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Abstract: This paper studies a statistical approach to detect and diagnose a particular type of
vibration impacting the control surfaces of civil aircraft. The considered phenomenon is called
Limit Cycle Oscillation (LCO). It consists of an unwanted sustained oscillation of a control
surface due to the combined effect of aeroelastic phenomena and an increased level of mechanical
free play in the elements that connect the control surface to the aerodynamic surface. The state-
of-the-art for LCO prevention is mainly based on regular free play checks performed on ground
during maintenance operations. The detection is mainly achieved by the crew, and especially
the pilot who can fill in a so-called “vibration reporting sheet” to describe the phenomena felt
during the flight. Thus, the pilot sensitivity to vibration is still the only reference for LCO
detection. In the Flight Control System (FCS) of modern aircraft there exist already several
certified algorithms for the detection of vibrations of different nature, which use dedicated local
sensors to monitor the control surface behaviour. The same kind of sensors have been chosen in
a local approach, which eases the isolation of the vibration sources. This paper studies a new
statistical approach based on the Generalized Likelihood Ratio Test (GLRT) in order to improve
the state-of-the-art for LCO detection and diagnosis. The test and its theoretical performance
are derived and validated. A straightforward method compliant with real-time implementation
constraint for LCO prediction is proposed. A Monte Carlo test campaign is performed in order
to assess the robustness and the detection/diagnosis performance of the proposed algorithm
under different operating conditions.

Keywords: Flight Control, Fault Detection and Isolation, Predictive Maintenance, Limit Cycle
Oscillation, Generalized Likelihood Ratio Test.

1. INTRODUCTION

Spurious oscillations of the control surfaces (C/S) of a civil
aircraft impact both the structural airframe design and the
flight control system design. Indeed, undetected oscilla-
tions may lead to local structural load augmentation, flight
handling qualities deterioration, actuator operational life
reduction, cockpit and cabin comfort deterioration, main-
tenance cost augmentation. For this reason, the ability to
detect and isolate unwanted oscillations beyond a given
amplitude (in a given time depending on the fault type)
is an important feature for a fault-tolerant, economically
efficient and comfortable aircraft architecture. The causes
of C/S oscillation can be internal to the Flight Control
system (faulty behaviour of an electronic component or
a mechanical failure) and they are generally referred as
Oscillatory Failure Case (OFC) (Goupil, 2010). However,
they can also be external (aerodynamic non-linearities as
shock waves) or partially internal and external. It is the
case of aeroservoelastic oscillations (Dowell, 2014) known
as Limit Cycle Oscillations (LCO). The state-of-the-art
concerning OFC detection is mainly based on analytical
redundancy approaches (Goupil, 2010)(Zolghadri et al.,
2013) while LCO detection to the best of author’s knowl-
edge still depends almost entirely on crew sensitivity to

vibrations. The idea to use statistical and data-driven
technique for C/S oscillation detection has also been inves-
tigated in the literature. For example, in (Zolghadri et al.,
2013) and (Simon, 2011), a few data-driven approaches
are discussed for OFC detection. These approaches include
a fault modelling strategy based on Kalman filtering or
using a specific observer, selective filtering, correlation
methods, synchronous detection. In (Goupil et al., 2016)
and (Urbano et al., 2017a) an OFC detection algorithm is
also proposed based on distance and correlation measures.
In the present paper a different approach based on a
likelihood ratio test (LRT) is investigated for the problem
of LCO detection and diagnosis.
Generalized Likelihood Ratio Tests (GLRT) are standard
tools for the detection of deterministic signals with un-
known parameters due to their simple structure, wide
applicability and optimal asymptotic performance (Kay,
1998). For this reason, the authors of the present paper
have decided to propose a simple detection algorithm
based on the GLRT and a simple modelling of the con-
trol surface servo loop. A simple method compliant with
real-time implementation constraints for LCO diagnostic
results from this algorithm.
The paper is organized as follows: Section 2 presents the



state-of-the-art concerning LCO prevention and detection.
Section 3 introduces the GLRT method and its deriva-
tion with the proposed hypotheses. Section 4 proposes a
simple approach for LCO diagnostic resulting from the
GLRT. Section 5 presents some results of a Monte Carlo
test campaign realized using an Airbus simulator. These
results show the robustness and detection performance
under different operating conditions. Section 6 summarizes
conclusions and describes some perspectives of this study.

