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Unsupervised Nonlinear Spectral Unmixing
Based on a Multilinear Mixing Model
Qi Wei, Member, IEEE, Marcus Chen, Jean-Yves Tourneret, Senior Member, IEEE,

and Simon Godsill, Member, IEEE

Abstract— In the community of remote sensing, nonlinear
mixture models have recently received particular attention in
hyperspectral image processing. In this paper, we present a
novel nonlinear spectral unmixing method following the recent
multilinear mixing model of Heylen and Scheunders, which
includes an infinite number of terms related to interactions
between different endmembers. The proposed unmixing method
is unsupervised in the sense that the endmembers are estimated
jointly with the abundances and other parameters of interest,
i.e., the transition probability of undergoing further interactions.
Nonnegativity and sum-to-one constraints are imposed on abun-
dances while only nonnegativity is considered for endmembers.
The resulting unmixing problem is formulated as a constrained
nonlinear optimization problem, which is solved by a block
coordinate descent strategy, consisting of updating the end-
members, abundances, and transition probability iteratively. The
proposed method is evaluated and compared with existing linear
and nonlinear unmixing methods for both synthetic and real
hyperspectral data sets acquired by the airborne visible/infrared
imaging spectrometer sensor. The advantage of using nonlinear
unmixing as opposed to linear unmixing is clearly shown in these
examples.

Index Terms— Block coordinate descent (BCD), gradient pro-
jection method, multilinear model, nonlinear unmixing (NLU).

I. INTRODUCTION

S
PECTRAL unmixing (SU) aims at decomposing a set
of n multivariate measurements (or pixel vectors) X =

[x1, . . . , xn] into a collection of m elementary signatures
E = [e1, . . . , em ], usually referred to as endmembers, and
estimating the relative proportions A = [a1, . . . , an] of these
signatures, called abundances. SU has been advocated as a
relevant multivariate analysis technique in various applica-
tive areas, including remote sensing [2], planetology [3],
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microscopy [4], spectroscopy [5], and gene expression analy-
sis [6]. In particular, a great interest has been demonstrated
when analyzing multiband (e.g., hyperspectral) images, for
instance for pixel classification [7], material quantification [8],
and subpixel detection [9]. Due to the model inaccuracies,
observation noise, environmental conditions, endmember vari-
ability, and data set size, SU is still a challenging ill-posed
inverse problem. Plenty of mixing models and unmixing
algorithms have been proposed to solve the SU problem and
can be roughly classified into linear and nonlinear unmixing
models [10]. In the following, we introduce the main linear
mixture model (LMM) and nonlinear mixture model, the
reasons for nonlinearity, and the existing solutions in this field.

A. Linear Mixture Model

The LMM assumes that each image pixel is a linear combi-
nation of all the endmembers present in this pixel. The LMM
is a simplified spectral mixture model that considers only
first-order scattered photons by neglecting multiple photon
interactions [11]. The LMM model has been widely used in
the remote sensing community and can be expressed as [12]

xi = Eai + ni (1)

where

1) xi is a d×1 vector representing the measured reflectance
for the i th pixel;

2) E ∈ R
d×m is a nonnegative matrix whose columns

e1, . . . , em correspond to m endmember signatures and
span the space where the data x1, . . . , xn reside;

3) ai is a m × 1 nonnegative vector, which includes the
fractional abundances (coefficients) for the i th pixel (that
sum to 1);

4) ni ∈ R
d is the additive Gaussian noise.

By arranging all pixels of the observed scenario lexico-
graphically, the LMM model can be written as

X = EA+ N (2)

where X ∈ R
d×n , A ∈ R

m×n , and N ∈ R
d×n are the

reflectance, abundance, and noise matrices, n is the number
of observations, and d is the number of spectral bands.
The SU problem based on the LMM is generally formulated

as the following constrained least squares problem:

min
ai
‖xi − Eai‖22 subject to (s.t.) ai ≥0 and 1T

mai = 1 (3)



where 1m is an m×1 vector with all ones. Using all observed
data and matrix notations, the optimization problem can be
written as

min
A
‖X − EA‖2F s.t. A ≥ 0 and 1T

mA = 1T
n (4)

where A ≥ 0 has to be understood in the element-wise sense,
meaning that all the coefficients of A are nonnegative. Note
that ‖ · ‖F is the Frobenius norm, which is defined as

‖X‖F =
√
trace(XH X)

where XH denotes the conjugate transpose of X and trace(M)
is the trace of the matrix M [13].

