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ABSTRACT

Satellite altimeters provide sea level measurements along satellite
track. A mean profile based on the measurements averaged over
a time period is then subtracted to estimate the sea level anomaly
(SLA). In the spectral domain, SLA is characterized by a power
spectral density of the form f−α where the slope α is a parameter of
great interest for ocean monitoring. However, this information lies
in a narrow frequency band, located at very low frequencies, which
calls for some specific spectral analysis methods. This paper studies
a new parametric method based on an autoregressive model com-
bined with a warping of the frequency scale (denoted as ARWARP).
A statistical validation is proposed on simulated SLA signals, show-
ing the performance of slope estimation using this ARWARP spec-
tral estimator, compared to classical Fourier-based methods. Appli-
cation to Sentinel-3 real data highlights the main advantage of the
ARWARP model, making possible SLA slope estimation on a short
signal segment, i.e., with a high spatial resolution.

Index Terms— Sea level anomaly (SLA), slope estimation, AR
model, frequency warping, spectral analysis.

1. INTRODUCTION

Satellite radar altimetry provides data that can be used for ocean
monitoring. Wavenumber spectra of along-track sea level anoma-
lies (SLA) are widely used to analyze different quantities such as the
energy cascades between large-scale, meoscale and submeoscale dy-
namics. As awaited from the quasigeostrophic theory [1], the power
spectrum density (PSD) of SLA signals exhibits a decrease of the
type f−α, starting from some minimal frequency f1. The parameter
α is of great interest in the altimetry community since it character-
izes ocean dynamics [2–5]. The SLA signal is usually corrupted by
additive noise, classically assumed to be white and Gaussian. Figure
1 displays the estimated PSD of real data from the Sentinel-3 satel-
lite as well as its expected shape (properly fitted): as can be seen, the
informative part of the slope area lies in a very small part, around
[0.001, 0.01] (equivalent to 30 − 320 km) of the total normalized
frequency interval [0, 0.5[, located at very low frequencies, making
a log-log representation necessary, while the “noise floor” is clearly
visible (horizontal red line σ2).

Estimation of α can be carried out by a linear regression ap-
plied on a cumulated weighted periodogram (Welch periodogram),
as shown in Fig. 1 [1–4]. Cumulating several periodograms is nec-
essary to reduce the variance of the estimated spectrum and perform
a reliable slope estimation. However, this raises several questions.
One of these questions is the stationarity property: how can we guar-
antee that SLA is stationary (i.e., with the same slope α) along the

different SLA segments used in the Welch periodogram? When us-
ing a Welch periodogram, the averaged wavenumber spectra are re-
lated to Earth footprints that can be distant from some hundreds of
kilometers, which questions the stationarity of these spectra. The
second question is linked to the inevitable choice of the weighting
window in the periodogram: it is well-known that the periodogram
is affected by a convolutive bias related to the equivalent spectral
window [6]. This affects the slope of the SLA spectrum and thus its
estimation highly depends on the window choice.

PSD estimation is an old problem with well-known solutions
such as Fourier-based methods. However, the shape of the SLA PSD
and the localization of the spectral bands of interest in a very low fre-
quency range calls for specific processing. The aim of this paper is to
investigate a new spectral estimation method making possible SLA
slope estimation using short signal segments, i.e., with a high spatial
resolution and avoiding the critical problem of window choice.

The paper is organized as follows. Section 2 introduces the
proposed spectral estimator referred to as ARWARP. A statistical
analysis of slope estimation using ARWARP is conducted on simu-
lated SLA signals in Section 3. An application to real data from the
Sentinel-3 satellite is presented in Section 4. Conclusions are finally
reported in Section 5.

Fig. 1: Estimated Sentinel-3 SLA PSD (in blue) estimated by Welch peri-
odogram [6] on 8 segments of N = 3000 samples from Agulhas Current
SLA, using a 10% Tukey window applied after detrending, zero-padding by
a factor 3, compared with the expected shape in red.