2. STATE-OF-THE-ART

The first events of control surface flutter and LCO oc-
curred during the 1st World War and the most widely
adopted solution was to consider control surface mass
balancing (Von Baumhauer and Koning, 1923). In 80-90s,
the hydraulic actuators became reliable enough to ensure
the aeroelastic stability by their own stiffness or damping.
For this reason, the C/S mass balancing was given up
because of its drag and weight penalty (Dowell, 2014).
Unfortunately, this solution presents a weak point: with
the cumulative wear (aircraft ageing), some supporting
elements of control surface develop mechanical free play
and so the C/S can vibrate inside its free play.
For this reason, the actuator stiffness solution has often to
be coupled with other countermeasures such as

i) low free play articulation technologies (roller bearings
for example)

ii) free play monitoring via periodic maintenance check
iii) control surface artificial static loading (achieved by

specific devices or by the actuators linked to the C/S)
iv) in-flight LCO monitoring
v) in-flight LCO adaptive control (Livne, 2017)

It is important to note that i), ii), iii) concern LCO pre-
vention, while iv) and v) consider directly the problem of
LCO detection and control. The current study is intended
to propose a new method in the context of iv) where the
state-of-the-art is often based only on the pilot sensitivity
to vibrations. Indeed, after each flight, the crew can fill
in a so-called “Vibration Reporting Sheet” (Airbus) or a
“Flight Deck Vibration Event Log” (Boeing) to describe
the phenomena felt during the flight, clearly leading only
to qualitative information about the phenomenon.
In the Airbus architecture, the servo loop that moves
the control surface (see Fig. 1) is already monitored by
several fault detection algorithms (Goupil, 2010). Thus,
it is interesting to investigate the possibility of using
a statistical approach for LCO detection and diagnosis
(based on existing measurement and compliant with real-
time implementation constraints).

3. GENERALIZED LIKELIHOOD RATIO TEST

The control surface servo loop in Fig. 1 can be modeled
as in Fig. 2, where x is the command sent to the actuator
from the flight control system, P represents the actuator
dynamic, s is the oscillation to be detected (it is present
only under the hypothesis H1), y is the measured control
surface position and w is the measurement noise. In this
study we will consider that the noise power is known and
that x and y are known. For a very simple model of the
actuator dynamic of the type y0 = λx(n − p), where λ is
an attenuation/amplification factor and p is a delay, the
LCO detection problem can be expressed by the following
binary hypothesis testing problem

{
H0 : y(n) = λx(n− p) + w(n)

H1 : y(n) = λx(n− p) +A cos(2πfn+ φ) + w(n)

(1)

where n = 0, ..., N −1 and w(n) ∼ N (0, σ2). The signal to
detect s(n) = A cos(2πfn+ φ) can be rewritten as

s(n) = l1 cos(2πfn) + l2 sin(2πfn) (2)

allowing the non linear dependency with respect to φ to be
removed. In this case A =

√
l21 + l22 and φ = arctan (−l2l1 ).

The problem in (1) is a problem of deterministic signal
detection in interference (Kay, 1998), where s(n) is the
signal to detect and λx(n− p) is the interference.
The following conditional model (CM) (Stoica and Neho-
rai, 1990) can be considered to derive the detector

H0 : y = H0(α0)β0 + w

H1 : y = [H0(α0) Hs(αs)]︸ ︷︷ ︸
H1(α1)

[
β0

βs

]
︸ ︷︷ ︸
β1

+w (3)

where α0 = [p], β0 = [λ], α1 = [p, f ]T , β1 = [λ, l1, l2]T

and the observation matrices are

H0(α0) = x(p) =


x(−p)
x(1− p)

...
x(N − 1− p)


H1(α1) = [x(p) c(f) s(f)] =

x(−p) 1 0
x(1− p) cos(2πf) sin(2πf)

...
...

