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Abstract— This paper examines the detection of mechanical
load faults in induction motors during speed transients by
stator current analysis. Mechanical load faults generally lead
to load torque oscillations at specific frequencies, related to
the mechanical rotor speed. The torque oscillations produce a
characteristic sinusoidal phase modulation of the stator cur-
rent. Speed transients result in time-varying supply frequencies
that prevent the classical, Fourier transform based spectral
estimation. This paper proposes the use of a time-frequency
distribution, the Wigner Distribution, for stator current analysis.
Fault indicators are extracted from the distribution for on-line
condition monitoring. The proposed methods are implemented
on a DSP and experimental results in steady-state and during
transients are presented.

Index Terms— Fault detection, induction motor, mechanical
fault, motor current signature analysis, torque oscillation, Wigner
Distribution.

I. I NTRODUCTION

I NDUCTION motors are used in a wide variety of industrial
applications. In order to increase the productivity, reliability

and safety of an installation containing induction motors,
permanent and automatic motor condition monitoring is often
desired.

Stator current based condition monitoring is often advan-
tageous due to easy and economical implementation. The
monitoring is in most cases done in steady operation state
using classical spectral analysis tools. However, a lot of
drives are adjustable speed drives where mechanical speed
transients may be present during a long time period. The
resulting time-varying supply frequency prevents the use of
classical spectral analysis. The application of other signal
processing methods like time-frequency analysis overcomes
this problem and makes condition monitoring possible during
speed transients.

This paper investigates the detection of torque oscillations
caused by mechanical faults in induction machines using stator
current time-frequency analysis. In a general way, a fault in the
load part of the drive will be seen from the induction machine
by a periodic variation of the load torque that is no longer
constant. Examples for such faults causing torque oscillations
include:

• general fault in the load part of the drive system e.g. load
unbalance
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• shaft misalignment
• gearbox faults e.g. broken tooth
• bearing faults

Torque oscillations already exist in a healthy motor due to
space and time harmonics of the airgap field, but the consid-
ered fault related torque oscillations are present at particular
frequencies, often related to the mechanical motor speed.

Thomson showed in [1] that mechanically induced speed
oscillations give rise to sidebands of the fundamental stator
current frequencyfs. It was also demonstrated that shaft
misalignment causes a rise at frequenciesfs ± fr in the
current spectrum wherefr is the shaft rotational frequency.
Obaid et. al. [2] studied load unbalance and shaft misalignment
and proposed a detection scheme based on monitoring stator
current frequencies atfs ± fr. Kral et. al. [3] analyzed the
instantaneous motor input power to detect mass imbalance and
eccentricity. Nevertheless, the power measurement requires 3
voltage and 3 current transducers. All the cited works consider
steady state motor operation at constant supply frequency.
The employed FFT based spectral analysis methods cannot
be used during speed and frequency transients. Several time-
frequency methods are proposed in [4] for the detection of
load torque oscillations in induction motors with time-varying
supply frequencies. In [5], rotor faults in brushless DC motors
are detected during transients using Wigner-Distributions. The
algorithm has also been implemented on a DSP.

In this work, the induction motor stator current is analyzed
during transients i.e. variable supply frequencies using Wigner
Distributions. It is shown that small load torque oscillations
lead to a particular signature on the distribution that is used
to derive two different fault indicators. These methods are
implemented on a low-cost DSP in order to demonstrate their
computational effectiveness.

Section II resumes the effect of load torque oscillations on
the stator current. The resulting fault model shows a sinu-
soidal phase modulation at the fault characteristic frequency.
In section III, the chosen signal processing method i.e. the
Wigner Distribution is presented and the theoretical fault
signature is calculated. The following section IV deals with
the DSP implementation of the proposed processing scheme,
including the necessary filtering, downsampling, numerical
calculation of the Wigner Distribution and the fault indicators.
Section V describes the experimental setup used to generate
small periodic torque oscillations at the rotational frequency.
The theoretically predicted fault signature on the Wigner Dis-
tribution is validated. Experimentally obtained fault indicators
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are presented for different amplitudes of the torque oscillation
corresponding to different fault levels under different load
conditions and with varying supply frequencies. The Wigner
Distribution based indicators are compared to the classical
spectrum based approach in steady state in order to demon-
strate their performance.