B. Nonlinear Mixture Model

Due to its simple and intuitive physical interpretation as
well as tractable estimation process, the LMM has been widely
used for unmixing, and has shown interesting results in various
applications. However, there exist many scenarios, involving
intimate mixtures or multipath reflections, for which the LMM
is not appropriate and can be advantageously replaced by a
nonlinear mixture model [1], [14]–[16]. Nonlinear spectral
mixing occurs in the presence of multiple reflections and
transmissions from a surface. One notable example is the case
of scenes with large geometrical structures such as buildings
or trees, where shadowing and mutual illumination involve
multiple light scattering effects. Another example is the case
of mineral mixtures (also referred to as intimate mixtures),
where an incoming light ray can interact many times with the
different mineral grains, and the single interactions assumed
in the LMM can even become relatively rare. Furthermore,
the LMM only considers reflection and disregards optical
transmission, which can become quite important in vegetation
and mineral mixtures. To solve these problems, nonlinear mix-
ture models have been proposed as interesting alternatives to
overcome the inherent limitations of the LMM. These models
include the Hapke model [17], the Fan et al. model [18],
the generalized bilinear model (GBM) [19], [20], the linear-
quadratic model [21], the polynomial postnonlinear mixture
model [22], the multilinear mixing (MLM) model [1], and
many others (see [23] for an intensive review).
In this paper, we focus on the recently proposed MLM

model [1] mainly due to its generality to consider all orders of
interactions between endmembers. The MLM model follows
two basic assumptions.
1) A light ray incoming from the source will interact with
at least one material.

2) In the i th pixel, after each interaction with a material,
there is a finite probability of undergoing further interac-
tions denoted by Pi , and thus the probability of escaping
the scene and reaching the observer is 1− Pi .

More specifically, the nonlinear mixture model of [1] is
formulated as

xi = (1− P i )yi + (1− P i )P i (yi ⊙ yi )

+ (1− P i )(P i )2(yi ⊙ yi ⊙ yi) · · · (5)

where xi represents the observed reflectance for the i th pixel,
yi = Eai is the linear term used in the traditional LMM

model, and ⊙ represents the Hadamard entry-wise product.
It is easy to find that all the orders of interactions between all
the materials/endmembers have been considered and explicitly
formulated in (5), which makes it flexible and generic for
nonlinear mixed data.
To the best of our knowledge, the MLM model is the first

nonlinear model that includes all orders of interactions by
introducing only a single parameter P i , which describes the
probability of further interactions. Furthermore, the summation
in (5) can be conveniently simplified as the following fixed-
point equation:

xi = (1− P i )yi + P i yi ⊙ xi . (6)

Note that P i is different from pixel to pixel. For
more details concerning the derivation of the MLM, we
refer the reader to [1]. To achieve nonlinear unmixing,
Heylen and Scheunders [1] considered the following optimiza-
tion problem:

arg min
{ ai ,P i}

∥∥xi −
(1− P i )yi

1− P i yi

∥∥2
2 s.t. yi = Eai . (7)

The endmember matrix E was suggested to be estimated
using vertex component analysis (VCA) in [24], which is one
of the state-of-the-art endmember extraction methods, and to
be fixed in the unmixing, leading to a supervised unmixing
method. However, the VCA algorithm is based on the LMM
model, which is different from the MLM. Furthermore, the
optimization with respect to ai and P i is highly nonlinear and
nonconvex, preventing a unique solution to be obtained.
To overcome the difficulties mentioned above, this paper

considers two main modifications with respect to the method
in [1]. First, the objective function is slightly changed from
(7) in order to avoid its highly nonlinearity with respect to
the parameters to be estimated. This modification significantly
decreases the complexity of the optimization problem (7),
which will be illustrated later. Second, instead of fixing the
endmember matrix using VCA, the output of an endmember
extraction algorithm (EEA) is used as an initialization of an
algorithm, which estimates the endmember matrix jointly with
the abundances and the transition probability, leading to an
unsupervised nonlinear mixing strategy. Compared with [1],
the proposed approach is blind and thus far more challenging.

II. NONLINEAR SPECTRAL UNMIXING: A BCD SCHEME

The nonlinear unmixing problem investigated in this paper
can be formulated as the following optimization problem:

arg min
{ai ,P i }mi=1,E

L(E, A, P) (8)

with L(E, A, P) =

n∑

i=1

∥∥xi − (1− P i )yi − P i yi ⊙ xi
∥∥2
2

yi = Eai

ai ≥ 0 and 1T
mai = 1

0 ≤ E ≤ 1

P i ≤ 1.



