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Abstract— Ultrasound (US) image restoration from radio
frequency (RF) signals is generally addressed by decon-
volution techniques mitigating the effect of the system
point spread function (PSF). Most of the existing meth-
ods estimate the tissue reflectivity function (TRF) from the
so-called fundamental US images, based on an image model
assuming the linear US wave propagation. However, sev-
eral human tissues or tissues with contrast agents have a
nonlinear behavior when interacting with US waves leading
to harmonic images. This work takes this nonlinearity into
account in the context of TRF restoration, by considering
both fundamental and harmonic RF signals. Starting from
two observation models (for the fundamental and harmonic
images), TRF estimation is expressed as the minimization
of a cost function defined as the sum of two data fidelity
terms and one sparsity-based regularization stabilizing the
solution. The high attenuation with a depth of harmonic
echoes is integrated into the direct model that relates the
observed harmonic image to the TRF. The interest of the
proposed method is shown through synthetic and in vivo
results and compared with other restoration methods.

Index Terms— Alternating direction method of multipliers
(ADMM), blind deconvolution, harmonic ultrasonic imaging,
optimization, tissue reflectivity restoration.

I. INTRODUCTION

UTRASOUND (US) imaging is one of the leading imaging
modalities due to its low cost, high frame rate, nonion-

izing risk, and ease of use. The main principle of US imaging
consists in sending acoustical waves with central frequency
f0 into a medium (tissue). While propagating, US waves are
distorted due to their nonlinear interaction with the medium.
In addition to the common fundamental echoes obtained at
frequency f0, this distortion generates backscattered echoes at
harmonic frequencies. In general, the study of these harmonics
is generally reduced to the second component at frequency
2 f0 because of the limited bandwidth of the transducer and
the low signal-to-noise ratio (SNR) of higher harmonics. The
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principle of US wave distortion creating harmonic images
and an example of a beamformed US image containing both
fundamental and harmonic frequencies are shown in Fig. 1.

In applications such as blood perfusion or tissue character-
ization, contrast agents are used, which reinforces nonlinear
interactions and generates harmonic data [1], [2]. However,
several existing studies have shown that particular tissues can
naturally cause sufficient wave distortion to generate observ-
able harmonics, called tissue harmonic imaging (THI) [3], [4].
In THI, raw US data contains both fundamental and harmonic
components, which can be isolated to reconstruct fundamental
or harmonic images (see Fig. 1). This separation can be done
using beamforming techniques, such as pulse inversion and
phase cancellation [5]. It can also be done using postprocess-
ing techniques, such as system identification [6], [7] or linear
filtering. In this work, linear bandpass filters are used for
this separation due to their simplicity and the low-frequency
overlap between the fundamental and harmonic components.

The spatial resolution, contrast, and SNR of US images are
generally affected by the limited bandwidth of the imaging
transducer. To mitigate these drawbacks, image reconstruction
and restoration techniques (beamforming, speckle reduction,
and deconvolution) exist and were shown to improve the
US image analysis, for instance, in the applications requiring
quantitative measurements for meddiagnosis ical [8].

This article focuses on US image deconvolution, which is
known to allow axial and lateral resolutions to be enhanced.
The principle of US image deconvolution is to mitigate, via
appropriate postprocessing, the effect of the imaging system
impulse response, also called point spread function (PSF),
which affects the spatial resolution of the image as a low-pass
or bandpass filter. Depending on the available information
about the PSF, deconvolution methods are usually referred to
as nonblind, myopic [9]–[11], or blind methods [12], [13].
The main objective of this work is to show that combining
harmonic and fundamental radio frequency (RF) data in a
deconvolution problem can highly improve the restoration of
the US image. To the best of our knowledge, a few studies
have been conducted in this area. A super-resolution approach
was considered in [14] exploiting the results of independent
deconvolution of fundamental and harmonic images. Instead
of deconvolving the two images independently, we propose
in this work a joint deconvolution of fundamental and har-
monic images through the minimization of an appropriate cost
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Fig. 1. Representation of pressure pulse distortion at the origin of harmonic US imaging and examples of fundamental and harmonic US images.

function. This cost function is composed of two quadratic
data fidelity terms and one regularization. The data fidelity
terms are constructed from the fundamental and harmonic
image formation models using the unknown PSF. The exist-
ing algorithms for PSF estimation are based on parametric
models [15] or estimate the PSF directly from the RF
data [10]. This work considers the estimation of the PSF in a
preprocessing step from the beamformed RF images followed
by the estimation of the tissue reflectivity function (TRF) using
an inverse problem. The proposed method is generic with
respect to the acquisition scheme, which can be conventional
focused or synthetic, i.e., with plane or diverging wave imag-
ing. The results reported in this article have been obtained
using RF images beamformed with the classical delay and
sum approach, which is applied to raw data acquired using
the standard pulse-echo imaging sequence.

The remainder of this article is organized as follows.
Section II introduces the adopted US image formation mod-
els. Section III describes the proposed restoration algorithm,
including PSF estimation. Section IV discusses synthetic data
generation and experimental data acquisition. Results are pre-
sented in Section V, whereas conclusions and perspectives are
reported in Section VI.