...
x(N − 1− p) cos(2πf(N − 1)) sin(2πf(N − 1))


In a two hypothesis testing problem, the optimal decision
rule is based on the exact statistics of the observations. Its
expression requires knowledge of the Probability Density
Function (PDF) of observations under each hypothesis
and the a priori probability of each hypothesis, if known
(Bayes criterion). If no a priori probability of hypotheses is
available, then most often used criterion is the likelihood
ratio test (LRT) derived by Neyman-Pearson (Kay, 1998).
Unfortunately, optimal statistical tests such as the LRT
cannot always be implemented since there are often some
unknown parameters in the observation model, leading
to the so-called composite hypothesis testing problem
(Van Trees, 2004) (also referred to as joint detection
estimation problem (Galy et al., 2010)). A very common
approach in this situation is to replace the unknown
parameters in the LRT by their maximum likelihood
estimators (MLE), following the ideas of the generalized
likelihood ratio test (GLRT) (Van Trees, 2004). It is
known that the GLRT does not generally keep the optimal
properties of the LRT. However, the GLRT approach
has several advantages: the test is often easy to derive
and sometimes its expression and distribution can be
determined analytically (Kay, 1998), it is known to be the
uniformly most powerful (UMP) test for some classes of
problems in the asymptotic region (Scharf and Friedlander,
1994).
The GLRT requires to estimate the unknown parameter
vectors αi and βi under both hypotheses (i.e., for i = 0, 1)
using the maximum likelihood principle. Considering the
hypothesis of additive white Gaussian noise of known



variance σ2 (w(n) ∼ N (0, σ2)), the likelihood of the
observed vector y is

p(y;α,β) =
1

(2πσ2)
N
2

exp

(
− 1

2σ2
‖y−H(α)β‖2

)
.

As a consequence, the GLRT can be written as

p(y;α1,β1|H1)

p(y;α0,β0|H0)
=

exp

(
− 1

2σ2

∥∥∥y−H1(α̂1)β̂1

∥∥∥2
)

exp

(
− 1

2σ2

∥∥∥y−H0(α̂0)β̂0

∥∥∥2
) H0

≶
H1

γ.

The estimation problem, considering a general notation
that is true for both the hypotheses H0 and H1, reduces to
the minimization of following least squares (LS) criterion
(Kay, 1993)

J(α,β) = ‖y−H(α)β‖2 = (y−H(α)β)T (y−H(α)β).

The value of β that minimizes J(α,β) for a given value
of α is

β = (HT (α)H(α))−1HT (α)y (4)

and replacing this value of β in J(α,β), we obtain the
following MLE of α

α̂ = argmin
α
‖Π⊥Hy‖2. (5)

where ΠH = H(HTH)−1HT is the orthogonal projection
matrix that projects a vector onto the columns of H, and
Π⊥H = I − ΠH is the projection matrix that projects a
vector onto the space orthogonal to the columns of H.
The sufficient statistic T for the GLRT is therefore

T =
1

2σ2

(∥∥∥y−H0(α̂0)β̂0

∥∥∥2

−
∥∥∥y−H1(α̂1)β̂1

∥∥∥2
)

(6)

=
1

2σ2

(∥∥∥Π⊥H0(α̂0)y
∥∥∥2

−
∥∥∥Π⊥H1(α̂1)y

∥∥∥2
)
H0

≶
H1

γ (7)

Observing that Π⊥H = I − ΠH, we can also obtain the
following equivalent detector

T ′′ =
∥∥ΠH1(α̂1)y

∥∥2 −
∥∥ΠH0(α̂0)y

∥∥2 H0

≶
H1

2σ2γ. (8)

Concerning the detector performance, it can be proved
(Urbano et al., 2017b), that for the problem in (1) we ob-
tain the following expressions of the false alarm probability
PFA and detection probability PD for one observation
window

PFA = P (2T > γ|H0) = P (χ2
r > γ) = Qχ2

r
(γ)

PD = P (2T > γ|H1) = P (χ2
r(k) > γ) = Qχ2

r(k)(γ) (9)

where the functions Qχ2
r

and Qχ2
r(k) are the complemen-

tary cumulative distribution functions of central and non
central chi square distributions 1 whose parameters r and
k are detailed in Appendix A. It is important to observe
that starting from the theoretical expression of the de-
tection performance (9), one can tune the threshold γ
directly for a given constant false alarm rate. Indeed, one
can choose

γ = Q−1
χ2
r

(PFA) (10)

where for M non-overlapping windows (white noise) one
can simply consider PFA = ΠM

i=1P
i
FA(for PFA << 1).