Compared with (7), the objective in (8) is easier to be
optimized with respect to the abundances A and nonlinearity P

due to the disappearance of fractional form. To solve the prob-
lem (8), we propose to update ai , E, and Pi alternatively, using
a block coordinate descent (BCD) strategy. Even though (8)
is a nonconvex problem with respect to ai , E, and Pi jointly,
it is interesting to note that each subproblem turns out to
be a convex problem that has a unique solution. The BCD
algorithm is known to converge to a stationary point of the
objective function to be optimized provided that this objective
function has a unique minimum point with respect to each
variable [25, Prop. 2.7.1], which is the case for the criterion
in (8). Thus, the BCD algorithm introduced in this paper
converges to a stationary point of (8). Note that the nonlinear
unmixing problem (8) includes a linear unmixing (abundance
estimation) step, an endmember extraction step, and a tran-
sition probability estimation step. To ease the notation, we
omit the upper indices i for a and P hereafter as they can
be updated pixel by pixel in parallel. It is worth noting that
one popular strategy to overcome the nonconvexity is to use
simulation-based methods such as Markov Chain Monte Carlo
methods (see [26] for a recent review). Such an approach
would be computationally intensive, but could potentially
yield improvement in performance and better estimation of
the uncertainty inherent in the problem. However, the major
drawback of being computationally expensive for simulation-
based methods prevents their effective use in this application.

A. Optimization With Respect to a

The optimization with respect to a can be expressed as

argmin
a
‖x − (1− P)Ea − P (Ea)⊙ x‖22

s.t. a ≥ 0 and 1T
ma = 1. (9)

Straightforward computations lead to the following equiva-
lent optimization problem:

argmin
a
‖x − Ẽa‖22 s.t. a ≥ 0 and 1T

ma = 1 (10)

where Ẽ = E ⊙ [(1 − P)1d×m + Px1T
m]. Thus, the

optimization with respect to a becomes a standard fully
constrained least squares problem with a modified end-
member matrix Ẽ. To solve this classical convex prob-
lem, there exist plenty of methods, e.g., active-set [27],
alternating direction method of multipliers [28] (sometimes
referred to as sparse unmixing by variable splitting and aug-
mented Lagrangian [29]), and projection-based methods [30].
Instead of solving (10) exactly, we use the gradient pro-
jection method [31], [32] to decrease the objective func-
tion defined in (10). More specifically, by denoting g(a) =

‖x − Ẽa‖22, (10) can be rewritten as

argmin
a

g(a) s.t. a ∈ A (11)

where A = {a ∈ R
m |a ≥ 0 and 1T

ma = 1}. Thus, the gradient
of the objective g(a) with respect to a can be calculated as

∇ag(a) = ẼT (Ẽa − x).

Note that the gradient projection method is different from the
conventional gradient descent method in that each update after
a move along the gradient direction ∇ag(a) is projected onto
the convex set A to force all the updates to belong to the set
of feasible solutions, that is

a = 5A (a − γa∇ag(a)) , ε ≤ γa ≤ 2/La − ε (12)

where 5A denotes the projection operator onto A, ε ∈]0,
min{1, 1/La}[ and La = ‖Ẽ

T Ẽ‖F is the Lipschitz constant of
∇ag(a). The projection onto the (canonical) simplex A can be
achieved with a finite algorithm,1 such as from Michelot [33],
Duchi et al. [34], and Condat [35].
The motivation to use this gradient projection algorithm is

twofold. First, the convergence of a gradient projection within
a BCD scheme is guaranteed (see more details in [36]–[38]).
Second, the update (12) is less computationally intensive than
solving the optimization problem (10) exactly, which requires
iterative updates. In this paper, the stepsize γa is fixed to
1/La to ensure a sufficient decrease of the objective value
per iteration. The updating scheme for a is summarized in
Algorithm 1. The computational complexity to calculate the
abundances for all pixels is of the order O(max{d, m}nm).

