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ABSTRACT

This paper studies a fast multi-band image fusion algorithm for high-

spatial low-spectral resolution and low-spatial high-spectral resolu-

tion images. The popular forward model and the conventional Gaus-

sian prior are used to form the posterior of the target image. Max-

imizing the posterior leads to solving a matrix Sylvester equation.

By exploiting the properties of the circulant and decimation matri-

ces associated with the fusion problem, a closed-form solution for

the corresponding Sylvester equation is obtained, avoiding any iter-

ative update step. Simulation results show that the proposed algo-

rithm achieves the same performance as existing algorithms with the

advantage of significantly decreasing the computational complexity

of these algorithms.

Index Terms— Multi-band fusion, Hyperspectral images,

Sylvester equation, Closed-form solution

1. INTRODUCTION

Multi-band images including hyperspectral (HS) and multi-spectral

(MS) images have been used successfully in many image processing

applications [1, 2]. However, multi-band imaging generally suffers

from the limited spatial resolution of the data acquisition devices,

mainly due to an unsurpassable tradeoff between spatial and spec-

tral sensitivities [3]. Generally, the linear degradations applied to

the observed images with respect to (w.r.t.) the target high-spatial

and high-spectral image reduce to spatial and spectral transforma-

tions. Thus, the multi-band image fusion problem can be interpreted

as restoring a three dimensional data-cube from two degraded data-

cubes.

The high-spatial and high-spectral resolution reference image is

vectorized band by band to build anmλ × n matrixX to better dis-

tinguish spectral and spatial degradations, where mλ is the number

of spectral bands and n is the number of pixels in each band. Based

on this pixel ordering, any linear operation applied to the left (resp.

right) side ofX describes a spectral (resp. spatial) degradation.

In this work, we assume that two complementary images of

high-spectral or high-spatial resolutions are available to reconstruct

the high-spectral and high-spatial resolution image of interest (target

image). These images result from linear spectral and spatial degrada-

tions of the full resolution image X, according to the well-admitted

model
YL = LX+NL

YR = XBS+NR

(1)

where X ∈ R
mλ×n is the full resolution target image and YL ∈

R
nλ×n andYR ∈ R

mλ×m are the observed spectrally and spatially
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degraded images. The matrix L ∈ R
nλ×mλ is the spectral degrada-

tion, depending on the spectral response of the sensor, which can be

a priori known or estimated by cross-calibration [4]. The blurring

matrixB ∈ R
n×n has the specific property of being a cyclic convo-

lution operator acting on the bands if the spatial blurring is assumed

to be space-invariant. The matrix S ∈ R
n×m is a d = dr × dc

uniform downsampling operator, which has m = n/d ones on the

block diagonal and zeros elsewhere, and such that STS = Im. Note
that multiplying by ST represents zero-interpolation to increase the

number of pixels from m to n. Finally, the noises NL and NR are

additive terms that include both modeling errors and sensor noises.

This matrix equation (1) has been widely advocated to solve the

pansharpening and HS pansharpening problems, which consist of

fusing a PAN image with an MS or an HS image [5]. Similarly, most

of the techniques developed to fuse MS and HS images also rely on

a similar linear model [6, 7]. The problem of fusing high-spectral

and high-spatial resolution images can be formulated as estimating

the unknown matrix X from (1). This is a challenging task, mainly

due to the large size of X and to the presence of the downsampling

operator S, which prevents any direct use of the Fourier transform

to diagonalize the blurring operator B. To overcome this difficulty,

several computational strategies have been designed to approximate

the Bayesian estimators associated with a Gaussian prior modeling

[5, 8]. The method recently proposed in [6] is based on a Markov

chain Monte Carlo (MCMC) algorithm which shows good perfor-

mance but has the major drawback of being computationally expen-

sive. In [9], an alternating direction method of multipliers (ADMM)

embedded in a block coordinate descent method (BCD) has been

developed to compute the maximum a posterior (MAP) estimator of

X, allowing the numerical complexity to be significantly decreased.

More fusion methods can also be found in [5].

In this paper, contrary to the algorithms described above, a much

more efficient method is proposed to solve explicitly an underlying

Sylvester equation (SE) associated with the fusion problem defined

in (1), leading to an algorithm referred to as Fast fUsion based on

Sylvester Equation (FUSE). The MAP estimator associated with a

Gaussian prior similar to [6, 9] can be directly computed thanks to

the proposed strategy.