II. US IMAGE FORMATION

Several methods have been introduced in the literature to
model and solve the linear and nonlinear US wave propagation
equation starting from the full-wave propagation model.

In the case of linear propagation, a US imaging model based
on the spatial impulse response approach has been investigated
in [16]–[18]. This model expresses the US RF signal as a con-
volution between a spatially varying PSF and the TRF. Inter-
estingly, a similar model can also be considered in the case

of nonlinear propagation with small nonlinearities [17], [18].
Specifically, the first-order Born approximation was investi-
gated in [19], meaning that a single scattering phenomenon
was considered in the wave propagation equation. As a con-
sequence, the contribution of each scatterer in the imaged
field was considered to be independent of the other scatterers,
i.e., multiple scattering was ignored due to its reduced impact.
Note that this assumption also holds in THI, given that the
scattering of soft tissues is weak.

To further reduce the complexity of the restoration prob-
lem resulting from a spatially varying PSF [20], [21] and
to maintain realistic conditions, most of the existing stud-
ies have addressed the restoration problem with a spatially
invariant PSF by restricting the process to small image
segments [22]–[25]. The proposed work follows this trend by
considering a spatially invariant PSF. However, in contrast to
most of the existing works, linear and nonlinear propagation
models are jointly considered for TRF restoration. After
forming the fundamental and harmonic images by filtering the
beamformed RF image (more details about the filtering process
are given in Section IV-B), the following image formation
models are considered:

y f = H f r + n f (1)

yh = W Hh r + nh, (2)

where y f and yh ∈ R
N are the observed fundamental and

harmonic RF images, N is the number of image pixels, r ∈ R
N

is the TRF to be estimated, and n f and nh ∈ R
N are white

Gaussian additive noises. Moreover, the matrices H f and Hh

∈ R
N×N are block circulant with circulant blocks (BCCB)

matrices formed using the fundamental and harmonic PSFs
h f and hh . The attenuation of the harmonic image with depth
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is considered in the second model by using a diagonal matrix
W ∈ R

N×N that accounts for the level of attenuation at each
depth. This attenuation can be adjusted using the ratio between
the energies of the fundamental and first-harmonic spectra. The
choice of this matrix will be explained in the section devoted
to simulation results.

The proposed restoration problem consists in estimating the
TRF r from the measurements y f and yh. Note that the models
in (1) and (2) also depend on the fundamental and harmonic
PSFs that are unknown in practical situations. The estimation
of the TRF r and the unknown PSFs H f and Hh is detailed
in Section III.

III. TWO-STEP BLIND DECONVOLUTION ALGORITHM

A. TRF Estimation With a Known PSF

This section introduces the algorithm proposed to estimate
the TRF from fundamental and harmonic RF images based on
the direct models (1) and (2), for a known PSF and a known
weight matrix W . From a Bayesian perspective, the TRF can
be estimated using the standard maximum a posteriori (MAP)
estimator, which maximizes the posterior distribution of the
TRF defined

p
(
r| y f , yh

) ∝ p
(

y f |r
)

p
(

yh|r
)

p(r) (3)

where ∝ means “proportional to” and p(r) is the prior of r,
and the likelihood functions p(y f |r) and p(yh|r) are those of
the following Gaussian distributions:

y f |r ∼ N (
H f r, σ 2

f IN
)

yh|r ∼ N (
W Hh r, σ 2

h IN
)

(4)

where IN is the N ×N identity matrix, σ 2
f and σ 2

h are the noise
variances, and N stands for the Gaussian distribution, and the
two additive noises n f and nh are assumed to be independent.
The negative log posterior of r is given by

− log p
(
r| y f , yh

) ∝ 1

2
‖y f − H f r‖2︸ ︷︷ ︸

Fundamental data fidelity term

+ 1

2
‖yh − W Hh r‖2︸ ︷︷ ︸

Harmonic data fidelity term

+ log[p(r)].︸ ︷︷ ︸
Regularization

. (5)

In this work, we consider a Laplacian prior distribution p(r),
leading to an �1-norm regularization term. This prior has
been successfully used for US imaging in [12] and [25]–[27].
Finally, the TRF image r is estimated by solving the following
minimization problem:

r∗ =argmin
r

1

2
‖y f − H f r‖2

2+ 1

2
‖yh −W Hh r‖2

2+μ‖r‖1 (6)

where μ is a hyperparameter weighting the contribution of
the sparse regularization with respect to the two data fidelity
terms. The cost function in (6) is convex but nondiffer-
entiable because of the �1-norm, thus preventing the use
of traditional gradient-based algorithms. As an alternative,
variable splitting-based algorithms developed for nondiffer-
ential problems, such as the alternating direction method

of multipliers (ADMM) [28], the forward–backward algo-
rithm (FBA) [29], or the fast iterative shrinkage threshold-
ing algorithm (FISTA) [30], can be used to solve (6). This
article proposes to estimate the TRF from fundamental and
harmonic RF images using a dedicated algorithm based on
ADMM [28], [31]. The main motivation for using ADMM is
to split the optimization problem in (6) into several subprob-
lems that are easy to solve, as shown hereafter [32], [33].
ADMM is a general optimization framework adapted to solve
the following problem:

min
u,v

f1(u) + f2(v)

s.t. Au + Bv = c (7)

where f1 and f2 are closed convex and separable functions
(depending on u and v, respectively). The ADMM algorithm
is based on the augmented Lagrangian LA defined as

