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Abstract— In recent years, our society has been preparing for
a paradigm shift toward the hyper-connectivity of urban areas.
This highly anticipated rise of connected smart city centers is led
by the development of low-cost connected smartphone devices
owned by each one of us. In this context, the demand for low-cost,
high-precision localization solutions is driven by the development
of novel autonomous systems. The creation of a collaborative
network will take advantage of the large number of connected
devices in today’s city center. This paper validates the positioning
performance increase of Android low-cost smartphones device
present in a collaborative network. The assessment will be
made on both simulated and collected smartphone’s GNSS
raw data measurements. We propose a collaborative method
based on the estimation of distances between network mobile
users contributing to a SMARTphone COOPerative Positioning
algorithm (SmartCoop). Previous analysis made on smartphone
data allow us to generate simulated data for experimenting our
cooperative engine in nominal conditions. The evaluation and
analysis of this innovative method shows a significant increase of
accuracy and reliability of smartphones positioning capabilities.
Position accuracy improves by more than 3m, in average, for
all smartphones within the collaborative network.

Index Terms— Android GNSS Raw Data Measurements,
Smartphones, Collaborative Positioning, Non-linear Constrained
Optimization, SmartCoop Cooperation Engine, Inter-Phone
Ranging (IPR).

I. INTRODUCTION

I n recent years, we observed an exponential increase of
wireless signals being used in today’s busy urban areas.

This change is supported by technological innovations made
available for everyone. The device that comes quickly to mind
is everyone’s favorite, our smartphone. The increasing need of
Location Based Services (LBS) provoked the rapid evolution
of smartphones’ embedded low-cost Global Navigation Satel-
lite System (GNSS) chipsets within the last few years. Most
Android devices are now equipped with multi-constellation
and multi-frequency positioning units.

After Google announced the release of Android GNSS raw
data measurements on mobile devices, the enthusiasm around
those low-cost positioning device quickly grew in the scientific
community. In the wake of this revolution, multiple papers
were published characterizing Smartphone based GNSS raw
data measurements [1] [2]. Preliminary results exposed smart-
phones weakness to multipath in degraded conditions mainly
due to their multi-purposes antenna [3]. On the other hand,
the embedded GNSS chipsets proved to be reliable, accurate
and efficient compared to higher-end GNSS receivers. The
implementation of advanced algorithms such as Precise Point
Positioning (PPP) and Real-Time Kinematic (RTK) have also
been experimented [4] [5]. However, it was shown that real-
world applications were difficult to achieve due to smartphone
hardware flaws.
In order to overcome those difficulties, we ambition to develop
a collaborative network positioning system between smart-
phone devices. Cooperative positioning localization have been
recently studied for an application in the autonomous vehicular
transportation and in the robotic domain [6]. Only few studies
have been made on smartphone-based networking. However,
research works introduced preliminary groundwork concerning
cooperative ranging between smartphones showcased in [7] as
well as a collaborative positioning technique in [8].
Our collaborative network will take advantage of the tremen-
dous number of connected devices present in highly frequented
city centers. In the context of smartphone hyper-connectivity,
we assume that a reliable, secure and efficient communication
link is made available to network’s users. We developed a
SMARTphone COOPerative Positioning (SmartCoop) algo-
rithm. Our collaborative positioning engine improve smart-
phones’ positions accuracy and reliability. Its implementation
relies on the minimization of users’ position errors in an
optimization problem constrained by estimated inter-phone
distances.
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The aforementioned distances are computed by our algorithm
based on a double differencing technique. Our approach
combine smartphones GNSS raw data measurements, coop-
eratively, in order to estimate a 3D ranging vector, referred
as Inter-Phone Ranging, between each user in the network.
This paper will be articulated around two main sections.
First, our smartphone ranging techniques will be introduce
by describing the computation of the 3D Inter-Phone Ranges
(IPR) and presenting the results of a static open-sky reference
test. Thereafter, our SmartCoop engine will be presented.
A thorough analysis will be provided, using simulated data,
demonstrating the algorithm positioning accuracy performance
for a static open-sky collaborative scenario.