2. PROBLEM FORMULATION

Since adjacent HS bands are known to be highly correlated, the HS

vectors usually live in a subspace whose dimension is much smaller

than the number of bands mλ [10], i.e.,X = HU whereH is a full

column rank matrix and U ∈ R
m̃λ×n is the projection of X onto

the subspace spanned by the columns ofH ∈ R
mλ×m̃λ .

Considering the statistical properties of the noise matrices NL

and NR, it is obvious to formulate the fusion problem linked with

the linear model (1) in the least-squares (LS) sense [11] as follow

argmin
U

L(U) = argmin
U

d(U) + φ(U) (2)
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2

∥∥∥∥Λ
−

1

2

R
(YR −HUBS)

∥∥∥∥
2

F

+

1

2

∥∥∥∥Λ
−

1

2

L
(YL − LHU)

∥∥∥∥
2

F

(3)

is the data term and φ (U) is the regularizer. In this work, we focus
on the Tikhonov (or ℓ2) regularization [12], i.e.,

φ (U) =
1

2

∥∥∥Σ−
1

2 (U− µ)
∥∥∥
2

F
(4)

where µ and Σ are fixed and Σ explores the correlations between

HS band and controls the distance between U and µ. In this work,

µ and Σ have been fixed by estimating them from the data directly.

However, the optimization w.r.t. the ℓ2 regularized objective can ap-
pear as a sub-problem of the optimization associated with a more

complicated prior, such as total variation (TV) [13], or a hyper-prior

in a hierarchical Bayesian framework [7]. This reminds us that the

proposed method to solve (2) can be useful when embedded into

more sophisticated regularization based models. In this paper, we

prove that after exploiting some properties of B and S, the mini-

mization problem (2) can be solved analytically, without any itera-

tive optimization scheme or Monte Carlo based method. The result-

ing closed-form solution to the optimization problem (2) is presented

in Section 3. Simulation results are presented in Section 4 whereas

conclusions are reported in Section 5.

3. A CLOSED-FORM SOLUTION FORMULTI-BAND

IMAGE FUSION

3.1. Sylvester equation

ThematrixUminimizingL(U) satisfies the relation, dL(U)/dU =
0, leading to the following matrix equation

HHΛ−1

R
HUBS (BS)H +

(
(LH)HΛ−1

L LH+Σ−1

)
U

= HHΛ−1

R
YR (BS)H + (LH)HΛ−1

L YL +Σ−1
µ.

(5)

As mentioned in Section 1, the difficulty for solving (5) results

from the high dimensionality of U and the presence of the down-

sampling matrix S. In this work, we will show that Eq. (5) can be

solved analytically with some assumptions summarized below.

Assumption 1. The blurring matrix B is a block circulant matrix

with circulant blocks.

A consequence of this assumption is that B can be decomposed

as B = FDFH and BH = FD∗FH , where F ∈ R
n×n is the

discrete Fourier transform (DFT) matrix (FFH = FHF = In),

D ∈ R
n×n is a diagonal matrix and ∗ represents the conjugate op-

erator. Note that the blurring matrix B is assumed to be known.

In practice, it can be estimated by cross-calibration [4] or using ob-

served data [13].

Assumption 2. The decimation matrix S corresponds to downsam-

pling the original signal and its conjugate transpose SH interpolates

the decimated signal with zeros.

A decimation matrix satisfies the property SHS = Im. More-

over, the matrix S , SSH
∈ R

n×n is symmetric and idempotent,

i.e., S = SH and SSH = S2 = S.

Note that the assumptions 1 and 2 for the blurring matrixB and

the decimation matrix S have been widely used in image processing

applications, such as super-resolution [14], fusion [13], etc. After

multiplying (5) on both sides by
(
HHΛ−1

R
H
)
−1

, we obtain1

C1U+UC2 = C3 (6)

where

C1 =
(
HHΛ−1

R
H
)
−1

(
(LH)HΛ−1

L LH+Σ−1

)

C2 = BSBH

C3 =
(
HHΛ−1

R
H
)
−1

(HHΛ−1

R
YR (BS)H +

(LH)HΛ−1

L YL +Σ−1
µ).

(7)

Eq. (6) is a Sylvester matrix equation [15]. It is well known that

an SE has a unique solution if and only if an arbitrary sum of the

eigenvalues of C1 and C2 is not equal to zero [15]. The matrix C1

is positive definite as the covariance matrix Σ−1 is always positive

definite. Thus, the eigenvalues ofC1 are always positive, guarantee-

ing the existence of the unique solution of (6).