II. STATOR CURRENT MODEL UNDER FAULT

The method used to study the influence of the load torque
oscillation on the stator current is based on the magnetomotive
force (MMF) and permeance wave approach. This approach
is traditionally used for the calculation of the magnetic airgap
field with respect to rotor and stator slotting or static and
dynamic eccentricity [6] [7].

The detailed theoretical development for the stator current in
case of load torque oscillation has been given in [8] to identify
the consequence of bearing faults and in [9] for the general
case. The results will be shortly resumed in the following.

As this paper considers variable speed drives, the supply
frequencyfs and the fault frequencyfc can be considered
variable. Note thatfc can be for example the time-varying
rotational frequencyfr. The theoretical analysis of the stator
current under fault, however, is identical to the steady state if
relatively slow frequency variations are considered.

Under a mechanical fault, the load torque as a function of
time is assumed to be described by a constant component
Γconst and an additional component varying at the fault
characteristic frequencyfc. The first term of the variable
component Fourier series is a cosine with frequencyfc. For
the sake of clarity, higher order terms are neglected in the
following and only the fundamental term is considered. The
load torque can therefore be described by:

Γload(t) = Γconst + Γc cos (ωct) (1)

whereΓc is the amplitude of the load torque oscillation and
ωc = 2πfc.

Considering the mechanical equation of the machine, the
oscillating load torque leads to periodic oscillations atfc of
the mechanical rotor speed. The consequence is an oscillation
at the same frequency on the mechanical rotor position. If the
fundamental rotor MMF is calculated in the stator reference
frame by using the transformation between the two reference
frames, the oscillating mechanical rotor position produces
an oscillating rotor MMFFr(θ, t) that can be expressed as
follows:

Fr(θ, t) = Fr cos (pθ − ωst− β′ cos (ωct)) (2)

with:
β′ = p

Γc

Jω2
c

(3)

where p is the pole pair number,J the total inertia and
ωs = 2πfs. The fault effect on the rotor MMF can be seen
as a sinusoidal phase modulation at the characteristic fault
frequency.

The stator MMFFs(θ, t) is not directly affected and takes
the same expression as in the healthy case:

Fs(θ, t) = Fs cos
(
pθ − ωst− ϕs

)
(4)

where ϕs denotes the initial phase angle between rotor and
stator MMF.

The total magnetic flux density is obtained by the multipli-
cation of the total MMF with the airgap permeance, which is
supposed constant. The induced voltage in a machine winding
is related to the magnetic airgap field, so that the phase
modulation is preserved. Consequently, a mechanical load fault
leads to the following stator current expression (for an arbitrary
machine phase):

i(t) = ist(t) + irt(t)
= Ist sin [ωs(t)t + ϕs]

+ Irt sin
[
ωs(t)t + β cos (ωc(t)t)

] (5)

ist(t) andirt(t) denote the stator current components resulting
from the stator and rotor MMF. The amplitudesIst and Irt

are supposed quasi-constant.β is the phase modulation index
and it is proportional toΓc/ω2

c . The healthy case is obtained
consideringβ = 0.

For the sake of simplicity, the time harmonics of rotor
MMF and the non-uniform airgap permeance have not been
considered. However, the harmonics of supply frequencyfs

and the rotor slot harmonics theoretically show the same phase
modulation as the fundamental stator current component.

III. T IME-FREQUENCYSIGNAL PROCESSING

The time-varying supply frequencies in variable speed
drives lead to non-stationary signals that require advanced
signal processing methods for analysis. Traditional spectral
estimation methods based on the Fast Fourier Transform (FFT)
can no longer be applied. One possible solution for signal
analysis is the use of time-frequency distributions [10] [11]
that represent the signal energy with respect to time and
frequency.

A multitude of possible time-frequency distributions exist
with different properties. A simple method is the spectrogram
that uses the FFT on a sliding window. It was applied in
[12] to induction motor fault diagnosis. However, this method
cannot provide a high resolution in time and frequency due to
the Heisenberg-Gabor uncertainty principle [11]. The Wigner
Distribution, proposed by Wigner in [13] and applied to signal
processing by Ville [14], provides a high resolution in time and
frequency. It is particularly adapted to the analysis of linearly
varying frequencies, as can often be found in electrical drives.

A. Wigner Distribution

The Wigner Distribution (WD) is defined as follows:

Wx(t, f) =
∫ +∞

−∞
x

(
t +

τ

2

)
x∗

(
t− τ

2

)
e−j2πfτd τ (6)

This formula can be seen as the Fourier transform of a kernel
Kx(τ, t) with respect to the delay variableτ . The kernel is
similar to an autocorrelation function.