LA(u, v,λ) = f1(u) + f2(v) + β

2
‖Au + Bv + λ

β
‖2

2 (8)

where β is a regularization parameter for the linear constraint
and λ is the vector of Lagrangian multipliers. The vectors u,
v and λ are then computed as follows [28]:

For k = 0, . . .⎢⎢⎢⎣ uk+1 = argminu LA
(
u, v(k),λ(k)

)
vk+1 = argminv LA

(
u(k+1), v,λ(k)

)
λ(k+1) = λ(k) + β

(
Au(k+1) + Bv(k+1) − c

)
.

(9)

In order to solve (6) using the ADMM framework, we
rewrite (6) as follows:(

u∗,w∗, z∗) = arg min
u,w,z

1

2
‖y f − H f u‖2

2

+1

2
‖yh − W z‖2

2 + μ‖w‖1 (10)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(u) = 1

2
‖y f − H f u‖2

2

f2(v) = 1

2
‖yh − W z‖2

2 + μ‖w‖1

z = Hh r,w = u = r

v =
[
w

z

]

and

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A =
[

IN

Hh

]

B =
[
−IN 0

0 −IN

]
c = 02N

.

The main motivation behind the proposed parameterization,
and in particular the use of the auxiliary variables u and v,
is to separate the operators W and Hh. As it will be shown
next, Hh can be diagonalized in the Fourier domain due to its
BCCB property, whereas W is a diagonal matrix in the spatial
domain. Separating Hh and W simplifies the optimization
algorithm, which can be divided into two easier subproblems
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in the Fourier domain (for Hh) and the spatial domain (for W),
where these two matrices have diagonal representations.

The solution of (10) can be iteratively obtained in the
ADMM framework as described in Algorithm 1 and further
detailed in the following three main steps. Note that the
algorithm is initialized by setting u(0), z(0) and w(0) to the
fundamental image and the Lagrangian multipliers λ(0) to 0.

Algorithm 1 ADMM Algorithm for TRF Estimation
Input: y f , yh , H f , Hh .
1. Set k = 0, choose μ > 0, β > 0, u0, v0, λ0

2. Repeat until the relative cost function error < ε
// Estimate u (closed-form solution in

the Fourier domain)

3. uk+1 = min
u

1

2
‖y f − H f u‖2

2 + β

2
‖Au + Bvk + λk

β
‖2

2

// Estimate v = [w
z
]

// Estimate w using soft thresholding

4. wk+1 = min
w

μ‖w‖1 + β

2
‖uk+1 − w + λk

1

β
‖2

2

// Estimate z (closed-form solution in
the Fourier domain)

5. zk+1 = min
z

1

2
‖yh − W z‖2

2 + β

2
‖Hh uk+1 − z + λk

2

β
‖2

2

// Update the Lagrangian multiplier
6. λk+1 = λk + β(Auk+1 + Bvk+1)

Step 1: Update u using the analytical solution of
the optimization problem in line 3 of Algorithm 1.
Denoting as

λ =
[
λ1

λ2

]
∈ R

2 N

the vector of Lagrangian multipliers, the update of u at
iteration k is defined as

uk+1 = (
HT

f H f + β HT
h Hh + β I N

)−1
zk

×(
HT

f y f + β HT
h − λ1

k

−HT
h λ2

k + βwk
)
.

(11)

Under the hypothesis of circular convolution, H f and Hh are
BCCB matrices having the spectral decompositions

H f = F∗� f F (12)

Hh = F∗�h F (13)

where F and F∗ are the 2-D Fourier and inverse Fourier trans-
form matrices and � f = diag(Fh f ) and �h = diag(Fhh) are
diagonal matrices whose diagonal elements are the Fourier
coefficients of the first column of matrices H f and Hh . The
solution of (11) can finally be written as follows:
uk+1 = F∗(�∗

f � f + β�∗
h�h + β I N

)−1

×(
�∗

f Fy f + β�∗
f Fzk − Fλk

1 − �∗
f Fλ2

k + β Fwk
)
.

(14)

The computational complexity of the solution is reduced from
O(N3) in (11) to O(N log N) in (14) [using the decomposi-
tions in (12) and (13)]. In (14), �∗

f � f and the Fourier operator
can be computed with complexities of the order O(N) and
O(N log N).

Step 2: v = [ w
z ] is updated using two substeps.

Substep 2.1: Update w by minimizing the cost function
in line 4 of Algorithm 1. The solution to this prob-
lem can be simply implemented by a soft-thresholding
operator [34]

tk = uk+1 + λk
1/β

wk+1 = soft μ
β

(
tk

) = max

{
|tk | − μ

β
, 0

}
sign

(
tk

)
. (15)

Substep 2.2: The optimization problem in line 5 of
Algorithm 1 has an analytical solution defined as

zk+1 =(
W T W +β I N

)−1(
W T yh +β Hh uk+1+λk

2

)
. (16)

Step 3: Update the Lagrange multiplier as suggested
in [28]

λk+1 = λk + β
(

Auk+1 + Bvk+1
)
. (17)

As shown in Algorithm 1, the proposed ADMM-based algo-
rithm iterates the previous steps until a stopping criterion
has been satisfied. The stopping criterion for all the results
reported in this article was the relative error between two
consecutive values of the cost function in (10). The tolerance
parameter ε was set to 10−4.