3.2. Proposed closed-form solution

Using the decomposition C1 = QΛCQ
−1 and multiplying both

sides of (6) byQ−1 leads to

ΛCQ
−1

U+Q
−1

UC2 = Q
−1

C3. (8)

Right multiplying (8) by FD on both sides and using the definitions

of matricesC2 andB yields

ΛCQ
−1

UFD+Q
−1

UFD
(
F

H
SFD

)
= Q

−1
C3FD (9)

where D = (D∗)D is a real diagonal matrix. Note that UFD =
UBF ∈ R

m̃λ×n can be interpreted as the Fourier transform of the

blurred target image, which is a complex matrix. Eq. (9) can be

regarded as an SE w.r.t. Q−1UFD, which has a simpler form com-

pared to (6) as ΛC is a diagonal matrix.

The next step in our analysis is to simplify the matrix FHSFD

appearing on the left hand side of (9). First, it is important to note

that the matrixFHSFD has a specific structure since all its columns

contain the same blocks [16]. Using this property, by multiplying left

and right by specific matrices, we will show that we obtain a block

matrix whose nonzero blocks are located in its first (block) row (see

(12)). More precisely, introduce the following matrix

P =




Im 0 · · · 0

−Im Im · · · 0
.
..

.

..
. . .

.

..

−Im 0 · · · Im




︸ ︷︷ ︸
d

(10)

whose inverse can be easily computed. Right multiplying both sides

of (9) by P−1 leads to

ΛCŪ+ ŪM = C̄3 (11)

where Ū = Q−1UFDP−1, M = P
(
FHSFD

)
P−1 and C̄3 =

Q−1C3FDP−1. Eq. (11) is an SE w.r.t. Ū whose solution is sig-

nificantly easier than for (8) because the matrixM has the following

1The invertibility of the matrix H
H
Λ

−1

R
H is guaranteed since H has

full column rank and ΛR is positive definite.



simple form

M = P
(
F

H
SFD

)
P

−1 =
1

d


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Di D
2
· · · Dd
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...
...
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where the matrixD has been partitioned as

D = diag [D
1
,D

2
, · · · ,Dd]

withDi anm×m real diagonal matrix [16].

Finally, using the specific form of M, the solution Ū of the SE

(11) can be computed block-by-block as stated in the following the-

orem.

Theorem 1. Let (C̄3)l,j denotes the jth block of the lth band of C̄3

for any l = 1, · · · , m̃λ. Then, the solution Ū of the SE (11) can be

decomposed as

Ū =




ū1,1 ū1,2 · · · ū1,d

ū2,1 ū2,2 · · · ū2,d

...
...

. . .
...

ūm̃λ,1 ūm̃λ,2 · · · ūm̃λ,d


 (13)

with

ūl,j =





(C̄3)l,j

(
1

d

d∑
i=1

Di + λl
CIn

)−1

, j = 1,

1

λl

C

[
(C̄3)l,j −

1

d
ūl,1Dj

]
, j = 2, · · · , d.

(14)

Proof. See [16].

Note that ul,j ∈ R
1×m denotes the jth block of the lth band.

Note also that the matrix 1

d

d∑
i=1

Di + λl
CIn appearing in the expres-

sion of ūl,1 is an n × n real diagonal matrix whose inversion is

trivial. The final estimator ofX is obtained as follows2

X̂ = HQŪPD
−1

F
H . (15)

The resulting FUSE algorithm allowing to compute the estimated

image X̂ is summarized in Algorithm 1.

4. SIMULATIONS

4.1. Simulation Scenario

This section applies the proposed fusion method to HS pansharpen-

ing and compares it with state-of-the-art methods investigated in [9].

The reference image considered here as the high-spatial and high-

spectral image is a 512 × 512 × 160 HS image acquired in 2010

by the HySpex HS sensor over Villelongue, France (00◦03’W and

42◦57’N) with L = 160 spectral bands ranging from about 408nm

to 985nm, a spectral resolution of 3.6nm and a spatial resolution of

0.5m. A composite color image of the scene of interest is shown in

Fig. 1 (bottom right).

2It may happen that the diagonal matrix D does not have full rank (con-
taining zeros in its diagonal) or is ill-conditioned (having very small numbers
in its diagonal), due to a specific blurring kernel. In this case, D−1 can be

replaced by (D+ τIm)−1 for regularization purpose, where τ is a small
penalty parameter [17].

