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Résumé

La navigation par satellite prend un virage très important ces dernières années, d’une part par l’arrivée

imminente du système Européen GALILEO qui viendra compléter le GPS Américain, mais aussi

et surtout par le succès grand public qu’il connaît aujourd’hui. Ce succès est dû en partie aux

avancées technologiques au niveau récepteur, qui, tout en autorisant une miniaturisation de plus en

plus avancée, en permettent une utilisation dans des environnements de plus en plus difficiles.

L’objectif aujourd’hui est de préparer l’utilisation de ce genre de signal dans une optique bas coût

dans un milieu urbain automobile pour des applications critiques d’un point de vue sécurité (ce que

ne permet pas les techniques d’hybridation classiques).

L’amélioration des technologies (réduction de taille des capteurs type MEMS ou Gyroscope) ne

peut, à elle seule, atteindre l’objectif d’obtenir une position dont nous pouvons être sûrs si nous

utilisons les algorithmes classiques de localisation et d’hybridation. En effet ces techniques permettent

d’avoir une position sans cependant permettre d’en quantifier le niveau de confiance.

La faisabilité de ces applications repose d’une part sur une recherche approfondie d’axes d’amélioration

des algorithmes de localisation, mais aussi et conjointement, sur la possibilité, via les capteurs ex-

ternes de maintenir un niveau de confiance élevé et quantifié dans la position même en absence de

signal satellitaire.
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Abstract

Satellite navigation has acquired an increased importance during these last years, on the one hand due

to the imminent appearance of the European GALILEO system that will complement the American

GPS, and on the other hand due to the great success it has encountered in the commercial civil

market. An important part of this success is based on the technological development at the receiver

level that has rendered satellite navigation possible even in difficult environments.

Today’s objective is to prepare the utilisation of this kind of signals for land vehicle applications

demanding high precision positioning. One of the main challenges within this research domain, which

cannot be addressed by classical coupling techniques, is related to the system capability to provide

reliable position estimations.

The enhancement in dead-reckoning technologies (i.e. size reduction of MEMS-based sensors

or gyroscopes) cannot all by itself reach the necessary confidence levels if exploited with classical

localization and integration algorithms. Indeed, these techniques provide a position estimation whose

reliability or confidence level it is very difficult to quantify.

The feasibility of these applications relies not only on an extensive research to enhance the naviga-

tion algorithm performances in harsh scenarios, but also and in parallel, on the possibility to maintain,

thanks to the presence of additional sensors, a high confidence level on the position estimation even

in the absence of satellite navigation signals.
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Introduction

Background
The upcoming of services based on the location of the user/vehicle are at the origin of the increasing

demand for high performance personal navigation. First driven by the issue of directives to provide

a location mean to emergency calls (i.e. the E911 mandate set by the Federal Communications

Commission in the US and the E112 directive set by the European Commission in Europe), different

locations based services (LBS) are being developed for commercial applications. Some of the proposed

positioning products include the availability of connecting users to nearby points of interest (such

as retail businesses, public facilities, or travel destinations), advising them of current conditions

(e.g. traffic), or providing routing and tracking services. Among the different growing markets, in-

car navigation is becoming a leading application either for personal or professional use. Services

associated to vehicle navigation such as fleet management systems, road tolling or pay-as-you-drive

applications are requiring high performance positioning both in terms of accuracy and reliability.

Global Navigation Satellite Systems (GNSS) are designed to provide position, velocity and timing

capabilities to user through out the world. Currently, the only fully operational GNSS is the Global

Positioning System (GPS). Over the years, increasingly falling cost of GPS receivers, as well as their

size and consumption, has rendered the system attractive for the design of land vehicle navigation

systems. However, satellite navigation presents several impairments in degraded signal environments

such as urban canyons. Land vehicles typically move near high buildings and dense foliage zones where

GPS navigation capabilities are usually jeopardized. Signal interruption is one of the primary reasons

which affects the continuity and reliability of the GPS navigation solution. Either the received signals

1
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are too weak to be tracked using conventional techniques, either they are totally obstructed (i.e.

in non-line-of-sight). Multipath and interferences will entail a severe degradation in the navigation

performance.

Self-contained augmentations have the advantage of being independent from the navigation envi-

ronment. Dead reckoning (DR) navigation systems are a typical example of self-contained systems.

They are not affected by external radio frequency signals and they ensure continuity over the position

estimation. Thanks to the efforts done by the industry to miniaturise DR sensors and render them

affordable for commercial applications, they are now gaining importance in the personal navigation

field. However, they only provide information on the relative movement of the vehicle and they suffer

from time-dependent error growth which causes a drift in the solution. Hybrid techniques fusing

GPS/DR-system are thus implemented to exploit capabilities from both navigation systems. Their

combination not only offers the accuracy and continuity in the solution, but also enhances the relia-

bility of the system. GPS can restrict the DR navigation system error growth over time, and allows

for online estimation of the sensor errors. DR sensors can bridge the position estimates when there

is no GPS signal reception and limit the impact of severe GPS measurement errors.