Algorithm 1 Minimization With Respect to a

/* Calculate the Modified Endmembers

(Pixel-Wised) */

1 Ẽ ← E⊙
(
(1− P)1d×m + Px1T

m

)
;

/* Calculate the Lipschitz constant */

2 La ← ‖ẼT Ẽ‖F ;
/* Gradient projection update */

3 â ← 5A (a −∇ag(a)/La);
Output: â

B. Optimization With Respect to P

The optimization with respect to P can be formulated as

argmin
P
‖x − (1− P)y − Py ⊙ x‖22 s.t. P ≤ 1. (13)

Obviously, problem (13) is convex and admits the following
closed-form solution:

P̂ = 5[−∞,1]

(
(y − y⊙ x)T (y − x)

‖y − y⊙ x‖22

)
(14)

where [−∞, 1] corresponds to the constraint P ≤ 1 and
y = Ea. The computational complexity to calculate the
probability P for all pixels is of the order O(nd).

C. Optimization With Respect to E

The optimization of the objective function in (8) with
respect to E can be formulated as

argmin
E
‖x − (1− P)Ea − P (Ea)⊙ x‖22

s.t. 0 ≤ E ≤ 1. (15)

1A finite algorithm is an iterative algorithm that converges in a finite number
of steps.



The above problem can be equivalently rewritten as

argmin
E

∥∥x −
(
E⊙ Ã

)
1m

∥∥2
2 s.t. 0 ≤ E ≤ 1 (16)

where Ã = ((1− P)1d + Px) aT . Considering all the
observed pixels leads to

argmin
E

f (E) s.t. 0 ≤ E ≤ 1 (17)

where f (E) =
∑n

i=1 ‖x
i − (E ⊙ Ãi )1m‖

2
2 and

Ãi = ((1 − P i )1d + P i xi )(ai )T . The gradient of
the objective f (E) can therefore be calculated as
follows:

∇E f (E) =

n
∑

i=1

[(
E⊙ Ãi

)
1m − xi

]

1T
m ⊙ Ãi

=

n∑

i=1





(
e1 ⊙ ãi

1 ⊙ ãi
1 + · · · + em ⊙ ãi

m ⊙ ãi
1

)T

(
e1 ⊙ ãi

1 ⊙ ãi
2 + · · · + em ⊙ ãi

m ⊙ ãi
2

)T

...(
e1 ⊙ ãi

1 ⊙ ãi
m + · · · + em ⊙ ãi

m ⊙ ãi
m

)T





T

−

n∑

i=1





(
xi ⊙ ãi

1

)T

(
xi ⊙ ãi

2

)T

...(
xi ⊙ ãi

m

)T





T

(18)

where E = [e1, . . . , em ] and Ãi = [ãi
1, . . . , ãi

m]. The second
order derivative (Hessian matrix) of f (E) with respect to E

is a tensor and not easy to be expressed explicitly. Thanks
to the Hadamard product, the second order derivative can be
computed row by row. More specifically, for the i th row of E,
denoted by ǫ

j (∈ R
1×m), we have

∇2
ǫ

j f (ǫ j ) =

n
∑

i=1











ãi
1, j ã

i
1, j · · · ãi

1, j ã
i
m, j

ãi
2, j ã

i
1, j · · · ãi

2, j ã
i
m, j

...

ãi
m, j ã

i
1, j · · · ãi

m, j ã
i
m, j











(19)

where ãi
l, j represents the element of the matrix Ãi located in

the lth row and in the j th column and j = 1, . . . , d . Thus,
the Hessian matrix (or Lipschitz constant) of ∇E f (E) can be
computed row by row.
Similar to the update of A, the gradient projection method

can be implemented as follows:

ǫ
j = 5[0,1]1×m

{

ǫ
j − γ

ǫ
j∇

ǫ
j f (ǫ j )

}

, ε ≤ γ
ǫ

j ≤ 2/L
ǫ

j − ε

(20)

where ε ∈]0,min{1, 1/L
ǫ

j }[ and L
ǫ

j = ‖∇2
ǫ

j f (ǫ j )‖F .
The computational complexity to calculate the endmember
matrix E is of the order O(max{md, m2}n). In this paper,
the stepsize γ

ǫ
j is fixed to 1/L

ǫ
j to ensure a sufficient

decrease of the objective value per iteration. The update of E

is summarized in Algorithm 2.