Algorithm 1: Fast Fusion of Multi-band Images (FUSE)

Input: YL,YR, ΛL,ΛR, L,B, S,H

// Circulant matrix decomposition:

B = FDFH

1 D← Dec (B);
2 D = D∗D;

// Calculate C1

3 C1 ←

(
HHΛ−1

R
H
)
−1

(
(LH)HΛ−1

L LH+Σ−1

)
;

// Decompose of C1: C1 = QΛCQ
−1

4 (Q,ΛC)← EigDec (C1);

// Calculate C̄3

5 C̄3 ← Q−1
(
HHΛ−1

R
H
)
−1

(HHΛ−1

R
YR (BS)H

+(LH)HΛ−1

L YL +Σ−1
µ)BFP−1;

// Calculate Ū block by block (d
blocks) and band by band (m̃λ bands)

6 for l = 1 to m̃λ do

// Calculate 1st block in lth band

7 ūl,1 = (C̄3)l,1

(
1

d

d∑
i=1

Di + λl
CIn

)−1

;

// Other blocks in lth band

8 for j = 2 to d do
9 ūl,j = 1

λl

C

(
(C̄3)l,j −

1

d
ūl,1Dj

)
;

10 end

11 end

Output: X = HQŪPD−1FH

The reference HS image X is reconstructed from one HS and

one coregistered PAN images. First, the HS image YR has been

generated by applying a 5×5 Gaussian filter and by down-sampling
every 4 pixels in both vertical and horizontal directions for each band
ofX. Second, a PAN imageYL has been obtained by averaging the

first 81 bands of the HS image. The HS and PAN images are both

contaminated by additive centered Gaussian noises. The simulations

have been conducted with SNR = 30dB for both HS and PAN im-

ages. The observed HS and MS images are shown in the top left and

right of Fig. 1 (note that the HS image has been scaled for better

visualization). To learn the projection matrix H, a PCA has been

conducted. More precisely, the m̃λ = 5 most discriminant vectors
associated with the 5 largest eigenvalues of the sample covariance

matrix of the HS image have been computed. These 5 vectors lead
to 99.79% of the information contained in the HS image.

The mean µ of the Gaussian prior was fixed to an interpolated

HS image following the strategy proposed in [6]. The covariance

matrix of the Gaussian prior is fixed a priori. More specifically, the

HS image has been interpolated and then blurred and down-sampled

to generate the degraded image, referred to as Ȳ. The covariance

matrix Σ was estimated using this degraded image Ȳ and the HS

imageYR as

Σ̃ =
(YR − Ȳ)(YR − Ȳ)T

m− 1
.

This section compares the performance of the proposed FUSE algo-

rithm with the MAP estimators of [8] and [9].

4.2. Fusion performance

To evaluate the quality of fusion methods, five image quality mea-

sures are investigated. We propose to use the restored signal-to-noise

ratio (RSNR), the averaged spectral angle mapper (SAM), the uni-



Fig. 1. Madonna dataset: (Top left) HS image. (Top right) PAN

image. (Middle left) Fusion with method in [8]. (Middle right) Fu-

sion with ADMM in [9]. (Bottom left) Fusion with proposed FUSE.

(Bottom right) Reference image.

versal image quality index (UIQI), the relative dimensionless global

error in synthesis (ERGAS) and the degree of distortion (DD) as

quantitative measures (see [6] for definitions of these performance

measures). The larger RSNR and UIQI, the better the fusion. The

smaller SAM, ERGAS and DD, the better the fusion.

All algorithms have been implemented usingMATLABR2014A

on a computer with Intel(R) Core(TM) i7-2600 CPU@3.40GHz and

8GB RAM. The estimated images obtained with the three algorithms

are depicted in Fig. 1 and are visually very similar. More quantitative

results are reported in Table 1 and confirm the similar performance

of these methods in terms of the various fusion quality measures

(RSNR, UIQI, SAM, ERGAS and DD). However, the computational

time of the proposed algorithm is reduced by a factor larger than 150
comparing with the result using [9] due to the existence of a closed-

form solution for the Sylvester matrix equation.

5. CONCLUSION

This paper developed a fast multi-band image fusion method based
on an explicit solution of a Sylvester equation. This equation was
derived from the maximization of an appropriate posterior distribu-
tion associated with the image of interest. Numerical experiments
showed that the proposed fast fusion method compares competitively
with other state-of-art methods, with the advantage of reducing the
computational complexity significantly. Future work will consist of

Table 1. Performance of HS Pansharpening methods: RSNR (in

dB), UIQI, SAM (in degree), ERGAS, DD (in 10−3) and time (in

second).

Methods RSNR UIQI SAM ERGAS DD Time

MAP [8] 18.006 0.9566 3.801 3.508 4.687 42.08

ADMM [9] 19.040 0.9642 3.377 3.360 4.253 159.36

FUSE 19.212 0.9656 3.368 3.283 4.199 0.94

incorporating spectral unmixing into the multi-band fusion scheme.
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