Furthermore, being the expression of PD a function of

1 whose closed form expressions can be found for example in (Kay,
1998, Chap. 2)

the observation window dimension N (through the chi-
square non centrality parameter k, see Appendix A), one
can choose N in order to maximize the PD (respecting the
constraints, if any, in terms of hardware limits or detection
time).
Remark 1: simple expressions for the MLEs and the test
statistic can be obtained for the case in (1). These ex-
pressions (detailed in Appendix B) can be implemented
in an auto-recursive scheme, reducing considerably the
overall computational cost of the method. Moreover, the
optimization process required in (5) can be simplified
considering the so-called Alternating Projection approach
as in (Ziskind and Wax, 1988).
Remark 2: if we are looking to reduce further the com-
putational burden of the method, one can consider some
specific cases. For example, if we already know some (or
all) the parameters α in (3), we can simplify the test struc-
ture and avoid the optimization process in (5). Moreover,
it is clear that if the signal x does not contain any signal
component at the frequency f , the test statistic reduces to
the simple periodogram of y (the signal x does not bring
any useful information for the detection and the power
spectrum of y is all we need to detect s). This can be also
verified looking at the equations in Appendix B.

4. VIBRATION DIAGNOSTIC

The GLRT defined in the previous section implicitly in-

volves the estimation of the LCO amplitude Â =

√
l̂21 + l̂22

and duration 2 ∆̂T . This means that we can estimate the
energy produced by the vibration as

ÊLCO =

∫
∆̂T

Â2dt.

Based on this observation, a very simple method for vi-
bration diagnostic can be proposed. Indeed, if we consider
that only a fraction of ELCO is dissipated through wear
process that increase the free play level, we can define a
simple diagnostic index I (for a given flight F ) as

I(F ) = kw

∫
∆̂TF

Â2
F dt

where kw is a wear severity coefficient. At this point,
this definition of I can be easily extended to n flights by
considering a recursive expression of the type

I(Fn) = λfI(Fn−1) + kw

∫
∆̂TFn

Â2
Fn
dt (11)

where λf is a forgetting factor adjusted to reduce the
undesired effects of estimation errors. The vibration diag-
nostic index (11) provides a rough estimate of the system
deterioration due to vibrations (free play increase) and
thus it can be used for diagnostic purpose on a control
surface. However, it is important to observe that the simple
expression (11) has to be coupled with a relevant threshold
to be meaningful, which may be a tricky task. Indeed,
one can choose to link empirically the index I with an
acceptable level of cabin and cockpit comfort. However,
this concept may vary between pilots and airlines. For
this reason, in the next section we will focus only on
the estimation accuracy in terms of LCO amplitude and
2 The signal is detected in M observation windows of dimension N .
If Ts denotes the sampling period, we can approximate the duration

as ∆̂T = MNTs.



duration, leaving the computation of I and the associated
threshold tuning to further studies. Note also that the
parameters kw and λf may be considered as time-varying
for a more accurate prediction of the vibration evolution.
Concerning the interaction between wear process and limit
cycle oscillations, the reader can find an interesting de-
scription in (Safi et al., 2002), where wear models and
predictive equations are presented and where it is shown
that the sliding wear damage has a predominant effect
compared to the impact wear damage. Moreover, it is ob-
served that, if a vibration occurs, the rate of development
of the free play can increase exponentially.

