry and the surface characteristics. In either case, a better understanding of this estimation problem is directly brought by the corresponding lower performance bounds. In the high signal-to-noise ratio regime of the Gaussian conditional signal model, the Cramér-Rao bound (CRB) provides an accurate lower bound in the mean square error sense. In this article, we derive a new compact CRB expression for the joint time-delay and Doppler estimation in a dual source context, considering a band-limited signal and its specular reflection. These compact CRBs are expressed in terms of the baseband signal samples, making them especially easy to use whatever the baseband signal considered, therefore being valid for a variety of remote sensors. This extends existing results in the single source context and opens the door to a plethora of usages to be discussed in the article. The proposed CRB expressions are validated in two representative navigation and radar examples.

Signal and image processing / Localization and navigation

READ MORE

PhD Thesis

Estimation Parcimonieuse et Apprentissage de Dictionnaires pour la Détection d'Anomalies Multivariées dans des Données Mixtes de Télémesure Satellite

Author:

Defended on November 6, 2020.

La surveillance automatique de systèmes et la prévention des pannes sont des enjeux majeurs dans de nombreux secteurs et l’industrie spatiale ne fait pas exception. Par exemple, le succès des missions des satellites suppose un suivi constant de leur état de santé réalisé à travers la surveillance de la télémesure. Les signaux de télémesure sont des données issues de capteurs embarqués qui sont reçues sous forme de séries temporelles décrivant l’évolution dans le temps de différents paramètres. Chaque paramètre est associé à une grandeur physique telle qu’une température, une tension ou une pression, ou à un équipement dont il reporte le fonctionnement à chaque instant. Alors que les approches classiques de surveillance atteignent leurs limites, les méthodes d’apprentissage automatique (machine learning en anglais) s’imposent afin d’améliorer la surveillance de la télémesure via un apprentissage semi-supervisé : les signaux de télémesure associés à un fonctionnement normal du système sont appris pour construire un modèle de référence auquel sont comparés les signaux de télémesure récemment acquis. Les méthodes récentes proposées dans la littérature ont permis d’améliorer de manière significative le suivi de l’état de santé des satellites mais elles s’intéressent presque exclusivement à la détection d’anomalies univariées pour des paramètres physiques traités indépendamment. L’objectif de cette thèse est de proposer des algorithmes pour la détection d’anomalies multivariées capables de traiter conjointement plusieurs paramètres de télémesure associés à des données de différentes natures (continues/discrètes),et de prendre en compte les corrélations et les relations qui peuvent exister entre eux. L’idée motrice de cette thèse est de supposer que la télémesure fraîchement reçue peut être estimée à partir de peu de données décrivant un fonctionnement normal du satellite. Cette hypothèse justifie l’utilisation de méthodes d’estimation parcimonieuse et d’apprentissage de dictionnaires qui seront étudiées tout au long de cette thèse. Une deuxième forme de parcimonie propre aux anomalies satellites a également motivé ce choix, à savoir la rareté des anomalies satellites qui affectent peu de paramètres en même temps. Dans un premier temps, un algorithme de détection d’anomalies multivariées basé sur un modèle d’estimation parcimonieuse est proposé. Une extension pondérée du modèle permettant d’intégrer de l’information externe est également présentée ainsi qu’une méthode d’estimation d’hyper paramètres qui a été développée pour faciliter la mise en oeuvre de l’algorithme. Dans un deuxième temps, un modèle d’estimation parcimonieuse avec un dictionnaire convolutif est proposé. L’objectif de cette deuxième méthode est de contourner le problème de non-invariance par translation dont souffre le premier algorithme. Les différentes méthodes proposées sont évaluées sur plusieurs cas d’usage industriels associés à de réelles données satellites et sont comparées aux approches de l’état de l’art.

READ MORE

Estimation Parcimonieuse et Apprentissage de Dictionnaires pour la Détection d'Anomalies Multivariées dans des Données Mixtes de Télémesure Satellite

Author: Pilastre Barbara

Defended on November 6, 2020.