II. SMARTPHONE RANGING TECHNIQUE
Inter-Phone Ranging (IPR)

Our collaborative system is dependent on the range compu-
tation between network’s users. We propose a double differ-
ence method based on Android raw data measurements. This
algorithm is based on the preliminary work made by Gogoi et
al [7]. We implemented a new approach for processing effi-
ciently multi-constellation and multi-frequency measurements
from peers’ smartphones. Our innovative ranging technique
allows to compute a 3D inter-user range vector referred as
Inter-Phone Ranges (IPR).

A. Methodology

This subsection describes the methodology used by our double
differentiating algorithm, underlining the good practices
regarding the use of Android raw data measurements in
a collaborative context. We assume that a communication
link is available between network’s users for sharing their
raw GNSS data. A detailed description of available Android
measurements can be found in [9] and [10].

1) Measurements Synchronization:
Previous works demonstrated that a time-synchronization be-
tween measurements is mandatory in inter-user ranging meth-
ods [7]. The developed time-synchronization technique was
built around Doppler-based compensation algorithms, well
known from the GNSS community. This method rely on
the assumption that relative movement between the satellite
and the receiver’s clock frequency bias are constant over a
short interval of time. This hypothesis holds in the case of
smartphone use in low-dynamic and static scenario. Equation
1 shows the time-synchronization of a pseudorange ρ at a
time t. Time synchronization is achieved when ρA(t) has been
interpolated at a time t + ∆t corresponding to the time of
ρB(t + ∆t) between two pseudoranges measurements A and
B. Equation 1 shows the interpolation method.

ρ(t+ ∆t) = ρ(t) + (∆t . λ . ˙φ(t)) (1)

Equation 1 presented above has been adapted for the use of
Android GNSS raw data measurements. The term λ . ˙φ(t)
representing the Doppler shift can be approximated by
the pseudorange rate measurements. This measurement

can be easily retrieved from recorded Android data as
PseudorangeRateMetersPerSecond Secondly, the
generation of the term ∆t is straightforward since the
Android raw measurement, FullBiasNanos, is already
synchronized to the true GPS time [10]. ∆t is simply
approximated by a difference of the Android measurements
cited above between pseudoranges measurements A and B.

2) Pseudoranges Double Differences:
After measurements synchronization has been achieved, dou-
ble differences on code measurements are being processed.
This operation allows to mitigate common errors shared be-
tween users and satellites measurements. At first, a single
difference is being computed between two smartphones users
and one common satellite. Equation 2 shows this single
pseudorange (ρ) difference between users a and b to satellite
i.

Di
ab = ρia − ρib = ∆riab + ∆εiab + c . ∆bab (2)

At this stage, common propagation errors (atmospheric and
ionospheric) and the satellite clock bias are being removed.
Terms remaining in the equation are the difference in true
range (∆riab) , receivers clock biases (∆bab), and residual
noise (∆ε). Next step results in taking a second difference
between two single differences of two satellites signals shared
by both users. This phase is referred as a double difference.
Equation 3 presents a double difference between two satellites
i and j in view of users a and b. At this step, the difference of
two single differences mitigates the impact of both receivers
clock biases.

DDijab = Di
ab−D

j
ab = [~rab . (~e i−~e j)] + [∆εiab−∆εjab] (3)

where ~e i is the steering vector from the receiver to the satellite
i and ~rab define the range vector between two network’s
users. We set a list of n common satellites signals between
receivers a and b. After classifying common satellites signals
by the value of Cn0DbHz (ndlr: Signal to Noise Ratio: SNR)
and their elevation, we select the best available signal as the
reference for our double differences. In equation 3, satellite j
will be our reference signal 0. Thus, equation 3 simplifies as:

DDab = H~rab + ε (4)

where DDab = [DD10
ab , DD

20
ab , ... , DD

n0
ab ]T is a [n×1] matrix

of double differences for all common signals between both
users. H = [(~e 1−~e 0), (~e 2−~e 0), ... , (~en−~e 0)]T is a [n× 3]
matrix of steering vector differences.
Finally, the ~rab vector can be estimated via a weighted least
square and will be named IPR.