An interesting property of the WD is its perfect concen-
tration on the instantaneous frequency in the case of a linear
frequency modulation. However, other types of modulations
(e.g. in our case sinusoidal phase modulations) produce so-
called inner interference terms in the distribution [15]. Note
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that the interferences may however be used for detection
purposes as it will be shown in the following.

Another important drawback of the distribution is its non-
linearity due to the quadratic nature. When the sum of two
signals is considered, so-called outer interference terms appear
in the distribution at time instants or frequencies where there
should not be any signal energy [15]. If harmonic signals
such as the stator current are analyzed, appropriate filtering
is necessary. In order to avoid further interferences, the WD
should be calculated using the analytical signal obtained
through the Hilbert transform [11].

In practice, the Pseudo Wigner Distribution (PWD), a
smoothed version of the WD, is often used. PWD is defined
as follows [11]:

PWx(t, f) =
∫ +∞

−∞
p(τ)x

(
t +

τ

2

)
x∗

(
t− τ

2

)
e−j2πfτd τ

(7)
wherep(τ) is the smoothing window which also reduces the
amplitudes of the interference terms.

B. Wigner Distribution of Stator Current in Steady State

In order to obtain the WD of the stator current according
to (5) with constant supply and fault frequency, the WD of an
analytical phase modulated signalirt(t) will first be calculated
with

irt(t) = Irt exp j
[
ωst + β cos (ωct)

]
(8)

The kernel of this signal can be written as follows :

Kirt(t, τ) = irt

(
t +

τ

2

)
i∗rt

(
t− τ

2

)
= I2

rt exp j
{

ωsτ − 2β sin(ωct) sin
(ωc

2
τ
)} (9)

The WD is obtained as the Fourier transform (FT) of the kernel
with respect to the delayτ :

Wirt(t, f) = FTτ {Kirt(t, τ)}

= I2
rt FTτ

{
exp j (ωsτ)

}
∗ FTτ

{
exp j

[
−2β sin(ωct) sin

(ωc

2
τ
)]}

(10)

where∗ denotes the convolution. The FT of the second term
may be calculated in analogy to the FT of a pure PM signal
using the Jacobi-Anger expansion [16] given by:

ejγ sin θ =
+∞∑

n=−∞
Jn(γ)ejnθ (11)

whereJn denotes the n-th order Bessel function of the first
kind.

The second term in equation (10) can therefore be developed
into a Fourier series which allows a simple calculation of its

FT.

Wirt(t, f) = I2
rt δ(f − fs)

∗ FTτ

{
+∞∑

n=−∞
Jn

(
− 2β sin(ωct)

)
ejn ωc

2 τ

}

= I2
rt

+∞∑
n=−∞

Jn

(
− 2β sin(ωct)

)
δ

(
f − fs − n

fc

2

)
(12)

whereδ(f) is the Dirac delta function. For small modulation
indexesβ, the Bessel functions of ordern ≥ 2 are very
small and may be neglected (narrowband approximation from
communication theory):

Wirt
(t, f) ≈ I2

rtJ0(γ) δ(f − fs)

+ I2
rtJ1(γ) δ(f − fs −

fc

2
)

− I2
rtJ1(γ) δ(f − fs +

fc

2
)

(13)

with γ = −2β sin(ωct). The WD of the considered pure phase
modulated signal is therefore a central frequency atfs with
sidebands atfs±fc/2. All the components have time-varying
amplitudes at frequencyfc as γ is a function of time. It is
important to notice that the lower sideband has the opposed
sign to the upper sideband.

The Bessel functionsJ0(γ) andJ1(γ) can be approximated
for small argumentsγ by [16]:

J0(γ) ≈ 1 (14)

J1(γ) ≈ γ

2
= −β sin(ωct) (15)

As the stator current signal is considered as the sum of two
components, a phase modulated signal and a pure frequency
(see (5)), its WD must be calculated according to the following
expression for the sum of two signalsx + y [11]:

Wx+y(t, f) = Wx(t, f) + Wy(t, f) + 2 Re{Wxy(t, f)} (16)

with

Wxy(t, f) =
∫ +∞

−∞
x

(
t +

τ

2

)
y∗

(
t− τ

2

)
e−j2πfτd τ (17)