DOWNLOAD DOCUMENT

La surveillance automatique de systèmes et la prévention des pannes sont des enjeux majeurs dans de nombreux secteurs et l’industrie spatiale ne fait pas exception. Par exemple, le succès des missions des satellites suppose un suivi constant de leur état de santé réalisé à travers la surveillance de la télémesure. Les signaux de télémesure sont des données issues de capteurs embarqués qui sont reçues sous forme de séries temporelles décrivant l’évolution dans le temps de différents paramètres. Chaque paramètre est associé à une grandeur physique telle qu’une température, une tension ou une pression, ou à un équipement dont il reporte le fonctionnement à chaque instant. Alors que les approches classiques de surveillance atteignent leurs limites, les méthodes d’apprentissage automatique (machine learning en anglais) s’imposent afin d’améliorer la surveillance de la télémesure via un apprentissage semi-supervisé : les signaux de télémesure associés à un fonctionnement normal du système sont appris pour construire un modèle de référence auquel sont comparés les signaux de télémesure récemment acquis. Les méthodes récentes proposées dans la littérature ont permis d’améliorer de manière significative le suivi de l’état de santé des satellites mais elles s’intéressent presque exclusivement à la détection d’anomalies univariées pour des paramètres physiques traités indépendamment. L’objectif de cette thèse est de proposer des algorithmes pour la détection d’anomalies multivariées capables de traiter conjointement plusieurs paramètres de télémesure associés à des données de différentes natures (continues/discrètes), et de prendre en compte les corrélations et les relations qui peuvent exister entre eux. L’idée motrice de cette thèse est de supposer que la télémesure fraîchement reçue peut être estimée à partir de peu de données décrivant un fonctionnement normal du satellite. Cette hypothèse justifie l’utilisation de méthodes d’estimation parcimonieuse et d’apprentissage de dictionnaires qui seront étudiées tout au long de cette thèse. Une deuxième forme de parcimonie propre aux anomalies satellites a également motivé ce choix, à savoir la rareté des anomalies satellites qui affectent peu de paramètres en même temps. Dans un premier temps, un algorithme de détection d’anomalies multivariées basé sur un modèle d’estimation parcimonieuse est proposé. Une extension pondérée du modèle permettant d’intégrer de l’information externe est également présentée ainsi qu’une méthode d’estimation d’hyperparamètres qui a été développée pour faciliter la mise en œuvre de l’algorithme. Dans un deuxième temps, un modèle d’estimation parcimonieuse avec un dictionnaire convolutif est proposé. L’objectif de cette deuxième méthode est de contourner le problème de non-invariance par translation dont souffre le premier algorithme. Les différentes méthodes proposées sont évaluées sur plusieurs cas d’usage industriels associés à de réelles données satellites et sont comparées aux approches de l’état de l’art.

Signal and image processing / Other

READ MORE

PhD Defense Slides

Estimation Parcimonieuse et Apprentissage de Dictionnaires pour la Détection d'Anomalies Multivariées dans des Données Mixtes de Télémesure Satellite

Author: Pilastre Barbara

Defended on November 6, 2020.

DOWNLOAD DOCUMENT

La surveillance automatique de systèmes et la prévention des pannes sont des enjeux majeurs dans de nombreux secteurs et l’industrie spatiale ne fait pas exception. Par exemple, le succès des missions des satellites suppose un suivi constant de leur état de santé réalisé à travers la surveillance de la télémesure. Les signaux de télémesure sont des données issues de capteurs embarqués qui sont reçues sous forme de séries temporelles décrivant l’évolution dans le temps de différents paramètres. Chaque paramètre est associé à une grandeur physique telle qu’une température, une tension ou une pression, ou à un équipement dont il reporte le fonctionnement à chaque instant. Alors que les approches classiques de surveillance atteignent leurs limites, les méthodes d’apprentissage automatique (machine learning en anglais) s’imposent afin d’améliorer la surveillance de la télémesure via un apprentissage semi-supervisé : les signaux de télémesure associés à un fonctionnement normal du système sont appris pour construire un modèle de référence auquel sont comparés les signaux de télémesure récemment acquis. Les méthodes récentes proposées dans la littérature ont permis d’améliorer de manière significative le suivi de l’état de santé des satellites mais elles s’intéressent presque exclusivement à la détection d’anomalies univariées pour des paramètres physiques traités indépendamment. L’objectif de cette thèse est de proposer des algorithmes pour la détection d’anomalies multivariées capables de traiter conjointement plusieurs paramètres de télémesure associés à des données de différentes natures (continues/discrètes), et de prendre en compte les corrélations et les relations qui peuvent exister entre eux. L’idée motrice de cette thèse est de supposer que la télémesure fraîchement reçue peut être estimée à partir de peu de données décrivant un fonctionnement normal du satellite. Cette hypothèse justifie l’utilisation de méthodes d’estimation parcimonieuse et d’apprentissage de dictionnaires qui seront étudiées tout au long de cette thèse. Une deuxième forme de parcimonie propre aux anomalies satellites a également motivé ce choix, à savoir la rareté des anomalies satellites qui affectent peu de paramètres en même temps. Dans un premier temps, un algorithme de détection d’anomalies multivariées basé sur un modèle d’estimation parcimonieuse est proposé. Une extension pondérée du modèle permettant d’intégrer de l’information externe est également présentée ainsi qu’une méthode d’estimation d’hyperparamètres qui a été développée pour faciliter la mise en œuvre de l’algorithme. Dans un deuxième temps, un modèle d’estimation parcimonieuse avec un dictionnaire convolutif est proposé. L’objectif de cette deuxième méthode est de contourner le problème de non-invariance par translation dont souffre le premier algorithme. Les différentes méthodes proposées sont évaluées sur plusieurs cas d’usage industriels associés à de réelles données satellites et sont comparées aux approches de l’état de l’art.