IPR = (HTW H)−1 HTW DDab (5)

with W being the covariance matrix, taking into account
correlated noise emerging from the double differences. This
error covariance matrix is populated with values computed by
error estimates given by the Android API and explicitly shown
by the equation below:

σnε = ReceivedSvTimeUncertaintyNanos(t) . 1−9 . c



This method allows to efficiently compute IPR ranges, how-
ever a few drawbacks remains. At least 3 sets of satellite pairs
(or 4 common signals) are needed to estimate our range. We
also have to keep in mind that the application of a double
difference increase significantly background noise initially
present on retrieved code measurements.

3) Application to the smartphone domain:
Due to limitations and constraints of our application domain,
we recommend to adopt the following guidelines for pro-
cessing Android GNSS raw data measurements accurately for
ranging computation.
For simplification purposes, our methodology presents n satel-
lites to be used as if only one signal was received per satellites.
However, today’s smartphone embedded positioning chipset
are multi-constellation and multi-frequency. We advise to
report about double differences as difference between common
received signals instead of common received satellites. More-
over, the multiplication of signals availability on smartphone
favors the constructions of common received signals pairing.
During our data collection campaign, [2], we observed that on
average, 18 pairs of common received signals were seen by
our tested Android device in static open-sky scenarios. On the
other hand, on average, 10 pairs of common received signals
were observed in urban environment, which easily allow for
the computation of IPR ranging. Finally, after a careful se-
lection of GNSS raw measurements by following mechanisms
described in [11] and before time synchronization, we suggest
to set up a Hatch filter. This filter is used for smoothing
smartphones’ estimated pseudoranges and accounts for non-
continuous signals segments. Our implementation of the Hatch
filter is presented by equation 6.

ρ̃(t) =
1

k
ρ(t) +

k − 1

k
[ρ(t− 1) + λ . φ(t− 1)] (6)

Fig. 1. Inter-Phone Ranging Comparison Performance for Static & Open-Sky
Environment Scenario

TABLE I
RANGES ESTIMATION PERFORMANCE

Static & Open-Sky [600sec]

Ranging
techniques µ[m] σ[m] RMS[m]

IPR 0.41 1.75 1.79
FLP 3.21 1.82 3.68
PVT 0.84 5.40 5.46

where k is characterized by the length of a continuous time
segment (in epochs) where a specific signal has been received
and correctly retrieved by our embedded smartphone GNSS
receiver. Each time a signal loss of track is detected, a
reinitialization of our parameter k is made.

B. Results Analysis

In this section, we are presenting a performance analysis
of our Inter-Phone Ranging (IPR) algorithm. In order to
draw a fair comparison analysis of our estimated inter-users
ranges, we take into consideration other means of range
computation available to smartphone users. The first process
is straightforward, it consists of estimating smartphones
position by a Weighted Least Square (WLS) algorithm and
using the obtained positions to compute a range between two
users. The second technique is taking advantages of a unique
feature available to Android mobiles’ users, the Google
Fused Location Provider (FLP). Those retrieved positions will
allow us to evaluate ranges between two smartphone peers.
FLP positions are intended to be the ultimate positioning
solution obtainable by a given Android device. However,
the black-box processes used by FLP measurements while
combining GNSS, cellular network and sensors informations,
makes them ambiguous and unreliable for scientific analysis.
On the other hand, they provide a good reference for intrinsic
quality of smartphones positioning capabilities. This reason
justify their use in our performance analysis for ranging
purposes.