The WD of the pure frequencyist(t) = Ist sin (ωst + ϕs) (first
term of (5)) is given byI2

st δ(f−fs). A detailed calculation of
the cross termsWistirt shows that they are of small amplitude
and that they do not introduce new frequency components.
Thus, the cross terms may be neglected in this case and the
following approximate expression is obtained for the WD of
(5) :

Wist+irt(t, f) ≈
(
I2
rt + I2

st

)
δ(f − fs)

− I2
rtβ sin (ωct) δ(f − fs −

fc

2
)

+ I2
rtβ sin (ωct) δ(f − fs +

fc

2
)

(18)

In contrast to the pure phase modulated signal, the constant
componentIst is present at the fundamental frequency. The
fault characteristic signature is conserved.
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Fig. 1. Pseudo Wigner Distribution of simulated steady state PM signal

These considerations are illustrated in Fig. 1 where a detail
of the PWD of the PM signals1(t) is displayed. The plot is in
logarithmic scale and only positive values are displayed.s1(t)
is the sum of a pure sine and a sinusoidal PM signal:

s1(t) = cos (2πfst + π/8) + cos (2πfst + β cos (2πfct))
(19)

with fs=50 Hz, fc=25 Hz, β=0.05 and sampling frequency
200 Hz. The PWD ofs1(t) clearly shows the theoretically
predicted signature: a strong component is visible atfs with
sidebands atfs ± fc/2. The sideband amplitudes are time
varying at modulation frequencyfc. Furthermore, the two
sidebands have opposed amplitudes at a given time instant.

C. Wigner Distribution of Transient Stator Current

During speed transients, the supply and fault frequencies
are time-varying. For the calculation of the WD of a transient
stator current under fault, these frequencies are modelled as
linear functions of time:

fs(t) = αs + βst (20)

fc(t) = αc + βct (21)

The instantaneous frequenciesfi(t) of a sinusoidal signal with
these frequency laws would be (see [11]):

fi,s(t) = αs + 2βst (22)

fi,c(t) = αc + 2βct (23)

Using similar approximations as in the precedent part, the
WD of a transient current signal becomes:

Wi(t, f) ≈
(
I2
rt + I2

st

)
δ (f − (αs + 2βst))

− I2
rtβ(t) sin (ωc(t)t) δ

(
f − (αs + 2βst)−

(αc

2
+ βct

))
+ I2

rtβ(t) sin (ωc(t)t) δ
(
f − (αs + 2βst) +

(αc

2
+ βct

))
(24)

The central component of the WD is now time-varying ac-
cording to the instantaneous frequency lawfi,s(t) of the
fundamental stator current component. The sidebands are
located atfi,s(t)± fi,c(t)/2 analogous to the stationary case.
Their opposed amplitudes are also time-varying. It should also
be noted thatβ is no longer constant during transients as it is
proportional to1/ω2

c .
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Fig. 2. Pseudo Wigner Distribution of simulated transient PM signal

For illustration of the current signature in the transient
case, consider Fig. 2 where the PWD of a transient signal
is displayed. The signal is identical tos1(t) but with linearly
varying supply and fault frequenciesfs and fc in order to
consider a case similar to a motor start-up. The modulation
index β is kept constant in this example. The theoretically
calculated signature is clearly visible. However, stronger in-
terferences due to the time-varying frequencies can also be
recognized.

IV. DSP IMPLEMENTATION

Two different detection algorithms based on stator current
time-frequency analysis have been implemented on a DSP
(see section IV-C). The DSP is a low-cost Analog Devices
ADSP-21161 (21161N EZ-Kit lite), mainly designed for audio
applications. The inputs include anti-aliasing filters, followed
by 24-bit AD-converters with a minimum sampling rate of
48 kHz. As the fault signatures appear around the fundamental
supply frequency of 50 Hz, a lower sampling rate would be
advantageous but cannot be realized with this hardware. There-
fore, a preprocessing stage with filtering and downsampling is
implemented numerically before the calculation of the WD.

A. Preprocessing

1) Downsampling:The stator current is sampled at 48 kHz.
However, relevant fault frequencies with the two pole pair
machine are at a maximum frequency of1.5 times the supply
frequencyfs which leads approximately to 75 Hz for the
considered machine in nominal conditions. As a consequence,
a real-time downsampling stage is implemented to decrease the
sampling frequency by a factor28 = 256 i.e. the new sampling
frequency is187.5 Hz. The implementation of a single lowpass
filter with normalized cut-off frequency1/(2 · 256) followed
by a 256-fold decimator (takes one sample out of 256) would
require a high filter order and a significant amount of memory
for storage. It is more efficient to implement a scheme as in
figure 3 with 8 decimation stages in cascade, each including
the same filterH(f) with a normalized cut-off frequency0.25
followed by a 2-fold decimator. Main benefits are a low global
order, small time delay and computational cost.