B. PSF Estimation

The TRF estimation algorithm proposed in Section III-A
assumed the knowledge of the fundamental and harmonic
PSFs.

These PSFs can be estimated from the data, i.e., from the
beamformed RF images that are also used for TRF restoration.
Several parametric approaches have been investigated for this
estimation, exploiting an a priori model of the PSF (see
[10], [15], [35]). To overcome the rigidity of parametric
models, several nonparametric methods can also be found in
the literature, among which one may cite the homomorphic
technique [36]–[38]. The homomorphic method assumes that
the PSF and the TRF have disjoint supports in the cepstrum
domain and, thus, estimate the amplitude of the PSF by
low-pass filtering. Application of the homomorphic filtering
to US image restoration has been studied in [9] and [10] in.
The basic idea of this method is to rewrite the convolution
model (2) such that the PSFs and the TRF are separable.
More precisely, a generic noiseless convolution model ( y(x) =
h(x) ⊗ r(x)) (where y, h, and r represent the RF data,
PSF and TRF, respectively) can be expressed in the spectral
domain as

Y (ω) = H (ω)R(ω) (18)

where Y (ω), H (ω), and R(ω) are the Fourier transform of
y(x), h(x), and r(x), respectively, ω is the frequency variable,
and x is the location in the spatial domain, and the noise
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has been ignored by simplicity. The complex logarithmic
transformation of Y (ω) is thus defined as

log |Y (w)| = log |H (w)| + log |R(w)|, (19)
� Y (w) = � H (w) + � R(w) (20)

where the symbols |.| and � denote the magnitude and the
phase of the complex function, respectively. The goal of
the homomorphic methods is to discriminate the PSF and
the TRF terms based on their smoothness properties. The
PSF function is usually smooth in contrast to the reflectivity
function that can be considered as noise. Despite its efficiency,
the homomorphic filter suffers from its inability to estimate
the PSF phase. The minimum phase assumption can then be
used to build a robust solution for the proposed deconvolution
problem. More precisely, the adopted strategy applies a phase
unwrapping step and subsequently uses a smoothing procedure
as in [10]. Note that the PSF estimation algorithm is inde-
pendently applied to fundamental and harmonic RF images,
after separation by bandpass filtering. An outlier removal step
introduced in [10] is also used in order to build an outlier
resistant decomposition. The threshold for outlier removal
was set to 1. Note that the algorithm implicitly applies a
denoising step since some of the wavelet coefficients are
set to zero by the thresholding operation. These coefficients
belong to a finer wavelet decomposition level (here, wavelets
of Daubechies with two vanishing moments were used, and the
decomposition level was set to be 3). Finally, the estimation
of the PSF was done from a region of interest (ROI) extracted
around the TX focal point, in order to benefit from optimal
SNR conditions. Note that a detailed analysis of the sensitivity
of US deconvolution to PSF parameters can be found in [39].

IV. DATA AND EVALUATION METRICS

A. Data Simulation and Acquisition

1) Synthetic Data: A controlled ground-truth TRF was com-
puted from a kidney magnetic resonance image (MRI) slice,
by generating 106 scatterers (i.e., 30 scatterers per resolution
cell) with random Gaussian amplitudes. The gray levels of
the MRI image pixels were used to scale the variance of the
Gaussian distribution. The size of the resulting TRF image
is 1150 × 300 pixels. Fundamental ( y f ) and harmonic ( yh)
RF images were simulated by convolving this TRF with two
spatially invariant PSFs h f and hh , with central frequencies
f0 = 3.5 MHz and 2 f0 = 7 MHz. The two PSFs were
generated based on a simple Gaussian window modulated by a
sine function. The full-width at half-maximum (FWHM) of the
fundamental PSF was 3 mm in the lateral direction and 1.1 mm
in the axial direction. The FWHM of the harmonic PSF was
1 mm in the lateral direction and 0.5 mm in the axial direction.
Both PSFs were generated using six sine cycles. The resulting
images were contaminated by additive white Gaussian noise
corresponding to an SNR = 40 dB. The harmonic image
was finally generated by including an attenuation matrix W ,
accounting for the loss of wave amplitude due to absorption
and scattering, to respect the direct model introduced in
Section II. More precisely, the simulation of W was inspired

Fig. 2. Phantom model 404GS LE, Gammex Inc.

by the exponential attenuation model used in US imaging
defined by

A(z) = A0e−μAz (21)

where A(z) is the signal amplitude at a given depth z, A0 is
the initial signal amplitude, and μA is the attenuation factor,
fixed to 1.15 Nepers/cm. Note that this model assumes that
the attenuation only depends on the depth and is thus constant
with respect to the lateral direction.