In an attempt to overcome limitations dealing with low power received signal high sensitivity

GPS receiver technology is used to acquire and track weak GPS signals. Receivers use long coherent

integration times to reduce the effect of noise and increase the probability of detecting a specific

satellite signal. However, increased measurement noise due to lower signal strength (potentially

leading to undesired cross-correlation effects and thus biases) and the high levels of signal reflection

(i.e. multipath) prevent the receiver from achieving high performances. This situation prompts the

need for a reliability analysis to detect the presence of a defective signal and mitigate its influence in

the final position estimation.

Thesis framework
The development of this thesis is aimed at coping with urban canyon phenomena and the problems

they entail in the precision and reliability of the navigation solution. It is important to understand
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that due to the statistical properties of the received satellite signals every given solution has an

associated error probability distribution function (pdf). Therefore, the main challenge of this study

is not only providing accurate position estimations under degraded signal reception scenarios, but

being capable of correctly modeling their associated error pdf. In this way, a measurement of trust

(i.e. an error bound) can be associated to the navigation solution. The need for reliable bounding

reveals critical for several land applications such as the transport of dangerous materials or road

tolling. Indeed, for open-sky scenarios, the GPS measurements have proved to follow a zero mean

Gaussian distribution which can be easily characterized. However, for urban navigation, the correct

determination of the error model describing the received signals is a great challenge and thus the

subject of many researches.

This thesis will be motivated by two parallel but complementary approaches. Indeed, both aim

at enhancing the navigation performance but each of them in a different way:

1. Augmentation of the GPS by using land vehicle DR sensors

Micro Electro-Mechanical Systems (MEMS) technology has rendered inertial sensors suitable

for civil land applications. Inertial navigation systems (INS) based on MEMS technology have

become a standard research domain for land vehicle applications. However, due to relative lack

of maturity of this technology, low cost INS show very limited performances. It is therefore

interesting to study the upcoming of intelligent vehicle systems. The development of complex

on board monitoring systems to control the vehicle trajectory and provide safety features entails

the need for different DR sensors to be installed in the vehicle. In most new generation vehicles,

options such as the Anti-lock breaking system (ABS) or the Electronic stability program (ESP)

are becoming standard features. In this way, a new horizon in the vehicle land navigation domain

is opened. Different sources of measurements describing the vehicle dynamics are available to

be exploited at no additional cost. Wheel speed, tire pressure or the vehicle yaw angle are

just some of information used by the typical advanced vehicle systems. The variety of available

measurements presents an excellent opportunity to develop well-performing navigation systems.

Different approaches exploiting GPS data and on-board vehicle information will be of interest for

the development of a robust navigation system suitable for urban environments. It is important
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to note that all by itself the hybrid GPS/DR approach does not guarantee the consistency of

the navigation solution. It surely helps to enhance positioning accuracy (by providing some

compensation for GPS erroneous measurements), but it does not directly address the reliability

problem. An erroneous GPS measurement with an associated inconsistent error model will still

have some impact in the final position solution.

2. Detection and mitigation of GPS errors introduced by urban phenomena

Signals received in urban canyon scenario will be affected by different errors sources such as

multipath or cross-correlation errors. These types of errors present a major problem because

their evolution or error model is usually unknown (different from the ionospheric errors, for

example, were models are used to calculate the introduced error). A reliability test must be

implemented to account for any inconsistency between the received measurement and its error

pdf. Usual approaches working on the quality of GPS measurements are based on an exclusion

criterion. In other words, if an outlier or erroneous measurement is detected, it is automatically

excluded from the navigation filter solution. However, this may present a high cost for urban

navigation where GPS satellite visibility is scarce. This thesis is aimed at studying different

techniques not to exclude the outlier satellite but to “compensate” its error.

Author contribution
This thesis presents a general study of land vehicle navigation in urban environments. Considering the

thesis framework discussed in the previous section the contributions of this thesis can be summarized

as follows:

INS and differential odometry coupling approach A high level integration is proposed for three

self-contained navigation systems: GPS, INS and wheel speed sensors based differential odome-

try system. While the coupling between the first two system is a quite standard, the contribution

of this thesis lies in the incorporation of the third system. Combination between inertial and

odometric measurements is intelligently done to achieve a 2D navigation.
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Non linearity impact on the navigation solution The Unscented Kalman Filter (UKF) is tested

to provide information on the correctness of the linear assumption made when implementing

the standard Extended Kalman Filter (EKF). In this way, conclusions on the impact of non-

linearities for land navigation can be drawn.

Smooth correction criterion An innovative approach is proposed to exploit the robustness of

Doppler measurements to urban canyon interference. A two threshold detection technique is

proposed where either the pseudorange, the Doppler or a smoothed measurement (obtained by

a special merging between pseudoranges and Doppler measurements) are used. In this way, any

lack of consistency between the received pseudorange and its associated error model should be

mitigated.