More precisely, the implemented lowpass filterH(f) is an
elliptic IIR filter of order 14. Its normalized cut-off frequency
at −3 dB is 0.227 so that after the last downsampling stage,
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i[n]
H(f) ↓ 2 . . . Hi(f) j

ia[n]

8×
Delay

Fig. 3. Preprocessing of stator current signal: lowpass filterH(f), decimation
and Hilbert filterHi(f)

frequencies between 0 and85.03 Hz can be analyzed without
significant attenuation.

2) Hilbert filtering: The Wigner Distribution should be
calculated on the complex, analytical current signal in order
to avoid interferences [11]. The analytical current signalia[n]
is obtained from the real current signali[n] by means of the
Hilbert transformH{.} according to:

ia[n] = i[n] + jH {i[n]} (25)

The Hilbert transform is realized using a Hilbert filter with the
following frequency response:

Hi(f) =
{

−j for 0 ≤ f ≤ 1
2

j for − 1
2 ≤ f < 0 (26)

Its impulse responsehi[n] is:

hi[n] =
2 sin2(πn/2)

πn
=

{
0 if n is even

2
πn if n is odd

(27)

In practice, the Hilbert filter is implemented as finite impulse
response filter of orderNi=257. In order to respect causality,
the symmetric impulse response must be shifted by(Ni−1)/2.
The filter output is therefore delayed by 128 samples corre-
sponding to 0.688 s. The analytical signalia[n] is obtained by
multiplication of the filter output withj and addition of the
delayed real signali[n] (see Fig. 3).

B. Discrete Implementation of the WD

The discrete Wigner Distribution (DWD)Wx[n, k] of a
discrete signalx[n] of lengthN can be calculated according
to the following formula [11] (verifier!):

Wx[n, m] =
1
N

N−1∑
k=0

p[k]x[n + k]x∗[n− k]e−j4πmk/N (28)

where p[k] is a window function. This expression can be
efficiently implemented using an FFT algorithm (see [17] for
a sample algorithm). In this work, the DWD is calculated on
data records of lengthN = 512. The window function is a xx
point Hamming (??) window.

The result of the calculation would be a (512×512) matrix
that would require a considerable amount of memory for
storage. However, the DWD can be calculated for each time
bin n independently and the fault indicator can be directly
derived for this time bin. This offers the advantage that no
storage of the complete DWD is necessary, only the fault
indicator is retained.

C. Fault Indicators

Two fault indicators based on the Wigner Distribution,
called WD1 and WD2 in the following, are proposed. For
comparison with traditional techniques, the results obtained
with a spectrum based indicator are also presented in steady-
state operation. All the fault indicators are calculated on data
records of length 512 samples after downsampling. As soon as
one data buffer of length 512 is complete, the fault indicator is
calculated while the arriving samples are written to a second
buffer. The calculation of the indicator must therefore take less
than 2.73 s which is respected in all the cases.

1) Spectrum based indicator:The magnitude of the Fourier
transform of the phase modulated stator current according to
(5) is approximately for smallβ [9]:

|I(f)| ≈ (Ist + Irt) δ(f−fs)+Irt
β

2
δ (f − (fs ± fr)) (29)

where the fault frequency is supposed to befr.
The algorithm that calculates the spectrum based fault

indicator on a given buffer is the following:

• Zero-padding of initial data record up to 1024 samples
• Discrete Fourier transform using a Hanning window
• Search of the maximum absolute value of the Fourier

transformIm, corresponding to the supply frequencyfs

• Search of maximaI1 andI2 in intervals[fs− fs/p, fs−
0.9fs/p] and [fs + 0.9fs/p, fs + fs/p]. The rotational
frequencyfr is supposed to vary within these bounds
under different load conditions.

• The spectrum based indicator is then given by(I1 +
I2)/Im

The normalization with respect to the fundamental amplitude
Im is useful to obtain an indicator value that depends less on
the machine load level than without normalization.