2. THE PROPOSED SPECTRAL ESTIMATOR

2.1. Parametric spectral analysis

Parametric spectral analysis is an effective alternative to non-
parametric Fourier-based analysis [6]. It relies on a PSD model
depending on a parameter vector θ so that the PSD estimation
Sx(f ;θ) amounts to that of θ, yielding an estimate Sx(f ; θ̂) where
θ̂ is an estimate of θ. Two main benefits have been advocated to
support this parametric approach. First, with possibly a small num-
ber of parameters describing the PSD, accurate estimation can be
conducted with a low number of samples. For SLA signals, this
would allow us to estimate the slope on a small ocean area, with a
few SLA samples (in the case of Sentinel-3, the distance between
two consecutive samples is 319m along the satellite track). Another
advantage is that estimates of the form Sx(f ; θ̂) exhibit less vari-
ance than Fourier-based estimates, leading to smoother PSD, which
will facilitate a reliable slope estimation in the case of SLA signals.

A very popular and understood PSD parametric model is the AR
(AutoRegressive) one, due to the fact that obtaining the AR param-
eters reduces to solving a linear least-squares problem, for which
computationally efficient algorithms have been proposed [6]. More-
over, an AR model is of interest for a large class of signals since it
consists in modeling a signal x(n) as a linear combination of its past
samples with an additive component representing the unexpected
part of the signal

x(n) = −
p∑
`=1

a`x(n− `) + e(n) (1)

where p is the AR model order, a` is the `th AR coefficient and e(n)
is the model error (namely the linear prediction error (LPE)). The
fitting of such a model to a signal leads to the following spectral
estimator of x(n)

SAR(f ; [a1 ... ap σ
2
e ]) =

σ2
e∣∣1 +

∑p
`=1 a`e

−i2π`f
∣∣2 (2)

where σ2
e is the LPE power.

In the case of SLA signals, our experience is that AR model-
ing can work fine, provided that a sufficient AR model order (large
number of parameters) is used. However, this is not fully satisfactory
since we loose the interest of a model with few parameters and we
do not take into account the problem specificities, namely that the
spectral part of interest lies in very low frequencies while the rest of
the frequency band contains mostly white noise.

2.2. Proposed pre-processing: warping

In order to account for the frequency distribution of the signal power,
we use the basic idea of a non-uniform spectral representation, with
a view to emphasize the lower part of the spectrum compared to the
high frequency part. This idea of using an unequal resolution related
to the frequency is an old one, which goes back to the seventies
[7]. It has been extensively used for audio applications [8] where
it is sometimes referred to as “frequency warping”. The basic idea
is to obtain a transformed sequence y(n), which corresponds to an
expansion over a set of orthogonal sequences ψk(n), i.e.,

x(n) =

+∞∑
k=−∞

y(k)ψk(n) (3)

where the functions ψk(.) should be chosen so that the Fourier trans-
forms of x(n) and y(n) are related to one another by a function
W (f) such that

Y [W (f)] = X(f). (4)

Hence a conventional Fourier transform of y(n) over equally spaced
frequencies yields a non-equally spaced frequency analysis for x(n).
A significant advantage of this technique is that it can be imple-
mented very easily from digital filters. Various choices exist for
the sequences ψk(n) which result in different non-linear functions
W (f). Since they exhibit good properties and are widely used in
warping methods, this paper uses Laguerre functions [9], leading to

W (f) = f +
1

π
arctan

(
b sin(2πf)

1− b cos(2πf)

)
(5)

where the parameter b ∈ [−1, 1] impacts the shape of the function
W (f). In our application, one wishes to dilate low frequencies while
compressing high frequencies, leading to the constraint b > 0.

2.3. The proposed spectral analysis: ARWARP

For SLA signal analysis, we propose to use frequency warping as a
pre-processing step, which enhances the low-frequency components
before an AR spectral analysis. A linear regression is finally con-
ducted on the resulting AR estimator allowing the slope α to be es-
timated, as illustrated in Fig. 2. The warping pre-processing might
be combined with any spectral analysis method. However, based on
the benefits of parametric methods detailed above, AR modeling has
been preferred for SLA analysis. The pair (frequency warping, AR
modeling) will be referred to as ARWARP in the sequel.

Fig. 2: ARWARP: proposed SLA processing.

ARWARP requires the tuning of three parameters: the warping
coefficient b, the number of warped samples M and the AR model
order p. The selected values of b and M usually result from some
trade-off. More precisely, the warping coefficient b is directly linked
to a so-called turning point frequency fw [8]

b = cos (2πfw) . (6)

For b > 0, the PSD is sampled with higher resolution at frequencies
lower than fw, and lower resolution at frequencies higher than fw.
For SLA signals, fw should correspond to the end of the slope region
in a log-log scale (also corresponding to the beginning of the noise
floor), i.e., fw ' 0.01 in normalized frequencies, as observed in Fig.
1, which corresponds to b = 0.99.