To further consider nonlinear propagation effects, a second
synthetic RF image was generated using a nonlinear US image
simulator called CREANUIS [44]. The objective of this second
simulated image was to account for more realistic simulations
and to evaluate the interest of the proposed method for short
excitation pulses. In particular, a linear probe with a 245-μm
pitch and 30-μm kerf was simulated. In transmission, 64 ele-
ments were activated, focused at 30 mm depth, and apodized
with a Hanning window. The TX signal was a one-cycle sine
burst at 3 MHz with Gaussian tapering. The TRF corresponded
to the fetus example available in Field II [46]. The attenuation
coefficient B/A was fixed at 3.5.

2) Experimental Images: The experimental data were
acquired with a ULA-OP 256 research scanner connected
to the wideband 192-element linear array probe LA533
(Esaote S.p.A., Florence, Italy), with 110% bandwidth cen-
tered at 8 MHz and a 245-μm pitch. In transmission (TX),
64 elements were activated, focused at 33 mm depth, and
apodized with a Hanning window with an F-number equal to 4.
The TX excitation signal was a ten-cycle sine burst at 5 MHz
with the Hanning tapering and peak amplitude of 90 Vpp,
for all the performed scans [40]. The size of the RF images
is 384 × 4480, i.e., there are 384 scanned RF lines and the
number of samples covering the depth of 45 mm is 4480.
The sampling frequency was 78.125 MHz. Two acquisitions
were considered to test the proposed algorithms, as described
hereafter.

a) Phantom image: The first data were acquired on a
tissue-mimicking phantom (model 404GS LE, Gammex Inc.,
Middleton, WI, USA), including both anechoic/hypoechoic
cysts and wire targets, as shown in Fig. 2. The simple struc-
tures in this phantom allowed us to objectively evaluate the
resolution and the contrast gain enabled by the proposed
method.

b) Carotid image: The second acquisition was done in vivo
by scanning the carotid artery and jugular vein of a young
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Fig. 3. Carotid image. (a) Spectrum of the original RF image. (b) Spectrum of the filtered RF image containing the mixed information from fundamental
and harmonic data. (c) Spectrum of the fundamental image y f after filtering. (d) Spectrum of the harmonic image yh after filtering. (e) Spectrum of
one RF line highlighting the fundamental and first-harmonic filtering.

healthy volunteer. This image contains more complicated
structures and represents a more difficult challenge than the
previous phantom to prove the functionality of the proposed
restoration procedure.

B. Spectral Analysis of the Experimental Data

This section provides an analysis of the experimental data in
the Fourier domain. This analysis has mainly two objectives:
1) justify the separation of fundamental and harmonic images
by linear filtering and 2) explain how the attenuation matrix
W was estimated from real data.

In order to obtain the fundamental and harmonic images,
a bandpass FIR filter with a Hamming window was applied
to the RF image. The filter bandwidths for the fundamen-
tal and harmonic images were set to [4 MHz, 6 MHz]
(order 50) and [9 MHz, 11 MHz] (order 60), respectively.
These bandwidths are in agreement with the fundamental and
first-harmonic frequencies of the transducer, i.e., f0 = 5 MHz
and 2 f0 = 10 MHz. An example of the result obtained with
this filtering procedure is shown in Fig. 3 for a carotid image.
Note that there is a reduced spectral overlap between the
fundamental and first-harmonic spectra, justifying the use of
linear filtering for their separation.

In the case of experimental images, the attenuation matrix
W was constructed directly from the observed data, without
considering any a priori model. More precisely, we computed
the ratios between the energies of the fundamental and har-
monic components within sliding blocks extracted from the RF
image at each depth [41]. An example of estimated weights
obtained with this method is shown in Fig. 4.

C. Quantitative Metrics

To quantitatively evaluate the accuracy of the deconvolution
results, five metrics were employed. Two of these metrics are
only applied to the simulated data because they require the

Fig. 4. Example of weights for the carotid image. (a) Regions used
to compute the energies of the fundamental (red) and harmonic (blue)
spectra. (b) Diagonal elements of W with respect to the axial direction.

knowledge of the ground-truth TRF. The three other metrics
are dedicated to experimental data, for which the true TRF is
not available.

The structural similarity (SSIM) is an image quality measure
considering human visual perception defined as [42]

SSIM = (2μxμx̂ + c1)(2σxx̂ + c2)(
μ2

x + μ2
x̂ + c1

)(
σ 2

x + σ 2
x̂ + c2

) (22)

where μx , μx̂ , σx , and σx̂ are the means and standard devi-
ations of the true image x and its reconstruction x̂ (obtained
using restoration or beamforming) and σxx̂ is the covariance
between x and x̂. The values of c1 and c2 were set to
the default values used in SSIM: c1 = (0.01 × L)2 and
c2 = (0.03 × L)2, where L is the dynamic range. The
root-mean-square error (RMSE) between a vectorized image
x and its reconstruction x̂ (obtained using restoration or
beamforming) is defined as

RMSE =
√

‖x − x̂‖2
2. (23)
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Fig. 5. (a) TRF mimicking a human kidney (r of size 1150 × 300 pixels). (b) Simulated fundamental image y f . (c) Simulated harmonic image yh.
(d) Attenuation map used to simulate the harmonic image in (b), whose values are equal to 1 (no attenuation) close to the probe and to 0.3 (high
attenuation) at the bottom of the image. Note that all the images are shown in B-mode for better visualization and with 60-dB dynamic range.