2) Indicator WD1: The first indicator WD1 analyzes the
energy in a region around the characteristic fault signature at
fs±fr/2 in the PWD. The rotational frequency is supposed to
vary between0.9fs/p andfs/p as before. The fault indicator
is only calculated for time bins varying fromn=64 to 448 in
order to avoid border regions with strong interferences. The
detailed steps are the following:

• for n=64 to 448

– Calculate DWD[n, m]
– Determine frequency binmA belonging to strongest

absolute valueA (supply frequency)
– Calculate frequency bins corresponding to inter-

vals I1 = [(1 + 0.9/4)mA, (1 + 1/4)mA] and
I2 = [(1− 1/4)mA, (1− 0.9/4)mA]

– A1 and A2 are the sums of the absolute value of
DWD[n, m] in the intervalsI1 andI2

– Normalization: WD1[n] = (A1 + A2)/A
• The fault indicator WD1 is the sum of all the WD1[n]

The normalization of the energy with respect to the funda-
mental is done for each time bin. As with the spectrum based
indicator, it improves the indicator behavior under varying load
levels. Since the fault signature is oscillating with positive and
negative values in the PWD, the absolute values are taken.
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For the second indicator WD2, two pseudo signalssu[n]
and sl[n] are synthesized by recording at each instant the
highest absolute value of the PWD in intervalsI1 and I2.
They represent the oscillating fault signature in the upper and
lower sideband. According to (18), these signals theoretically
oscillate at the fault frequencyfr and their amplitude is
proportional toβ. Once recorded, the spectrum ofs1(n) and
s2(n) is analyzed in an interval that takes into account possible
values offr. This interval is calculated as a function of the
minimum and maximum estimated supply frequency for the
considered data record.

• for n=64 to 448
– Calculate DWD[n, m]
– Determine fundamental amplitudeA and the inter-

vals I1 andI2 as with WD1
– Find maximum absolute value of DWD[n, m] in I1

and I2 and retain the corresponding signed values
Au andAl

– Synthesis of the pseudo-signals including a normal-
ization: su[n] = Au/A , sl[n] = Al/A

• Calculate the minimum and maximum possible value
of fr based on the minimum and maximum supply
frequency

• Discrete Fourier transform ofsu andsl using 512 points
(zero-padding) and a Hanning window

• Derivation of energiesEu and El in the interval
[fr,min, fr,max]

• WD2 is the sum ofEu andEl

This second indicator is more complex to calculate but it
should be more accurate than WD1. Since WD1 takes the
absolute values of the PWD in a time-frequency region,
it can be influenced by noise or oscillating signatures at
other frequencies. The indicator WD2 is only depending on
the oscillating energy at certain frequencies which makes it
insensitive to such phenomena.

V. EXPERIMENTAL RESULTS

A. Description of Experimental Setup

Tests have been conducted on an experimental setup with
a three phase, 400 V, 50 Hz, 5.5 kW Leroy Somer induction
machine (see Fig. 4). The motor has two pole pairs and its
nominal torque is about 36 Nm. The machine is supplied by
a standard industrial inverter operating in open-loop condition
with a constant voltage to frequency ratio. The load is a DC
motor with separate, constant excitation connected to a resistor
through a DC/DC converter. Measured quantities for off-line
analysis are the 3 terminal voltages, 3 line currents, speed and
load torque. All the signals are acquired at 25 kHz by a 24 bit
data acquisition system. Further signal processing is done on a
standard desktop PC using Matlab. In parallel, one line current
signal is fed into the DSP for on-line analysis.

The load torque oscillations are produced as follows: a
DC/DC converter (Buck) is used to control the DC motor
armature current. Thus, a constant load torque with a small
additional oscillating component can be introduced. The ref-
erence signal for the oscillation is generated by the DSP that
receives position information from an incremental encoder.

Inverter
(open loop)

DSP board
ADSP-21161

DC/DC
converter

Torque
Transducer

Induction
Motor
5,5 kW

DC
Motor

Fault indicator

Γosc,ref(t)

Fig. 4. Scheme of experimental setup

Therefore, the oscillating torque componentΓosc is controlled
with respect to the mechanical rotor positionθr and takes the
following form:

Γosc(t) = Γc cos (θr(t) + ϕr) (30)

(Mentionner influence de phi !) Neither the position signal, nor
a speed measurement is used for the stator current analysis in
the DSP.