The input SLA signal being of finite length (N samples), the
warped sequence should be of infinite size [7]. However, from a
practical point of view, only M samples of the warped sequence
are computed. The influence of the warping sequence truncation
has been studied in [9]: taking into account the total group propa-
gation time of the Laguerre warping system, the minimum number
of warped samples allowing a quasi-reversible transformation is de-
fined by

M = N
1 + |b|
1− |b| . (7)

Note that for N = 3000 and b = 0.99, we obtain M = 597000
which induces a high computational cost in the warping step. In or-
der to reduce the value of M , we have chosen b = 0.9, correspond-
ing to a value of M more than ten times lower, i.e., M = 57000 and
a turning point frequency of fw = 0.07, which is acceptable in view
of Fig. 1.



Finally, the model order p needs to be adjusted. One might think
of using classical AR model order criteria such as Akaike or mini-
mum description length (MDL) [6]. However, these criteria are more
adapted to line spectra, which is not the case for SLA signals. The
model order p has to be low enough to guarantee a “smooth” spectral
behavior. A reasonable choice is p ∈ {5, ..., 9}.

Once the ARWARP parameters have been set, one can compute
the ARWARP spectral estimator as follows

Sx(f) =
σ2
e∣∣1 +

∑p
`=1 a`e

−i2π`W (f)
∣∣2 |Λ0(f)|2, (8)

where a`, ` = 1, ..., p are the AR coefficients estimated using
any linear prediction algorithm applied to the warped sequence
y(k), k = 0, ...,M − 1, σ2

e is the LPE power and Λ0(f) is the
lowpass filter (in the case of b > 0) corresponding to the zero-order
Laguerre sequence [9]. Once the PSD (8) has been computed, we
propose to estimate the slope α using a classical linear regression
on a log-log spectral representation. The full estimation strategy is
summarized in Fig. 2.

3. VALIDATION ON SIMULATED SIGNALS

The first validation step is to compare the performance of the pro-
posed ARWARP algorithm to conventional Fourier-based methods
on simulated SLA signals with a known slope α, as explained in the
next sections.

3.1. Simulation model

A simplified model of SLA PSD is considered

Sx(f) = σ2 + Sα(f) = σ2 +

{
Cf−α1 0 < f < f1

Cf−α f ≥ f1
(9)

where σ2 is the white noise power, and where the PSD at very low
frequencies is fixed by continuity arguments (note that the SLA PSD
is unknown for f < f1, or at least not easy to characterize as f1 is
very low). This model is represented by the red curve in Fig 1.

Simulated SLA signals were generated as Gaussian vectors
whose correlation function is computed as the inverse transform of
Sα(f) in (9), except for the zero-lag where the noise power σ2 was
added (additive white noise). The corresponding Matlab code for
the generation of SLA signals is available in [10].

3.2. Statistical analysis

In this section, we compare the performance of estimators of α ob-
tained after performing linear regression on both a classical peri-
odogram and an ARWARP spectral estimator. Hence, 1000 Monte-
Carlo simulations were run for a SLA signal of N = 3000 sam-
ples with PSD (9), the frequency f1 corresponding to a distance
d1 = 319 km (i.e., a normalized frequency f1 = 10−3) and a white
noise level fixed to σ2 = 0.003 (to be coherent with Sentinel-3 real
data). Fourier-based spectrum estimation was conducted by using
a periodogram with a 10% Tukey window applied after detrending
and zero-padding by a factor 3. For the ARWARP model, the warp-
ing parameter was b = 0.9 and different values of the model order
were considered, i.e., p ∈ {5, 7, 9}. In order to estimate the spectral
slope, linear regression was performed on a frequency range corre-
sponding to the two dashed green vertical lines in Fig. 3. Figure 4

Fig. 3: Slope estimation by linear regression on estimated PSD of a simulated
SLA signal (N = 3000, α = 3). (Left) PSD estimated using a periodogram
(detrending, 10% Tukey window, zero-padding by a factor 3). (Right) PSD
estimated using the ARWARP method (p = 5, b = 0.9, M = 57000).

displays the boxplots of the bias between the estimated and theoreti-
cal values of α versus different values of α, while the corresponding
values of the mean-square error (MSE) are reported in Table 1 .