The contrast-to-noise ratio (CNR) defines the contrast level
between two regions extracted from an image in dB

CNR = 10 log10

⎛
⎝ |μ1 − μ2|√

σ 2
1 + σ 2

2

⎞
⎠ (24)

where μ1 and μ2 are the means of pixels located in the two
defined regions and σ1 and σ2 are the standard deviations of
these regions.

The resolution gain (RG) was measured based on the
normalized autocorrelation function before and after deconvo-
lution. The number of pixels of the normalized autocorrelation
function having values higher than 0.75 (3 dB) was counted in
the original and the deconvolved images. The RG is defined
as the ratio between these two numbers, as suggested in [12].

V. RESULTS AND DISCUSSION

The accuracy of the proposed restoration algorithm was
evaluated and compared with two existing state-of-the-art
methods. The first method consists in restoring the TRF from
the fundamental RF image only, without accounting for the
first-harmonic data. This approach (referred to as “LASSO-
fundamental”) estimates the TRF by minimizing the following
LASSO-type cost function [14], [18]:

min
r

1

2
‖y f − H f r‖2

2 + μ‖r‖1. (25)

Note that similar to the proposed algorithms, the �1-norm
regularization is used in order to allow a fair comparison.

The second approach takes into consideration both funda-
mental and harmonic RF images as in [14]. It sums the TRF
estimated by (25) and the TRF estimated from the harmonic
RF image using the following problem:

min
r

1

2
‖yh − Hh r‖2

2 + μ‖r‖1. (26)

The final RF estimator (referred to as “LASSO-sum” in
this work and as compounded estimator in [14]) is obtained
by pixelwise summation of the two restored TRFs, nor-
malized such that the pixels of the final TRF sums to 1.

TABLE I
QUANTITATIVE RESULTS CORRESPONDING TO THE IMAGES

FIG. 6(B)–(E). THE CNR IS COMPUTED WITH RESPECT

TO THE RECTANGULAR REGIONS SHOWN IN FIG. 5

Finally, the proposed approach will also be compared to
an estimator based on (26) only, referred to as “LASSO-
harmonic,” in order to appreciate the interest of the harmonic
image. Note that the LASSO problem is very common and can
be solved using several optimization algorithms, as suggested
in the literature [28], [43]. In order to obtain a fair compar-
ison with the proposed algorithm, ADMM was also used to
minimize the functions in (25) and (26).

A. Results on Synthetic Data

Two kinds of results are presented in this section to com-
pare the proposed method with LASSO-fundamental, LASSO-
harmonic, and LASSO-sum.

1) Supervised Approach: The first results are obtained in
the ideal case of a known PSF, referred to as “supervised
deconvolution.” The simulated TRF and the corresponding
fundamental and harmonic images are shown in Fig. 5(a)–(c).
Fig. 5(d) shows the exponential attenuation map, used to
simulate the harmonic image, which decays from 1 to 0.3 with
the imaging depth following (21). The original and estimated
TRFs obtained using the different methods are shown in
Fig. 6. Zooms corresponding to the red rectangles are also
shown in Fig. 6 for better visualization. The visual inspection
of the TRF allows us to appreciate qualitatively the better
accuracy of the proposed method in terms of contrast and res-
olution. A quantitative assessment is shown in Table I confirm-
ing the qualitative results. Note that the RG is computed both
with respect to fundamental and harmonic images, defined
as “RG/fund” and “RG/har.” More specifically, the proposed
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Fig. 6. (a) TRF mimicking a human kidney (r of size 1150 × 300 pixels), TRF estimated by (b) LASSO-fundamental, (c) LASSO-harmonic,
(d) LASSO-sum, and (e) proposed method. All the estimated TRFs are obtained using a supervised approach, i.e., using the true PSF. Note that all
the images are shown in B-mode for better visualization and with 60-dB dynamic range.

Fig. 7. Left column: fundamental PSF (a) true and (c) estimated
by homomorphic filtering. Right column: harmonic PSF (b) true and
(d) estimated by homomorphic filtering.

method yields a good compromise between the good contrast
of the fundamental image and the good spatial resolution of
the harmonic image, with the ability of compensating the high
harmonic attenuation with depth.

2) Two-Step Blind Deconvolution Approach: The proposed
method is evaluated using two sets of synthetic data by
estimating both PSFs and the TRF successively. This experi-
ment estimates the PSFs using the fundamental and harmonic
images through the homomorphic filtering detailed in [10].
This is performed prior to the TRF restoration process.
The first set of data is obtained using the synthetic data of
Section IV-A1. The results are shown in Fig. 8. One can
observe that the deconvolution is less accurate than in the
supervised case because the PSFs are estimated and not set to
their true values. However, the proposed method provides very

TABLE II
QUANTITATIVE RESULTS CORRESPONDING TO THE IMAGES OF FIG. 8

TABLE III
QUANTITATIVE ASSESSMENT OF THE ESTIMATED PSF

WITH RESPECT TO THE TRUE PSF

competitive results compared with the state of the art. Quan-
titative results corresponding to this experiment are shown in
Table II, confirming the interest of the proposed method.