A load unbalance can be created by fixing a mass eccen-
trically on a disc placed on the shaft. In the following test,
a mass ofm=77 g has been fixed at a distance ofr=75 mm
from the center. The mass has two effects: first, the weight
leads to a load torque oscillation of amplitudeΓc = mgr and
it is varying sinusoidally with respect to the rotor position.
Secondly, a centrifugal force acts on the shaft. An increasing
level of dynamic eccentricity may result depending on the
bearing tolerances and the stiffness of the shaft.

B. Steady-State Results

1) Off-line Analysis:The stator current has been recorded
and processed off-line in order to study the fault effects on
the stator current spectrum and the Wigner Distribution. The
current spectrum shows a rise at frequenciesfs ± fr with
respect to the fault level as expected. Fig. 5 shows a detail
of the WD of the healthy and faulty motor stator current
at 50% load. The load torque oscillation amplitude in the
faulty case wasΓc=0.22 Nm. The theoretically calculated
interference signature is present on the WD of the faulty
current signal atfs ± fr/2 ≈ 50 ± 12.5 Hz , whereas the
WD of the healthy stator current does not show any energy at
the considered frequencies. However, other interferences are
present at frequencies close to the fundamental.

2) On-Line Analysis:The load torque oscillations in steady
state are imposed according to the fault profile displayed in
Fig. 6. During 20 data records (corresponding to 55 s), the
DC machine armature current reference contains no oscillating
component. Then, the amplitude of the oscillating component
increases after each 20 data records in order to obtain 6 fault
levels fromΓc=0.03 to 0.22 Nm (measured values). Note that
for the lowest fault level,Γc is only about 0.1% of the nominal
motor torque.
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Fig. 5. Pseudo Wigner Distribution of healthy and faulty stator current in
steady state at 50% load
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Fig. 6. Considered fault profile: Load torque oscillation amplitudeΓc vs.
data records

The results obtained with the spectrum based fault indicator
are shown in Fig. 7 for the nominal supply frequency and
three different load levels. The indicator evolves approximately
linearly with respect to the amplitude of the load torque
oscillation. This is the case for all average load levels. Even the
smallest torque oscillation of only 0.1% of the nominal torque
can still be detected. However, the evolution of the indicator
is sensitive to the average load level. The indicator is higher
with 50% load than with small load or 80% load. This can be
explained by the normalization with respect to the fundamental
stator current amplitude, which isIst + Irt. But the sideband
amplitudes areβIrt, i.e. the correct normalization should only
use the rotor current amplitudeIrt which is unfortunately
not directly available. Nevertheless, it can be observed that
the proposed normalization improves the dependence of the
indicator on the load level compared to no normalization at
all.

The results obtained under the same test conditions with the
two indicators based on the Wigner Distribution, WD1 and
WD2 are displayed in Figs. 8 and 9. Both indicators show
an approximately linear rise with respect to the amplitude
of the load torque oscillation. The indicator WD2 seems
more sensitive to the increase ofΓc than WD1. A possible
explanation is the more precise analysis with respect to the
fault frequency in case of WD2. WD1 is based on the total
energy in the WD in a given frequency interval, whereas WD2
only considers the energy of pulsating components at fault
frequency. It can also be noticed that WD2 depends less on
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Fig. 7. Spectrum based fault indicator vs. data records
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Fig. 8. Fault indicator WD1 vs. data records

the average load level than WD1.
Additional tests at lower supply frequency were conducted

to verify the fault indicator behavior at lower speed. The fault
indicators are quantities that should represent the evolution
of the PM modulation indexβ. β is proportional to1/ω2

c

according to the theoretical development and the fault indicator
should therefore show the same behavior. This was verified
with a supply frequencyfs=25 Hz which leads approximately
to half the fault frequencyfc. The indicator should therefore
be four times higher compared tofs=50 Hz. Fig. 10 shows the
spectrum based fault indicator and WD1 for the two different
supply frequencies. The healthy state of all the indicators was
referenced to zero. The indicators atfs=50 Hz were multiplied
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Fig. 9. Fault indicator WD2 vs. data records
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Fig. 10. Fault indicators at 25 Hz and 50 Hz supply frequency vs. data
records
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Fig. 11. Fault indicators WD1 and WD2 in healthy state (data records 1 to
19) and with load unbalance (data records 20 to 40)

by four to allow the comparison. A good agreement between
the indicators can be found, especially for WD1, which proves
experimentally thatβ ∝ 1/ω2

c . The results with the indicator
WD2 are not displayed, but they are similar to those obtained
with the spectrum based indicator.