5. RESULTS

A Monte Carlo test campaign has been conducted using
an industrial Airbus desktop simulator to evaluate the
detection performance of the proposed approach. A test
set, composed of the signals x and y, has been generated
for the elevator of a specific Airbus aircraft that flies on
the typical mission profile for that aircraft (see Fig. 7)
under different operating conditions in terms of Mass,
balance, Mach number and turbulence level 3 (see Table
1). Various possible operating conditions (around 2500)
have been simulated based on the typical profile mission
in Fig. 7 and a particular combination of the parameters in
Table 1. A simplified version of the algorithm described in
Section 3 has been considered for hardware capacity rea-
sons (see Appendix B for more details). In fact, we cannot
guarantee the absence of signal power at the frequency

f̂ in x. However, we can consider that the power of the
sinusoid is small compared to the energy and covariance
terms xT (p̂)x(p̂) and xT (p̂)y, leading to p̂0 ≈ p̂1 ≈ p̂.
In this case, the estimation of the system dynamic P
and the detection of the oscillation s can be decoupled
reducing the computational cost of the algorithm. In other
terms, we have reduced the algorithm to a simple two step
approach of the type estimation plus detection (recursive
estimation of the system dynamic for residual generation
plus sinusoidal detection on the residuals). The system
dynamic can be estimated based on the MLEs under H0,
while the detection problem reduces to the surveillance of
the power spectral density of the residuals. Note that the
LCO frequency f is generally known a priori based on the
aeroelastic properties of the system, so the frequency band
to be monitored is narrow.
The threshold can be tuned based on (10) for a PFA = 10−t

for flight hour, where t ∈ [3, 6] and r = 2 under the con-
sidered hypotheses. Based on (9), the observation window
has been chosen as the smallest one able to detect a given
vibration amplitude A1 (lower than pilot sensitivity) with
PD close to one (for the given PFA). A value of 10 seconds
has been chosen for the observation window, based on a
sampling rate of Fs = 100Hz.
First, the test set has been analysed with the aforemen-
tioned algorithm in order to verify the robustness of the
method (fault-free case). No false alarm was observed.
Second, the original test set was modified for performance
evaluation. Indeed, the vibrations (frequency f) have been
artificially added on the signal y only in the flight phases
where the LCO is more likely to trigger on the elevator
3 The turbulence levels T1 − T2 − T3 are three increasing levels of
turbulence (low, medium and strong) assessed with regard to Airbus
pilots sensitivity.

(e.g., when the hinge moment of the control surface is
close to 0, see also Fig. 3). In particular, we have con-
sidered three target levels A1, A2 and A3 to be detected in
this campaign (three target levels corresponding to three
cockpit vibration levels: lower than pilot sensitivity A1,
detectable by the average pilot A2 ≈ 1.35A1, possible in-
flight turn back A3 ≈ 2.2A1, see Fig. 4). An example of one
of the simulated scenarios for performance evaluation is
shown in Fig. 5 with the control surface hinge moment. Al-
most 170 different flight conditions were considered for this
scenario according to Table 1. An auto-recursive Simulink
model was chosen to implement the algorithm and to eval-
uate its performance in terms of detection and estimation
capabilities (we want to estimate amplitude and duration
for the diagnostic objective as explained in Section 4). Fig.
6 shows an example of application of the algorithm for the
target amplitude A2. We can observe that the vibration
is always detected 4 . However, the estimation accuracy in
terms of amplitude and duration depends on the particular
flight condition (the same is true for the other target am-
plitudes). In Fig. 8 we can observe a bar plot of the mean
estimation errors 5 as a function of the target amplitudes
A1, A2, A3 and for a low level of turbulence T1. It can be
seen that the estimation errors are not monotone functions
of the amplitude. In Fig. 9 we can observe a bar plot of
the mean estimation errors as a function of the turbulence
level (T1 = low, T2 = medium, T3 = strong) for the target
amplitude A2. As expected, the turbulence acts as an
undesired interference for the detector and the estimation
performance decreases as the turbulence level increases. It
is interesting to observe that, from the analysis of Fig.
8 and 9, one can derive also a rough estimate of the
propagation error on the predictive index in Section 4.

Indeed, if we consider that I(F )/kw ≈ ∆̂TÂ2, assuming
no correlation 6 , the propagation error can be estimated
as

e(I)/kw ≈
√
e(∆̂T )2 + (2e(Â))2.