Algorithm 2 Minimization With Respect to E

Input: E, a1:n , x1:n , P1:n

/* Compute the temporary variable Ãi */

1 Ãi ←
(
(1− P i )1d + P i xi

)
aiT for i = 1, . . . , n;

/* Compute the gradient */

2 ∇E f (E) ← Update ∇E f (E) cf. (18);
/* Compute the Lipschitz constants row

by row */

3 L
ǫ

j ←
∥

∥∇2
ǫ

j f (ǫ j )
∥

∥

F
for j = 1, . . . , d;

/* Compute Ê row by row */

4 Ê ← Update each row of Ê cf. (20);
Output: Ê

D. Summary

The proposed algorithm is summarized in Algorithm 3. Note
that the updates of ai and Pi can be implemented for all
pixels in parallel, explaining why the updates of ai and Pi

are given in matrix form in lines 4 and 5 of Algorithm 3,
where A = [a1, . . . , an] and P = [P1, . . . , Pn]. Note that the
joint estimation problem of E, A, and P is nonconvex and thus
admits multiple local optima. Thus, in practice, any other prior
information is encouraged to be integrated in the estimation
problem to alleviate its ill-posedness. For example, if we
simply fix the endmember matrix a priori, the optimization
will consist of alternating between A and P, leading to a
supervised nonlinear unmixing method, similar to the method
investigated in [1].

Algorithm 3 Unsupervised Nonlinear Unmixing Based on
the Multilinear Mixture Model

Input: X

/* Initialize E, P */

1 E(0) ← VCA(X);
2 P(0) ← 0;
3 for t = 1, 2, . . . to stopping rule do

/* Update A cf. Algo. 1 or (10) */

4 A(t) ∈ {A| L(E(t−1), A, P(t−1)) ≤

L(E(t−1), A(t−1), P(t−1))};
/* Update P cf. (14) */

5 P(t) ∈ argmin
P

L(E(t−1), A(t), P);

/* Update E cf. Algo. 2 */

6 E(t) ∈ {E| L(E, A(t), P(t)) ≤ L(E(t−1), A(t), P(t))};
7 end

8 Set Â = A(t), Ê = E(t) and P̂ = P(t);
Output: Â, Ê and P̂

E. Convergence Analysis

The convergence of the proposed nonlinear unmixing algo-
rithm can be analyzed under the framework of the BCD
method. More specifically, the proposed nonlinear unmixing
algorithm contains gradient projection steps within a BCD
strategy, whose convergence has been proved under convex-
ity [36] and nonconvexity assumptions [37], [39] (see [38] for
a recent review). Assuming that the objective function f is a



continuously differentiable convex function whose gradient is
Lipschitz, the above method, referred to as block coordinate
gradient projection method in [36], has been proved to have
sub-linear rate of convergence. Bolte et al. [37] explored
the convergence of the iterates in a more general frame-
work, which is referred to as proximal alternating linearized
minimization (PALM). They first gave a convergence proof
for two blocks under nonconvex and nonsmooth assumptions
and then generalized it for more than two blocks (see more
details in [37, Th. 1 and Sec. 3.6]). When the objective
function is nonconvex, the sequence of iterates generated by
PALM is guaranteed to converge to a stationary point of
the objective function instead of converging to its optimal
value. In this nonlinear unmixing application, the optimization
problem is obviously nonconvex due to the entanglement of
E and A, which can be regarded as an extended nonnegative
matrix factorization. Thus, according to the above analysis, the
sequence generated by Algorithm 3 converges to a stationary
point of the objective function L(E, A, P).

III. EXPERIMENTS USING SYNTHETIC AND REAL DATA

This section studies the performance of the proposed
unsupervised nonlinear unmixing method using both syn-
thetic and real data. We compare this method with
the existing state-of-the-art linear and nonlinear unmixing
strategies, including LMM [29], Fan et al. [18], GBM
[19], polynomial post-nonlinear model (PPNM) [22], and
MLM [1]. All algorithms have been implemented using
MATLAB R2016b on a MacPro computer with Intel Core
i7 CPU at 2.70 GHz and 16GB RAM. Unmixing results
have been evaluated using the figures of merit described
in Section III-A. Several experiments have been conducted
using synthetic data sets with controlled ground-truth. These
experiments are studied in Section III-B. Two real data sets
associated with different applications are then considered in
Section III-C.

A. Performance Measures

To analyze the quality of the estimated results, we
have considered the following normalized mean square
errors (NMSEs):

NMSEA = −20 log
‖Â− A‖F

‖A‖F

NMSEE = −20 log
‖Ê− E‖F

‖E‖F

NMSEP = −20 log
‖P̂ − P‖F

‖P‖F

.