1) Experimental Protocol:
Our results analysis will be based on a static scenario in
open-sky conditions. This preliminary analysis will allow us
to assert IPR estimation performance for a nominal case. The
data used were retrieved during a data collection campaign
in Toulouse. During this campaign, multiple collaborative
scenario were put in place, including nominal static open-sky
cases. Our data collection campaign featured 7 modern
Android smartphones (2× Honor View 20, Google Pixel 3,
Xiaomi Mi 9, 2× Xiaomi Mi 8 and a Huawei Mate 20X).
The combination of Android devices tested represent a large
variety of brands and models equipped with a diverse array of
positioning chipsets (Qualcomm, HiSilicon and Broadcom).
Most of them, have multi-constellation and multi-frequency
capabilities (except Google Pixel 3). Finally, all smartphones
were running the Android Q (10.0) Operating System (OS)
version.



The following results analysis is based on two Xiaomi Mi8,
placed on the rooftop of two static vehicles under open-sky
conditions. The reference trajectory, in this context referred
to as our baseline, was recorded by two high-end receivers
(NovAtel SPAN) on the two vehicles.

2) Static & Open-Sky Scenario:
Our static, open-sky scenario lasted for 10min. The reference
baseline computed during this test was equal to 17.65m. Figure
1 shows the ranging performances of 3 ranging strategies (IPR,
FLP and PVT) compared to the reference baseline. Ranges
are here plotted as the norm of the estimated vector. The
first observation that can be drawn is the excellent behavior
displayed by our double-differenced ranging techniques (IPR)
compared to the extracted PVT ranges. The FLP ranges seems
to be impacted by a bias all along the test. The overall
performance of the IPR estimated ranges exceeds the one of
PVT and FLP computed ranges.
This conclusion is supported by the error characterization
provided in table I resulting from our experiment. We observe
a standard deviation of 1.75m and a mean error of 0.41m for
the IPR estimated ranges. Those results comfort our idea that
Inter-Phone Ranging (IPR) estimation technique is suitable
to be used for collaborative positioning. Furthermore, similar
analysis were made for urban canyons showing comparable
results and will be presented in future work. The controlled
conditions of our experiment setup, and the repetition of previ-
ously shown results with other Android devices, demonstrate
the reliability of our analysis in nominal conditions.

III. COLLABORATIVE NETWORK POSITIONING
SmartCoop Algorithm

This section will present our proposed smartphone collab-
orative algorithm, referred as SmartCoop. Our innovative co-
operative engine aims at improving positioning performances
of smartphone users. Collaborative positions from network’s
members will be computed based on a first raw position
estimate (an approximate PVT position) while being restrained
by previously computed Inter-Phones Ranges (IPR) between
all smartphones users.
The following methodology will characterize the constitution
of the nonlinear constrained optimization problem that we
need to solve. Then, it will be followed by the presenta-
tion of SmartCoop algorithm performance. A simulation of
a 10-smartphones network will be made demonstrating the
efficiency of our collaborative algorithm.

A. Methodology

This cooperative algorithm aims at improving network’s users
positions. A similar method, developed for the automotive
industry has been studied in [6].

1) Definition:
We aim at characterizing our nonlinear constrained optimiza-
tion problem in order to estimate new cooperative positions.
The objective is to minimize the 3D positions error between

Fig. 2. IPR Constraints Visualization - 3D [ECEF]

the newly estimated cooperative positions p̂ and their recipro-
cal true positions ptrue. This minimization is leveraged by 3D
Inter-Phones Ranges (IPR) vectors computed between each
individual forming the collaborative network. The array of
network’s member positions is denoted by a capital letter and
is approximated by equation 7.

P̂ = min

M∑
k=1

|| p̂k − pktrue || (7)

with M being the total number of peers forming the coop-
erative network. If we consider that the positioning errors
follows a Gaussian distribution N (µ, σ2), then equation 7 can
be derived as:

P̂ = min
M∑
k=1

(p̂kx − p̃kx − µx)2

2σ2
x

+
(p̂ky − p̃ky − µy)2

2σ2
y

+
(p̂kz − p̃kz − µz)2

2σ2
z

(8)
Detailed derivation of the equation above has been performed
by Liu et al in [6] [12]. Equation 8 will be utilize as our
objective function for our optimization problem. We solve the
above mentioned nonlinear constrained optimization problem
by setting a solver-based Matlab algorithm employing the
fmincon function.