Looking for example at Fig. 8, for the target level A1 and
A2, one would obtain e(I)/kw ≈ 27% and e(I)/kw ≈ 6%.

6. CONCLUSION

This paper studies a statistical approach for the detection
and diagnosis of a particular type of vibration, called Limit
Cycle Oscillation (LCO), impacting the control surface
of a civil aircraft. The idea is to detect the LCO using
a generalized likelihood ratio test and then to estimate
the amplitude and duration of the oscillation to derive a
predictive maintenance index. Indeed, knowing the status
and trend of the LCO energy, one can estimate the
degradation of the system due to LCO (wear process) and
finally propose to the airlines a maintenance action on the
short or long term. A straightforward method compliant
with real-time implementation constraint was proposed
and a Monte Carlo test campaign was performed in order
to assess the robustness and the detection/estimation

4 Please note that for industrial confidentiality reasons the real
amplitudes are not shown, but the Signal to Noise Ratio (SNR)
justifies the use of statistical test as the GLRT.
5 For a generic flight condition n, the normalized error is defined as:
Error(n) = (True V alue− Estimated V alue)/True V alue.
6 only for the purpose of getting a simple estimate even if it is
generally not true



performance of the algorithm. Further studies have to be
carried out concerning the threshold tuning process for
the predictive index and to extend the flight conditions
encountered in the Monte Carlo test campaign.
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Table 1. Considered Operating Conditions.

Parameters Range
Mass 63-95% Maximum takeoff weight
Balance 20-40%
Mach 0.6-0.8
Turbulence T1 − T2 − T3

Fig. 1. Airbus control surface servo loop.

Fig. 2. Control surface servo loop model.

Fig. 3. LCO trigger zone based on control surface hinge moment.

Fig. 4. Example of identification for the vibration target level A2 .



Fig. 5. Aircraft descent under different operating conditions: alti-
tude (up) and control surface hinge moment (down). The hinge
moment values are hidden for confidentiality reasons.

Fig. 6. Example of amplitude estimation (up) and duration estima-
tion (down) for the simulated scenario in Fig. 5 and the target
amplitude A2.

Fig. 7. Typical vertical flight path.
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Fig. 8. Mean amplitude estimation error (up) and mean duration
estimation error (down) for the case in Figure 5 as a function
of the target amplitude for a low level of turbulence. A 2σ error
bar is also considered for each mean error.
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Fig. 9. Mean amplitude estimation error (up) and mean duration
estimation error (down) for the case in Fig. 5 as a function of
the turbulence level for the target amplitude A2. A 2σ error
bar is also considered for each mean error.



Appendix A. TEST PERFORMANCE

The expression of the parameters r and k in (9), depends
on the knowledge of the vector α. Indeed, it can be proved
(Kay, 1998) that for a known vector α we obtain

r = rank(Hs)

k =
βT1 H

T
1 (α1)Π⊥H0(α0)H1(α1)β1

σ2

For an unknown vector α, the equations (9) are verified
only in the asymptotic region, i.e., at high Signal to Noise
Ratio (SNR), we have (Urbano et al., 2017b)

k =
βT1 H

T
1 (α1)L⊥0 H1(α1)β1

σ2

r = rank(L⊥0 − L⊥1 )

where

L⊥0 = Π⊥H0(α0)Π
⊥
D0

Π⊥H0(α0), D0 = Π⊥H0(α0)

∂H0(α0)β0

∂α0

L⊥1 = Π⊥H1(α1)Π
⊥
D1

Π⊥H1(α1), D1 = Π⊥H1(α1)

∂H1(α1)β1

∂α1

Appendix B. MLE AND TEST STATISTIC

The maximum likelihood estimates and the test statistic
for (1) can be computed based on (5),(4) and (8) as

α̂0 = p̂0 = argmax
p

(yTH0(α0)(HT
0 (α0)H0(α0))−1HT

0 (α0)y)

= argmax
p

(
(xT (p)y)2

xT (p)x(p)

)
β̂0 = λ̂0 = (HT

0 (α̂0)H0(α̂0))−1HT
0 (α̂0)y =

xT (p̂0)y

xT (p̂0)x(p̂0)

