FLOWER an Innovative Fuzzy LOWer-than-Best-EffoRt Transport Protocol

Si Quoc Viet Trang 03/12/2015

Funded by Centre National d'Études Spatiales (CNES) and Thales Alenia Space (TAS)

Directed by Emmanuel Lochin (ISAE) Cédric Baudoin (TAS) Emmanuel Dubois (CNES) Patrick Gélard (CNES)

#1 Motivation

"Can we manage to exploit the unused satellite link capacity without disturbing commercial traffic?"

- CNES & TAS

The objectives are:

- Fully use the satellite link
- Add a signaling or non-commercial traffic
- Provide a new service for new business

- **And...**

To provide a free Internet Access for All

of 10000 respondents consider Internet access as an Human Right

of the world population don't have

an Internet connection

Yes, we can...

with Low than BE...

with LEDBAT!

(Low Extra Delay Background Transport)

#2 Lower than Best-Effort (LBE) Service

It's worse than best-effort. Why do we bother?

LBE + Satellites = Internet Access for All !

We just have introduced the LBE service

Let's have a look now at the most popular LBE protocol that implements such service

#3 LEDBAT

LEDBAT is a congestion control (CC) protocol that enables an LBE service

LEDBAT is delay-based CC while TCP is loss-based CC

Implements a P-type controller to control the sending rate as a function of the end-to-end queuing delay

Objective is to respond to congestion before standard TCP

Reduces the rate when it detects that the queuing delay is beyond a threshold (target queuing delay)

Parameters

target ⁷ – maximum queuing delay that LEDBAT may introduce in the network

gain σ - factor for amplifying the response to variations of queuing delay estimated (Qd)

Algorithm

error = τ – Qd cwnd = cwnd + (σ * error)/cwnd Proportional term

cwnd – congestion window: number of packets sent by time unit as a function of the congestion level

So ... let's use LEDBAT over satellite link!

Houston we have a Problem

Two Main LEDBAT Problems

Aggressiveness

Latecomer unfairness

C = 10 Mb/s, Owd = 50 ms, B = BDP

How to choose LEDBAT parameters?

#4

Experimental conditions

Objective seeking an "optimal" combination of parameters that fits in most/all network configurations

We tests several cases by varying the bottleneck characteristics in terms of

- Capacity (from 1 to 50Mb/s)
- One way delay (from 10 to 250ms)
- Buffer size (as a function of the BDP products)
- With various target and decrease gain

Cluster Analysis

B = **BDP**, if ηTCP ≥ 0.8 then ηref = ηLEDBAT

For other **B**, $\Delta = |\eta \text{LEDBAT} - \eta \text{ref}|$

Optimal Target = 5 ms

Optimal Gain = 10

Conclusion

(5ms, 10) is statistically optimal in all test cases

Setting LEDBAT parameters is a trade-off

Houston, we have another Problem

Latecomer unfairness still persists!

LEDBAT is not adaptive and only implements a P-type controller to control the sending rate as a function of the delay. Both parameters (target and gain) are fixed

One possible solution would be to implement an adaptive functionality inside this P-type controller but such adaptation would require a fine grained analytical model

"All these characteristics make this problem a perfect candidate for FUZZY LOGIC!"

The fuzzy expert

Why Fuzzy Logic?

No mathematical model required

Allows to incorporate our heuristic knowledge about how to control the system

Wider range of operating conditions than PID controllers

#5 FLOWER

How to control the queuing delay?

How to express this ?

$\Delta cwnd = f(e, \Delta e)$ ($\in [-1, 1]$)

Basic Principle of Fuzzy Logic

We use the **linguistic rules** to express the expert's knowledge about how to control the process

The general form of the linguistic rules is: If premise Then consequent

Basic Principle of Fuzzy Logic (ctd)

e, Δe, Δcwnd are linguistic variables which take on linguistic values:

NVL, NL, NM, NS, NVS, Z, PVS, PS, PM, PL, PVL

(P: Positive; N: Negative; V :Very; L: Large; M: Medium; S: Small; Z: Zero)

For a shorter description, we could use **linguistic-numeric values**:

NVL = -5; NL = -4; ...; Z = 0; ...; PL = 4; VPL = 5;

Basic Principle of Fuzzy Logic (ctd)

Membership functions quantify the certainty that linguistic variables *(e, Δe, Δcwnd)* **can be classified** as linguistic values (NVL, NL, ..., PL, PVL)

Δcwnd		Δε										
		-5	-4	-3	-2	-1	0	1	2	3	4	5
e	-5	-5	-5	-5	-5	-5	-5	-4	-3	-2	-1	-6
	-4	-5	-5	-5	-5	-5	-4	-3	-2	-1	0	-6
	-3	-5	-5	-5	-5	-4	-3	-2	-1	0	1	-6
	-2	-5	-5	-5	-4	-3	-2	-1	0	1	2	-6
	-1	-5	-5	-4	-3	-2	-1	0	1	2	3	-6
	0	-5	-4	-3	-2	-1	0	1	2	3	4	-6
	1	-4	-3	-2	-1	0	1	2	3	4	5	-6
	2	-3	-2	-1	0	1	2	3	4	5	5	-6
	3	-2	-1	0	1	2	3	4	5	5	5	-6
	4	-1	0	1	2	3	4	5	5	5	5	-6
	5	0	1	2	3	4	5	5	5	5	5	-6

Legend

-6 = NVVL, -5 = NVL, -4 = NL, -3 = NM, -2 = NS, -1 = NVS, 0 = Z, 1 = PVS, 2 = PS, 3 = PM, 4 = PL, 5 = PVL
(P: Positive, N: Negative, V: Very, Z: Zero, S: Small, M: Medium, L: Large)

B: Buffer, **sde**-: smoothed negative Δe , **sde**+: smoothed positive Δe

#6 Performance Evaluation of FLOWER

Illustration of FLOWER Behavior

C = 10 Mb/s, Owd = 50 ms, B = BDP

Latecomer Issue

C = 10 Mb/s, Owd = 50 ms, B = BDP

LBE Performance

LBE vs. TCP NewReno

LBE vs. TCP CUBIC

C = 10 Mb/s

We have a novel protocol **BUT** !!

Novel LBE proposals (or transport protocol in general) should consider **the impact of** AQMs We have a novel protocol **BUT** !!

Novel LBE proposals (or transport protocol in general) should consider **the impact of** AQMs

Bufferbloat (up-to-date problem): the phenomenon of low throughput and high latency caused by excessive buffering

Bufferbloat and LBE

Experiment done following Elsevier Computer Network Y.Gong, D.Rossi, C.Testa, S.Valenti, M.D.Taht, "Fighting the bufferbloat: on the coexistence of AQM and low priority congestion control"

#7 Conclusion

LEDBAT tuning is **very difficult** and **highly depends** on the network condition

FLOWER: the first existing solution that solves both LEDBAT issues

Implementation in Linux kernel done (under tests)

Low computational complexity

Perspectives

Test FLOWER over CESAR testbed

Novel ideas with Neural-Fuzzy

New AQM

Publications

On The Existence Of Optimal LEDBAT Parameters IEEE ICC 2014

FLOWER — Fuzzy Lower-than-Best-Effort Transport Protocol IEEE LCN 2015

FLOWER — An Innovative Fuzzy Lower-than-Best-Effort Transport Protocol

Submitted to Elsevier Computer Networks

Non-Renegable Selective Acknowledgments (NR-SACKs) for TCP To be submitted