2) Constraints & Hypothesis:
The objective function that we are minimizing is binded
by nonlinear constraints. A constraint is defined by a norm
difference between two estimated cooperative positions. It is
then declined on x, y and z axes, in order to bind our system
in the 3D positioning domain. For our collaborative engine,
two independent users, i and j, are constrained by a set of
equations, shown in 9.

Set of Constraints =


IPRijx =

√
(p̂ix − p̂

j
x )2

IPRijy =
√

(p̂iy − p̂
j
y )2

IPRijz =

√
(p̂iz − p̂

j
z )2

(9)



The number of constraints sets needed for bidding each
smartphone users in the network vary. The number of sets
needed can be easily computed by:

Number of constraints’ set =
M(M − 1)

2
(10)

Figure 2 represents a 3D representation of constraints bidding
an array of positions. This example involves a network of
four unique smartphones, thus generating 6 set of constraints
totaling 18 equations restraining our minimization process.
For analysis purposes, the true positions (represented by
crosses) and true range (black lines) are pictured on this
figure. Obviously, none of those parameters were used in the
collaborative engine and are defined here only for evaluation
purposes. The green lines and light colored spheres represent
initial approximate PVT positions and the resulting unsatisfied
constraints. Whereas, the red lines represent the satisfied
constraints (defined by IPR). Newly estimated collaborative
positions are drawn in darker color and are linked by the
red lines. This figure clearly demonstrates the importance
of satisfying the previously defined constraints and shows
how they properly impact the new estimation of collaborative
positions. The main hypothesis made by our algorithm is that
one smartphone, from the established cooperative network,
will be defined as the best performer in standalone positioning.
This implies that the initial positions given to our algorithm
(p̃BestNode) will be more accurate. This phone is referred as
the Best Node of the network. Consequently, this hypothesis
helps setup the initial constraints structure. We consider this
hypothesis as credible, since one user of the collaborative
network could be using a more recent device and/or be in
better reception conditions than anyone else in the network
justifying the higher intrinsic positioning performance of our
best node device. The straight application of this hypothesis
is illustrated by phone 2 on both figure 2 and 3.

Fig. 3. Smartphone Collaborative Positioning Analysis [LLA]

TABLE II
SMARTCOOP POSITIONING PERFORMANCE

SmartCoop Positions

Network’s
Smartphones µ[m] σ[m] ∆σ[m] ∆RMSE[m]

Phone 1 0.06 1.61 -3.27 -4.60
Phone 2 (Best Node) 0.03 1.34 +0.11 +0.16

Phone 3 0.06 1.63 -3.26 -4.67
Phone 4 0.05 1.63 -3.23 -4.62
Phone 5 0.03 1.63 -3.31 -4.52
Phone 6 0.04 1.61 -3.22 -4.53
Phone 7 0.01 1.75 -3.27 -4.51
Phone 8 0.02 1.82 -3.29 -4.68
Phone 9 0.08 1.60 -3.21 -4.40
Phone 10 0.02 1.65 -3.22 -4.63

B. Results Analysis

This final section will present the results obtained by our
SmartCoop algorithm using simulated smartphone positions
and simulated inter-phone ranges (IPR) vector.