In order to investigate the efficiency of PSF estimation,
the truly fundamental and harmonic PSF and the estimates
obtained by the preprocessing (homomorphic filtering) step
are shown in Fig. 7. Besides the visual assessment, Table III
confirms a good similarity, in the sense of RMSE, between
the actual PSF and its estimate.

The interest of the proposed method for short excita-
tion pulses and in the presence of nonlinear propagation
effects can be appreciated in Fig. 9 for an image simulated
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Fig. 8. Estimated TRF using a two-step approach with (a) LASSO-fundamental estimated from the fundamental image in
Fig.5 (b), (b) LASSO-harmonic estimated from the harmonic image in Fig. 5(c), (c) LASSO-sum, and (d) proposed method. All the TRF were
estimated using PSF preestimated by homomorphic filtering of the RF images. Note that all the images are shown in B-mode for better visualization
and with 60-dB dynamic range.

TABLE IV
QUANTITATIVE RESULTS CORRESPONDING TO THE IMAGES OF FIG. 9

with CREANUIS [44]. Results reported in Table IV con-
firm the visual interpretation; the proposed method yields
the highest RG among all the restoration methods and the
second-best CNR after LASSO-harmonic, which misses, how-
ever, the information in depth because of attenuation.

B. Results on Experimental Images

This section analyzes some results obtained using phantom
and real carotid data. In contrast to the simulated data,
the system PSFs are unknown in these scenarios and have to be
estimated. Therefore, we investigate a PSF preestimation using
homomorphic filtering followed by a TRF deconvolution.

1) Phantom Image Results: The fundamental and harmonic
images associated with the considered phantom are shown
in Fig. 10(a) and (b). The better spatial resolution enabled
by harmonic images can be clearly observed by the wire
responses. The attenuation of harmonic echoes is very low
for this example. For this reason, the matrix W accounting
for attenuation in the harmonic direct model was set to the
identity matrix.

The results using the proposed approach and the differ-
ent restoration methods are shown in Fig. 10(c)–(f). In gen-
eral, all the restoration methods that consider the harmonic

TABLE V
QUANTITATIVE RESULTS COMPUTED FROM THE IMAGES OF FIG. 10

data (LASSO-harmonic, LASSO-sum, and proposed method)
exhibit good spatial resolution. Furthermore, LASSO-sum
and the proposed algorithm compensate for the harmonic
attenuation at high depths by including information from the
fundamental image, as shown in the zooms of Fig. 10. Cysts
are also better defined in the restored images compared with
the noisy images. To confirm these remarks, a plot extracted
from the estimated TRF is shown in Fig. 11. The proposed
method provides images with good spatial resolution, i.e., with
a similar or better FWHM of the wire echo compared with
harmonic and fundamental images.

The quantitative results are shown in Table V. They show
on one hand the competitivity of the proposed method both in
terms of contrast and spatial resolution and on the other hand
that slightly better results are obtained, for all the methods,
with the PSF estimated in a preprocessing step.

2) Carotid Results: The fundamental and harmonic carotid
images are shown in Fig. 12(a) and (b). From these images,
one can clearly observe the better spatial resolution of the
harmonic image, at the cost of higher attenuation with depth
compared with the fundamental image. In contrast to the
phantom experiment, the attenuation matrix W was estimated,
as explained in Section IV-B. This matrix has a crucial role
in this data set, due to its ability to balance fundamental
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Fig. 9. Results on data simulated with CREANUIS. (a) Fundamental image (blue and green regions are used to compute the CNR). (b) Harmonic
image (the yellow region is used to compute the RG). TRF estimated by (c) LASSO-fundamental, (d) LASSO-harmonic, (e) LASSO-sum, and
(f) proposed method. All the TRF were restored using a PSF preestimated by homomorphic filtering. Note that all the images are shown in B-mode
for better visualization and with 60-dB dynamic range.

Fig. 10. Results on phantom data. (a) Fundamental image (yellow region is used to compute the RG). (b) Harmonic image (blue and green regions
are used to compute the CNR). TRF estimated by (c) LASSO-fundamental, (d) LASSO-harmonic, (e) LASSO-sum, and (f) proposed method. All the
TRF were restored using a PSF preestimated by homomorphic filtering. Note that all the images are shown in B-mode for better visualization and
with 60-dB dynamic range.