The larger (because of the negative symbol) the NMSEs, the
better the quality of the estimation. Another quality index is
the spectral angle mapper (SAM), which measures the spectral
distortion between the actual and estimated endmembers. The
SAM is defined as

SAME(en, ên) = arccos

(
〈en, ên〉

‖en‖2‖ên‖2

)
.

Fig. 1. Actual endmembers (solid lines) and their estimates (circles)
with (Top left) VCA, (Top right) simplex identification via split augmented
Lagrangian (SISAL), (Bottom left) N-FINDR, and (Bottom right) successive
volume maximization (SVMAX).

Fig. 2. Ground-truth for the four abundance maps.

The overall SAM is finally obtained by averaging the SAMs
computed from all endmembers. Note that the value of SAM
is expressed in degrees and thus belongs to (−90, 90]. The
smaller the absolute value of SAM, the less important the
spectral distortion.
To evaluate how well different models fit the observed data,

the reconstruction error (RE) is computed as

RE = ‖X̂− X‖F (21)

where X̂ is the reconstructed data from the observation model.
The smaller RE, the better the model fits the data.



Fig. 3. (Left) Tahoe data set. (Middle) Estimated map P̂. (Right) Sum of absolute differences between abundance maps estimated by LU and NLU.

Fig. 4. Tahoe data set: estimated endmember signatures of soil, vegetation, and water using (Left) VCA (solid) and LU (circle) and (Right) VCA (solid)
and NLU (circle).

B. Synthetic Data

In order to build the endmember matrix E, we have
randomly selected four spectral signatures from the United
States Geological Survey Digital Spectral Library.2 In this
experiment, the number of endmembers is fixed to m = 4 and
the reflectance spectra have L = 224 spectral bands ranging
from 383 to 2508nm. The ground-truth of the endmembers is
displayed with solid lines in Fig. 1. The abundance matrix A

has been generated by drawing vectors distributed according
to a Dirichlet distribution in the simplex A defined by the
nonnegativity and sum-to-one constraints as in [40]. The
generated ground-truth of the abundance maps is displayed
in Fig. 2.

1) Data Models: To generate the synthetic data, several
linear and unmixing models, e.g., LMM [29], Fan et al. [18],
GBM [19], PPNM [22], MLM [1], and the proposed MLM
(denoted by MLMp in the following section) have been
used. Note that the MLM and MLMp models are slightly
different following (7) and (8), respectively. For the GBM,
the nonlinearity parameter γ was drawn randomly following
a uniform distribution in the interval [0, 1]. For the PPNM,
the nonlinearity parameter b was set to 0.25. For MLM and
MLMp, we followed the strategy advocated in [1], i.e., the
values of P for all pixels were generated by drawing samples
randomly from a half-normal distribution (a truncated normal
distribution on R

+) with σ = 0.3. Values of P larger than
one were set to zero, which led to mostly small values for

2http://speclab.cr.usgs.gov/spectral.lib06/

TABLE I

UNMIXING PERFORMANCE OF PROPOSED ALGORITHMWITH DIFFERENT
INITIALIZATIONS: NMSEA (IN dB), NMSEE (IN dB),
SAME (IN DEGREES), RE, AND TIME (IN SECONDS)

P exemplifying a more realistic scenario. The performance of
these algorithms was then evaluated on a synthetic data set
of size 100× 100× 224 with a signal-to-noise ratio (SNR) =
40dB.

2) Stopping Rule: As all the constraints associated with the
endmembers and abundances are guaranteed to be satisfied at
each update, the main issue after several updates is to analyze
the value of the objective function. The stopping rule used in
our experiments is defined as

L(E(t), A(t), P(t))− L(E(t−1), A(t−1), P(t−1))

L(E(t−1), A(t−1), P(t−1))
< η

where η was fixed to 10−4 by cross validation.
3) Initialization: For the proposed method, the initializa-

tions of P, A, and E are necessary. Following the strategy
in [1], the nonlinearity matrix P was initialized with a zero
matrix and A with the LMM unmixing result. Due to the
highly nonconvexity of the nonlinear unmixing problem, the
initialization of the endmembers is critical. To test the dis-
persion of the converged stationary points, the endmember
matrix E was initialized using the outputs of the different



Fig. 5. Estimated abundance maps with LU and NLU methods. (Left to right) Soil, vegetation, and water. The abundances are linearly stretched between
0 (black) and 1 (white).