1) Simulated Data:
In order to analysis the positioning performance of

our SmartCoop collaborative engine, we have simulated
smartphone data measurements based on previous studies
[13]. Initial smartphones positions are randomly generated
following a centered Gaussian distribution. Standard error
deviation used to generate those positions have been selected
based on previous observation made on smartphones devices
for static open-sky scenarios. The error position standard
deviation has been selected as: σp̃ = [2.5, 2.5, 3.8] in
meters on x, y and z for all simulated smartphone except
Phone 2. Indeed, the second generated user (Phone 2),
has been randomly selected to be the best node of our
system. The error distribution for this phone has been set by:
σp̃BestNode

= [1, 1, 2] on x, y and z in meters.
Based on our analysis made in section II-B, we can also
generate Inter-Phone Ranges (IPR) with confidence. We
simulated 3D IPR vectors based on the statistical analysis
provided above. Furthermore, for this analysis, we constituted
a network of 10 collaborative smartphone users. Their initially
generated positions are shown on figure 3, on the top graph.
Each dot represents an estimated position at 1Hz frequency
and their associated cross describes their reference position.
Smartphone data and IPR ranges have been simulated for
3600 epochs.

2) Collaborative Positioning:
Figure 3 demonstrate the efficiency of the SmartCoop algo-
rithm. The top graph, shows the smartphone positions before
collaboration. The comparison can be directly made with
the plot below, displaying the newly estimated collaborative
positions. Collaborative positions have significantly improved
users position accuracy. Moreover, the positions dispersion
have been reduced, thus increasing smartphone position re-
liability. If we analyze the performance of our SmartCoop



algorithm epoch by epoch, we notice that our algorithm
increase position accuracy more than 92% of the time for all
smartphones within the network.

Table II presents a statistical characterization of positioning
error of the newly estimated cooperative positions. The first
two columns shows the statistical distribution of the newly
estimated collaborative position error. Those parameters are
to be compared with the simulated standalone position errors
exposed in III-B1 as σp̃. Thus, the two last columns of the
table, display measures variation between initial positions (p̃)
and collaborative positions from SmartCoop (p̂). Negative
values indicate an improvement observed with our collabo-
rative method. Essentially, this table validate the improving
positioning performances induced by SmartCoop. All smart-
phones (except Phone 2) positions performances improve. In
particular, the drastic improvement of the Root Mean Square
Error (RMSE) parameter confirms the positioning performance
enhancement. The Best Node phone represents an exception
to the previous analysis, undeniably no improvement has been
made on the global estimation of this user’s position on its
already (assumed) optimal position performance.

IV. CONCLUSION & FUTURE WORK

In this paper, we proposed a collaborative positioning en-
gine called SmartCoop. This cooperative algorithm has been
specifically designed for smartphone-based network using
Android GNSS raw data measurements. The development of
this method was supported by the progress made on ranging
estimation techniques. The smartphone adaptation to a double
difference algorithm, estimating Inter-Phones Ranges as a
3D vector, has been successfully tested and analyzed. The
conclusion drawn by our research was that the IPR estimation
technique is the preferred method to be used for ranging in the
context of Android smartphone positioning. Thus, IPR ranging
can be adopted for implementing a collaborative system. A
exhaustive description of our proposed cooperative engine has
been conducted. A first analysis confirmed that our proposed
solution, SmartCoop, allows for a significant positioning qual-
ity increase by improving smartphones positions accuracy and
reliability.
Future work will be devoted to the improvement of our
collaborative engine, by implementing a cooperative scenario
between users in an urban environment. Preliminary results,
concerning the estimation of IPR ranges in urban canyon,
shows promising outcomes. Future Studies of our collaborative
positioning engine in urban environment will consider the
impact of the Best Node phone on the estimated collaborative
positions but also will define the SmartCoop algorithm limi-
tations due to specific cases and network’s users geometry.
The generation of Android GNSS raw measurements for urban
scenarios will be conducted in association with simulated data
concerning flags detection events previsouly studied in [11].
Furthermore, we ambition to utilize smartphone’s sensors for
constraining our collaborative system. Previous literature stud-
ies demonstrated that low-grade IMU embedded smartphone
units are reliable [14] [15]. Another example of smartphone

sensors’ measurements usage in the context of collaborative
positioning could also be to use relative barometric measure-
ments for constraining the z axis variations of network’s peers
for urban environment.
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