α 2 2.5 3 3.5 4
Periodogram MSE 0.76 0.75 0.68 0.57 0.54
ARWARP(5) MSE 0.20 0.23 0.16 0.12 0.23
ARWARP(7) MSE 0.23 0.21 0.13 0.10 0.27
ARWARP(9) MSE 0.27 0.19 0.15 0.25 0.54

Table 1: MSE of slope estimates after computing a linear regression on esti-
mated PSDs using periodogram and ARWARP models (N = 3000).

Fig. 4: Statistics (boxplots) of slope bias on 1000 sequences of simulated
SLA signals (N = 3000): estimation using periodogram (left) and AR-
WARP (p = 5, right). In each boxplot, the central mark is the median, the
edges are the 25th and 75th percentiles, the whiskers extend to the most ex-
treme datapoints the algorithm considers to be not outliers, and the outliers
are plotted individually in red.

From a spectral point of view, Fig. 3 highlights the interest of
the ARWARP model, which provides a spectral estimator well-fitted
to SLA signals, allowing a PSD estimation with a small number of
samples, i.e., with a high spatial resolution, which is not possible
with Fourier-based methods.

Figure 4 shows that the variance of the slope estimates is much
smaller when linear regression is applied to the ARWARP model
compared to the periodogram. These results show that the estimation
of the SLA slope is possible with a high spatial resolution using the
ARWARP method, while Fourier-based methods yield less accurate
estimates. Table 1 confirms these results quantitatively and shows
the impact of the model order p: a good compromise seems to be
p = 5 for all slope values.



4. VALIDATION ON REAL SIGNALS

4.1. SLA around the Equator

For a second validation step, we apply the proposed ARWARP
method on Sentinel-3 real data measured around the Equator in an
area where the slope is known to have low values and to be mostly
stationary. Figure 5 presents on the left the result of slope estimation
on 52 segments ofN = 3000 samples with periodogram in blue and
ARWARP in red. As expected, slope estimation via periodogram
gives spurious results with an unacceptable variance along the differ-
ent segments, while ARWARP estimates yield quite constant values
of the slope, as expected from a physical point of view. No ground
truth exists for these real data. However, the results associated
with the ARWARP model seeem more reliable, with values around
α = 1.45. Note that a classical Welch (cumulated) periodogram on
these 52 segments gives an estimation of the slope α̂ = 1.51 (green
line). Once again, compared to a Welch periodogram applied on the
52 segments, the ARWARP model allows PSD and slope estimations
on each individual segment, as illustrated in the right figure.

Fig. 5: (Left) slope estimates on segments around the Equator (N = 3000),
using periodogram (blue), ARWARP (p = 5, red) and Welch (cumulated
on the 52 segments, green). The mean value of the estimated slopes is also
reported with an error interval of +/- twice the standard deviation. (Right)
PSD and slope estimates for segment #25.

4.2. SLA in the Agulhas Current

This last section considers SLA segments from the Agulhas Cur-
rent, which is an area where higher and different slope values are
expected. Figure 6 (left) displays slope estimates obtained on differ-
ent SLA segments (N = 3000): the periodogram obviously gives
spurious and unreliable results, while ARWARP estimates are more
coherent. Figure 6 (right) shows examples of PSD and slope esti-
mations where the periodogram fails to give a good slope estimate,
while the ARWARP PSD remains “smooth” guaranteeing a more ac-
curate slope estimation.

5. CONCLUSIONS

This paper proposed a new method to estimate the slope of SLA sig-
nals based on a combination of frequency warping, AR modeling and
linear regression. This method showed improved results compared
to Fourier-based strategies for simulated SLA signals. This improve-
ment has also been observed on real Sentinel-3 data. The proposed
ARWARP model makes PSD and slope estimations possible on a

Fig. 6: (Left) slope estimation on segments (N = 3000) of SLA in the
Agulhas Current area, using periodogram (blue) and ARWARP (order p = 5,
red). (Right) PSD and slope estimations on segment #25.

short SLA segment, i.e., allows spatial resolution of the estimates
to be improved. Future works include validation on more real data,
which is encouraged using the Matlab code available in [10].
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