EEAs, e.g., resulting from VCA [24], SISAL [41],
N-FINDR [42], and SVMAX [43]. The mixing model used
in these experiments is the MLMp model. The reference
endmembers and their estimates provided by the different
EEAs are displayed in Fig. 1. Moreover, more quantitative
unmixing results are reported in Table I. The estimates of E,
A, and P clearly converge to different points while the REs
are quite similar due to the nonconvexity of the unmixing
problem. Among these initializations, VCA, one of the state-
of-the-art endmember extraction methods, provides the best
performance with all metrics with a reasonable computation
time, demonstrating its superiority in extracting endmembers
for this application.

4) Compare Different Models: To evaluate how the different
models can fit the observed data, we generated synthetic
data sets and unmixed them with different models. More
specifically, we want to evaluate the unmixing performance
when the unmixing model is different from the actual mixing
model. Note that the endmembers were fixed to their ground-

Fig. 6. (Left) Cuprite data set. (Right) Estimated map P̂.

truth values for these experiments. The abundance maps and
nonlinear parameters were estimated by minimizing the objec-
tive function under different model assumptions. Using these
estimated abundances and parameters, we reconstructed all the
pixels and the unmixing performance was evaluated using the



Fig. 7. Cuprite data set: extracted endmember signatures using (Left) VCA (solid) and LU (circle) and (Right) VCA (solid) and NLU (circle).

TABLE II

RE OF NLU WITH DIFFERENTMODELS

values of RE and NMSEA. The results are summarized in
Tables II and III, where each row corresponds to a given
data set and each column is associated with an unmixing
model. The small diagonal elements of Table II are due to the
fact that every unmixing model explains the data generated
from the same model quite well. The first row of Table II
also shows that most nonlinear unmixing methods perform
well for linearly mixed data. The first column of Table II
reporting the performance of linear unmixing shows that LMM
fails to explain nonlinearly mixed data in most cases, as
expected. The last two columns of Table II show that MLM
and MLMp fit quite well (and similarly) all the mixed data
(slightly worse for PPNM data but already much better than
other linear or nonlinear models). Table III shows the values
of the RMSEA related to the abundances of the generative
model. As the nonlinearity structure differs in the mixing and
unmixing models, the values of RMSEA indicate how generic
the unmixing model is. The relatively large values obtained in
the last two columns of Table III show the advantage of the
MLM model when compared with other nonlinear models.

C. Real Data Sets

1) Tahoe Data Set: In this experiment, we
consider an hyperspectral (HS) image of size
161 × 174 × 224 acquired over Tahoe, located
along the border between California and Nevada, on
October 13, 2015, by the JPL/NASA Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS).3 This image was initially

3http://aviris.jpl.nasa.gov/

TABLE III

NMSEA OF NLU WITH DIFFERENTMODELS

composed of 224 bands that have been reduced to 192 bands
(d = 192) after removing the water vapor absorption bands as
well as the highly noisy bands. The spatial resolution of this
HS image is around 20 m per pixel and it mainly contains
water, soil, and vegetation. A composite color image of
the scene of interest is shown in the left of Fig. 3. In this
experiment, the number of endmembers was fixed to be
m = 3 according to our available prior knowledge. The three
endmembers were estimated using VCA and are shown with
solid lines in Fig. 4. As in Section III-B, the matrix P was
initialized to P = 0 and the abundances were initialized with
the results of the LMM.
Note that fixing P = 0 leads to an unsupervised LMM

SU method. By fixing the endmember matrix E to the VCA
estimates, we obtain the supervised versions of the algorithms
for linear and nonlinear unmixing. To simplify the notations,
linear and nonlinear unmixing are referred to as LU and NLU
thereafter. Note that the supervised NLU can be regarded as
a variant of Heylen’s method in [1] with slightly different
objectives. The NLU and LU (obtained by fixing P = 0) were
implemented to process the observed image. As there is no
ground-truth for this image, unmixing results are first studied
qualitatively by displaying the endmembers and abundances.
Fig. 4 shows that the estimated signatures of soil and vege-
tation using LU and NLU are similar, while those of water
are slightly different objective functions. The corresponding
abundance maps obtained by LU and NLU shown in the
first two rows of Fig. 5 (the color scales are exactly the
same) are globally similar. However, some differences can be