3) Load unbalance:The three proposed fault detection
schemes are tested with an unbalanced load. Th small mass
leads theoretically to a sinusoidal torque oscillation of ampli-
tude0.057 Nm. The results obtained with the WD based fault
indicators atfs=50 Hz are displayed in Fig. 11. Both indicators
clearly detect the fault under all tested load conditions. The
magnitude of the indicators in the faulty case is comparable
to the second or third fault level in the precedent tests,
corresponding to values ofΓc from 0.07 to 0.11 Nm. The
values are higher than expected, possibly due to effects of the
centrifugal force. As in case of the load torque oscillations,
WD2 is less dependent on the load level than WD1. Despite of
the indicator dependence on the load level, a simple detector
using the same threshold for all load levels could be employed.

C. Results during Transient Operation

1) Off-line Analysis:The stator current has been recorded
during a motor start-up from 0 to 50 Hz supply frequency in
5 s. The WDs of the healthy and faulty stator current can be
compared in Fig. 12 for 50% average load andΓc=0.22 Nm.
The expected interference signature is visible atfs ± fr/2 in
the faulty case.

2) On-line Analysis:The algorithms used in the preceding
section for steady-state current analysis are tested under motor
operation at variable speed. One modification of the described
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Fig. 12. Pseudo Wigner Distribution of healthy and faulty stator current
during speed transient at 50% load
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Fig. 13. Considered speed profile: Supply frequencyfs vs. data records and
corresponding torque oscillation amplitude

algorithms is necessary for a correct functioning: Until now,
the algorithms have estimated a quantity directly proportional
to the phase modulation indexβ in (5). However,β depends on
the fault characteristic frequencyfc that itself depends onfr

and fs (see (3)). Therefore, the obtained fault indicator with
the precedent algorithms must be multiplied byf2

c to yield
a result independent of speed. Sincefc and fr are directly
proportional tofs, it is equivalent to multiply the indicator
with the estimated value offs.

The speed profile used in the following tests is displayed in
Fig. 13. During one speed cycle, the supply frequencyfs varies
linearly from 20 Hz to 50 Hz during 20 data records and back
to 20 Hz in the same way. At the start and at the end of one
cycle, fs is constant during 5 data records. This speed cycle
is repeated three times: first without a load torque oscillation,
then with Γc=0.11 Nm andΓc=0.22 Nm. The lowest supply
frequency is 20 Hz because of the DC machine voltage drop.
Below this value, the DC motor armature current control is
no more possible and therefore, the torque oscillation are not
correctly produced.

The tests with the first fault indicator WD1 gave the results
displayed in Fig. 14 for two constant average load torques cor-
responding to 10% and 70% load. During the first speed cycle
without any oscillating torque, the indicator shows variations
and is therefore still speed dependent with higher values at
higher motor speed. When the first level of torque oscillation
is applied from data record 50 on, the indicator jumps to a
higher value. During the second speed cycle, the indicator
value still depends on the speed but the relative variations
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Fig. 15. Fault indicator WD2 vs. data records during speed transients

betweenfs=20 Hz andfs=50 Hz are much smaller. The same
behavior can be observed during the third speed cycle with a
higher oscillating torque. It can be concluded from these tests
that the fault indicator WD1 still depends on the speed, despite
of the previously mentioned indicator correction. A simple
threshold cannot clearly distinguish between the healthy case
and Γc=0.11 Nm (0.3% of nominal torque). However, for a
given speed or supply frequency, the fault indicator is always
higher with the torque oscillation. With stronger oscillations
(Γc=0.22 Nm or 0.6% of nominal torque), the discrimination
is possible for all considered speeds.

The results obtained with the second indicator WD2 are
shown in Fig. 15 for the same two load levels. It can be
noted that is less varying during the first speed cycle compared
to WD1. The behavior during the following cycles with
torque oscillation shows higher indicator values at low speed
whereas the indicator is approximately constant above a certain
minimal supply frequency (about 30 Hz).

VI. CONCLUSION

This paper studied the detection of mechanical faults in
induction motor drives at variable speed using stator current
time-frequency analysis with the Wigner Distribution. The
fault related torque oscillations modulate the phase of the
stator current signal and lead to a characteristic signature on
the Wigner Distribution. Fault indicators can be calculated
using properties of this interference structure. The two pro-
posed methods and a classical spectrum based indicator have
been implemented on a DSP for on-line condition monitoring.

Tests in steady-state have shown that load unbalance and small
torque oscillations can be detected.
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