and harmonic information. The experiments on carotid are
following the same scheme as for the phantom. The results
shown in Fig. 12 allow us to conclude that LASSO-sum and
the proposed method, which use both fundamental and har-
monic images, are able to gather useful information from both
observations. In particular, they provide a spatial resolution
similar to that of the harmonic image. However, harmonic
images are highly attenuated with depth and, more generally,
can be attenuated in any region corresponding to tissues
with a low harmonic response. For those particular regions,
the fundamental image plays an important role in order to
compensate for this lack of information in the harmonic image.
This effect can be appreciated in the zoomed regions shown

in Fig. 12. Fig. 13 shows the profiles extracted from the TRF
confirming these observations. The quantitative results are
shown in Table VI, which highlights the interest of combining
information from both fundamental and harmonic RF images.
For this particular carotid experiment, one can observe that
the harmonic image has a relatively strong amplitude for small
depths, thus providing a very good spatial resolution and con-
trast, except for high depths. In particular, the CNR measured
from the harmonic image is very high. However, one can
observe that all the deconvolution methods allow the spatial
resolution to be increased, highlighted by RG values always
higher than 1 in Table VI. The proposed method reaches a
compromise between spatial resolution (best compared with
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Fig. 11. Horizontal profile passing by the two cysts (regions 1 and 3) and the wire in between (region 2), the orange line in Fig.10(d).

Fig. 12. Results on carotid data. (a) Fundamental image (green region is used to compute the RG). (b) Harmonic image (blue regions are used to
compute the CNR). TRF estimated by (c) LASSO-fundamental, (d) LASSO-harmonic, (e) LASSO-sum, and (f) proposed method. All the TRF were
restored using PSF pre-estimated by homomorphic filtering. Note that all the images are shown in B-mode for better visualization and with 60-dB
dynamic range.

fundamental image and second best, hence very close to the
best, compared with the harmonic image) and contrast (best
CNR among all the deconvolution methods and close to the
harmonic image).

The models used in this article for fundamental and har-
monic components were linear based on the first-order Born
approximation. If this assumption is valid for fundamental
images in most practical applications, it is only valid for
harmonic images acquired from media with low nonlinearities.
To extend the proposed work to other applications than THI,
such as perfusion techniques, nonlinear models should be
considered to better fit the harmonic image formation model.
The imaging formation models could also be improved by

including spatially variant PSFs, adapted to various imaging
strategies such as the classical focus scheme used in this
work or synthetic strategies based on the plane or diverging
waves. These more sophisticated models would certainly help
to increase the accuracy of the image restoration process,
e.g., by reducing the reverberation in the restored TRF images.

The blind deconvolution problem investigated in this work
assumed that the noises of the fundamental and harmonic
images are independent. Since the cross-correlation coeffi-
cient between the anechoic regions in the real data between
the fundamental and harmonic images is close to zero,
the latter assumption is considered fair enough in our
application. Inverting the proposed image formation models
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Fig. 13. (a) TRF profiles corresponding to the red line in (b).

TABLE VI
QUANTITATIVE RESULTS COMPUTED FROM THE IMAGES IN FIG. 12

for the fundamental and harmonic images is an ill-posed
inverse problem that requires regularization to stabilize the
solution. In the present work, the regularization term was
based on an �1-norm motivated by the assumption of a
Laplacian-distributed TRF. However, other statistical models
might be considered, e.g., using a generalized Gaussian dis-
tribution, which is more general than the Laplace distribution
and was already shown to be a good candidate for US image
restoration [8], [45]. It is interesting to mention here that
the regularization parameters were fixed to their best values
by cross validation. Thus, the hyperparameter μ balances
the weight between the data fidelity term and the �1-norm
regularization promoting sparsity. The hyperparameter β is
proper to ADMM and allows the convergence of the algorithm
to be monitored. It balances the importance of the linear
constraint with respect to the data fidelity terms. Practically,
the values of these hyperparameters were set to μ = 0.1 and
β = 1 for synthetic data and to μ = 0.05 and β = 0.5 for
the two real data sets (interestingly, it was not necessary to
change these values from one real data set to another).

The execution time of the proposed deconvolution algorithm
is about 1 min for one US image, on a standard 3.6-GHz
Intel Core i7 with a straightforward MATLAB implementation.
The current implementation1 uses optimized ways of handling
high-dimensional operators, by computing some of the steps
in the Fourier domain as explained previously.

VI. CONCLUSION AND PERSPECTIVES

This article introduced a restoration method adapted to US
imaging. Its main advantage compared to the state of the art
is to consider two image formation models for fundamental

1The MATLAB code is available at ht.tps://ww.w.irit.fr/ Adrian.Basarab/
codes.html

and harmonic images, which are used jointly in the restoration
process. This strategy combines the information from both RF
images, in particular the good spatial resolution of harmonic
data and the good SNR (especially for high depths) of funda-
mental data.

This work opens perspectives concerning various aspects of
US image deconvolution, from the proposed image model to
the resolution of the corresponding inverse problem.

An accurate knowledge of the PSF is an important prereq-
uisite for any deconvolution method. In our work, the esti-
mation of the PSFs was achieved in a preprocessing step,
by homomorphic filtering. Considering other PSF estimation
methods, in particular blind approaches that can estimate
jointly the PSF and the high-resolution image, is clearly an
interesting future work. Finally, ADMM was adopted in the
proposed work to minimize the cost function resulting from
the US deconvolution process. Despite its flexibility and inter-
esting convergence properties, other optimization algorithms
could offer interesting perspectives, especially for more com-
plex image models, e.g., including nonlinear terms. Finally,
a real-time implementation of the algorithm using parallel or
GPU computing also represents an important perspective for
clinical use.
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