Fig. 8. Cuprite data set: abundance maps estimated by NLU. All abundances are linearly stretched between 0 (black) and 1 (white). (a) Alunite. (b) Sphene.
(c) Andradite. (d) Muscovite. (e) Kaolinite #1. (f) Nontronite. (g) Kaolinite #4. (h) Kaolinite #3. (i) Pyrope #2. (j) Buddingtonite. (k) Montmorillonite.
(l) Pyrope #1. (m) Kaolinite #2. (n) Dumortierite.

observed in the last row of Fig. 5. It is interesting to note
that the abundance maps of NLU have larger contrast than the
ones obtained with LU, which is usually expected for good
unmixing results. For example, the lake part is expected to
have small values in the abundance map of soil and big values
in the abundance map of water. As shown in the first and
second rows of Fig. 5, the lake part in NLU is darker than the
one in LU for the soil map and brighter than the one in LU for
the water map, showing that the results obtained by NLU are
more reasonable. In order to appreciate the interest of using
a nonlinear unmixing strategy, Fig. 3 shows the estimated
map of P (in the middle), which reflects the distribution
of nonlinearity and the sum of absolute differences between
abundance maps estimated by LU and NLU. It is interesting to
note that the areas with large differences in abundance maps
are in good agreement with the areas associated with large
values of P. In these areas, nonlinear effects can be expected
as there exist multiple interactions between endmembers in

TABLE IV

RE AND TIME (IN SECONDS) OF DIFFERENTMODELS
FOR TAHOE DATA SET

the ridge of mountain, in the shadow of mountain, in the
lake, etc.
As in Section III-B, other linear and nonlinear unmixing

methods have also been used to unmix this data set. The
corresponding RE and running time are reported in Table IV.
Note that the main difference between MLM and MLMp
here is that the endmember signatures are fixed for MLM but
updated for MLMp. This explains why smaller RE is obtained
for MLMp at the price of a higher computation cost.

2) Cuprite Data Set: This section investigates the perfor-
mance of the proposed NLU method for unmixing the well-



TABLE V

RE AND TIME (IN S) OF DIFFERENTMODELS FOR CUPRITE DATA SET

known Cuprite HS image. This image, which has received a
lot of interest in the remote sensing and geoscience literature,
was acquired over Cuprite field by AVIRIS. It corresponds to a
mining area in southern Nevada composed of several minerals
and some vegetation, located approximately 200 km northwest
of Las Vegas. The image considered in this experiment consists
of 250 × 191 pixels with nλ = 188 spectral bands obtained
after removing the water vapor absorption bands. A composite
color image of the scene of interest is shown in the left
of Fig. 6. According to [24], the number of endmembers
was set to m = 14. The estimated endmember signatures
from VCA, LU, and NLU are displayed in Fig. 7 and the
m = 14 corresponding abundance maps estimated using NLU
are shown in Fig. 8. The estimated map for P obtained with
NLU is shown in the right of Fig. 6. Nonlinear effects can be
expected in this scenario as there exist intimate mixtures, in
which a light ray can interact many times with the different
mineral grains. Comparisons with other linear and nonlinear
unmixing methods are summarized in Table V. Note that the
GBM model fails, i.e., does not converge in a reasonable
time, to unmix this data set because of the overfitting problem
caused by the relatively large number of endmembers. For
the other models, the MLMp method provides the smallest
RE (at the price of a higher computational cost), which is
consistent with the results in Section III-B.

IV. CONCLUSION AND PERSPECTIVES

This paper studied a new unsupervised nonlinear SU method
based on a recent multilinear model. The nonlinear unmixing
problem was formulated as a constrained optimization prob-
lem with respect to the endmembers, abundances, and pixel-
dependant transition probabilities. A gradient projection within
BCD method was then proposed to estimate these three sets
of variables jointly. Each step of the proposed method was
carefully addressed to guarantee the convergence of the pro-
posed algorithm to a stationary point of the objective function.
Experiments implemented on both synthetic and real data sets
confirmed that the multilinear model allows us to detect and
analyze the nonlinearities present in a hyperspectral image.
Comparisons with other linear and nonlinear unmixing meth-
ods also demonstrated the superiority of proposed algorithm.
Further work will be devoted to investigate a similar nonlinear
unmixing algorithm accounting for spatial correlations for the
abundances and the transition probabilities as in [44] and [45].
Validating the nonlinear unmixing results in other practical
applications, e.g., involving intimate mixtures or reflectances
acquired after multipath, is also of interest.
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