Signal and image processing / Other

READ MORE

Conference Paper

Constrained Bundle Adjustment Applied to Wing 3D Reconstruction with Mechanical Limitations

Authors: Demoulin Quentin, Lefebvre-Albaret François, Basarab Adrian, Kouamé Denis and Tourneret Jean-Yves

In Proc. IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, October 25-28, 2020.

DOWNLOAD DOCUMENT

Aircraft certification procedures require the estimation of wing deformation, which is a very challenging problem in photogrammetry applications. Indeed, in real flight conditions with varying environment, 3D reconstruction is strongly degraded. To cope with this issue, we propose to introduce prior knowledge about the wing mechanical limits in the photogrammetry reconstruction method. These mechanical limits are expressed as appropriate regularizations that are included into the classical bundle adjustment step. The proposed approach is evaluated using data acquired on a real aircraft yielding promising results.

Signal and image processing / Aeronautical communication systems

READ MORE

QUIC: Opportunities and threats in SATCOM

Authors: Kuhn Nicolas, Michel François, Thomas Ludovic, Dubois Emmanuel and Lochin Emmanuel

In Proc. Advanced Satellite Multimedia Systems (ASMS), Graz, Austria, October 20-21, 2020.

DOWNLOAD DOCUMENT

This article proposes a discussion on the strengths, weaknesses, opportunities and threats related to the deployment of QUIC end-to-end from a satellite-operator point-of-view. The deployment of QUIC is an opportunity for improving the quality of experience when exploiting satellite broadband accesses. Indeed, the fast establishment of secured connections reduces the short files transmission time. Moreover, removing transport layer performance enhancing proxies reduces the cost of network infrastructures and improves the integration of satellite systems. However, the congestion and flow controls at end points are not always suitable for satellite communications due to the intrinsic high bandwidth-delay product. Further acceptance of QUIC in satellite systems would be guaranteed if its performance in specific use-cases is increased. We propose a running code for an IETF document, and based on an emulated platform and on open-source software, this paper proposes values of performance metrics just as one piece of the puzzle. The final performance objective requires consensus among the different actors. The objective should be challenging enough for satellite operators to allow QUIC traffic but reasonable enough to keep QUIC deployable on the Internet.

Networking / Space communication systems

READ MORE

Improving the estimation of the sea level anomaly slppe

Authors: Mailhes Corinne, Besson Olivier, Guillot Amandine and Le Gac Sophie

in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Hawaï, USA, 26 September - 2 October 2020.

DOWNLOAD DOCUMENT

Satellite altimeters provide sea level measurements along satellite track. A mean profile based on the measurements averaged over a time period is then subtracted to estimate the sea level anomaly (SLA). In the spectral domain, SLA is characterized by a power spectral density of the form one over a power of the frequency where the power (the slope) is a parameter of great interest for ocean monitoring. However, this information lies in a narrow frequency band, located at very low frequencies, which calls for some specific spectral analysis methods. This paper studies a new parametric method based on an autoregressive model combined with a warping of the frequency scale (denoted as ARWARP). A statistical validation is proposed on simulated SLA signals, showing the performance of slope estimation using this ARWARP spectral estimator, compared to classical Fourier-based methods. Application to Sentinel-3 real data highlights the main advantage of the ARWARP model, making possible SLA slope estimation on a short signal segment, i.e., with a high spatial resolution.

Signal and image processing / Earth observation

READ MORE

Activity Report

READ MORE

IGARSS 2020

Conference talk of Corinne Mailhes at IGARSS 2020

READ MORE

ITSC 2020

Conference talk of Lorenzo Ortega, TeSA postdoc, at ITSC 2020

READ MORE

ION GNSS+ 2020

Conference talk of Thomas Verheyde, TeSA PhD, at ION GNSS+ 2020

READ MORE