α̂1 =

(
p̂1
f̂

)
= argmax

p,f

(yTH1(α1)(HT
1 (α1)H1(α1))−1HT

1 (α1)y)

=
N→∞

argmax
p,f

 (xT (p)y)2 + 2(xT (p)x(p))Iy(f)

−4(xT (p)y)Re[Ixy(f)] − 4(Im[Ixy(f)])2

(xT (p)x(p)) − 2Ix(f)


β̂1 =

(
λ̂1
l̂1
l̂2

)
= (HT

1 (α̂1)H1(α̂1))−1HT
1 (α̂1)y

=



xT (p̂1)y− 2Re[Ixy(f̂)]

xT (p̂1)x(p̂1) − 2Ix(f̂)(
2

N
(xT (p̂1)x(p̂1))cT (f̂)(y− r′(p̂1)x(p̂1)) +

4

N
(xT (p̂1)s(f̂))Im[Ixy(f̂)]

)
xT (p̂1)x(p̂1) − 2Ix(f̂)(

2

N
(xT (p̂1)x(p̂1))sT (f̂)(y− r′(p̂1)x(p̂1)) −

4

N
(xT (p̂1)c(f̂))Im[Ixy(f̂)]

)
xT (p̂1)x(p̂1) − 2Ix(f̂)


T ′′ =

(∥∥ΠH1(α̂1)y
∥∥2 −

∥∥ΠH0(α̂0)y
∥∥2)

=

(
(xT (p̂1)y)2 + 2(xT (p̂1)x(p̂1))Iy(f̂) − 4(xT (p̂1)y)Re[Ixy(f̂)] − 4(Im[Ixy(f̂)])2

(xT (p̂1)x(p̂1)) − 2Ix(f̂)
−

(xT (p̂0)y)2

xT (p̂0)x(p̂0)

)
H0

≶
H1

2σ2γ

where

r′(p) =
xT (p)y

xT (p)x(p)

and where the terms Ix(f) and Iy(f) are the periodograms
of x and y

Ix(f) =
1

N
[(cT (f)x)2 + (sT (f)x)2]

Iy(f) =
1

N
[(cT (f)y)2 + (sT (f)y)2].

Note that Re[Ixy(f)] and Im[Ixy(f)] are the real and the
imaginary parts of the cross-periodogram Ixy(f) (also re-
ferred to as co-periodogram and quadrature periodogram)

Ixy(f) =
1

N
[(cT (f)x− isT (f)x)(cT (f)y + isT (f)y)]

Re[Ixy(f)] =
1

N
[(cT (f)x)(cT (f)y) + (sT (f)x)(sT (f)y)]

Im[Ixy(f)] =
1

N
[(cT (f)x)(sT (f)y) − (sT (f)x)(cT (f)y)].

Note also that a large sample approximation has been con-

sidered for the derivation of β̂1 and α̂1. In this case, when
f is not too close to 0 or 1/2 (otherwise the parameters
are not identifiable), the following approximations can be
made cT c/N ≈ 1/2 , sT s/N ≈ 1/2 and cT s/N ≈ 0.

Note: If we cannot guarantee the absence of signal power

at the frequency f̂ in x, but we can consider that the
power of the anomaly is small compared to the energy
and covariance terms xT (p̂)x(p̂) and xT (p̂)y, we can say

that p̂0 ≈ p̂1 ≈ p̂ and that (Im[Ixy(f̂)])2 ≈ 0 being

a second order term in Re[Ix(f̂)] and Im[Ix(f̂)]. The
sufficient statistic of our detection problem will takes the
following simplified form

T ′′′ =
(
Iy(f̂) − 2r′(p̂)Re[Ixy(f̂)]

)
> σ2γ′′

whose dominant term is still the periodogram of y, but cor-
rected by an additional term representing the correlation
between x and y (in the time and frequency domain). In a
further simplified version of the algorithm, the estimation
of the system dynamic P and the detection of the anomaly
s can be decoupled, leading to a two step approach of the
type: estimation of the system dynamic for residual gen-

eration (y− ŷ0) plus sinusoidal detection on the residuals
(e.g., maximum of the periodogram on the residuals).