Outliers’ error model The contribution relies on the three hypothesis model considered for the

characterization of the received signal. The three hypothesis include the nominal case and two

other cases accounting for either a mean or variance jump in the noise model. This mainly

approach allows the identification of multipath presence either in the presence of line-of-sight

or non-line-of-sight direct signal.

Hierarchical multipath mitigation technique Based on a three hypothesis model (described in

the previous point) a promising detection, identification and correction technique is deployed.

Indeed, not only the outlier presence is detected, but its source of error is identified, evaluated

and further compensated. As no exclusion is done, this approach should be particularly well

suited for urban vehicle navigation.

Thesis outline
The thesis is organized in 5 chapters.

Chapter 1 gives a general overview of the GPS principles, structure and functioning. Special at-

tention is paid to the analysis of the different urban phenomena degrading the received signal.

Indeed, this point is of major importance because it motivates all further studies presented in
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the following chapters. A brief introduction to the high sensitivity GPS receiver and Egnos

contributions is provided.

Chapter 2 introduces an alternative navigation systems based on dead reckoning sensors. A first

introduction to inertial sensors (i.e. accelerometers and gyros) and wheel speed sensors (WSS)

is provided along with their corresponding error model. The Inertial navigation System (INS)

mechanization is derived for a 2D navigation. Expressions for the WSS-based navigation system

obtained from the application of differential odometry principles are presented.

Chapter 3 deals with the development and analysis of different types of hybrid strategies. In par-

ticular, the UKF will be presented as an alternative to the traditional EKF used for navigation

purposes. DR solutions presented in the previous chapter will augment the GPS-based naviga-

tion filter. A high level GPS/INS/WSS approach is presented and its performances contrasted

with a nimonal GPS system. Observations are done on the relevance non-linearities present for

vehicle navigation.

Note: concepts, results and conclusions from previous chapters will help to the definition of

algorithms presented in the following two chapters.

Chapter 4 is based on Doppler measurements robustness to urban canyon phenomena. They will

therefore be proposed as an alternative/complement to traditionally used pseudorange measure-

ments. A smooth correction criterion provides an innovative framework to test the reliability

of the received pseudoranges. A merging between pseudoranges and Doppler measurements

is proposed as an interesting solution to situation where the presence of an outlier must be

ambiguous. Principles for the computation of an adapted positioning bound are given so that

performances can be evaluated both in terms of accuracy and model consistency.

Chapter 5 presents two-step detection procedure that aims at classifying outliers according to their

associated source of error. Two different situations will be considered in the presence of mul-

tipath. These situations correspond to the presence or absence of line of sight signal for the
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different GPS satellites. Therefore, two kinds of errors are potentially “corrupting” the pseudo-

ranges, modeled as variance changes or mean value jumps in noise measurements. An original

multiple model approach is proposed to detect, identify and correct these errors and provide a

final consistent solution.
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Chapter 1

GPS Satellite Navigation

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Satellite Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Global Positioning System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Differential GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.3 Urban navigation phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2.4 High Sensitivity GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.1 Introduction

Navigation has been used since ancient times by exploiting the angular measurements from natural

stars. However, this strategy depended on sky visibility (i.e. on whether conditions) and provided low

accuracy. With the upcoming of radio communication the possibility of developing new navigation

system was foreseen. By knowing the position of the station emitting the signal, the user could

compute its position. First approaches were conceived for ground based station. However, a trade-off

between the accuracy and the coverage of the system was to be considered. High frequency signals

provide accurate measurement but need line-of-sight (LOS) users while low frequency signals provide

lower precision but enable a wider coverage. These considerations highly jeopardize the feasibility of a

9
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global navigation system. The real breakthrough to what would later lead to a sophisticated satellite

navigation system was made in the 1960s, when the US navy presented its satellite navigation system

known as transit. High frequency signals were transmitted and a wide coverage could be assured.

The system measured the signals’ Doppler shift and provided a two-dimension positioning. The

time needed to obtain a position fix could be up to 110 minutes depending on the user’s latitude.

Therefore, though this system could be used for ship navigation because of its low velocities and known

height, it was not suitable for air navigation. To overcome these type of limitations the U.S Global

positioning system (GPS) and its analog Russian Global Navigation Satellite System (GLONASS),

were developed. In particular, all the studies concerned within this PhD are based on GPS signals.

This chapter is aimed at providing an overview of the Global positioning system structure, func-

tioning, and limitations. Urban navigation challenges will be specially studied. Descriptions and

discussions will be mainly based on reference textbooks such as the ones published by Parkinson and

Spilker [PS96], Kaplan [KH06] or Misra and Enge [ME01]. The GPS modernization program (i.e.

GPS III program) and its associated modernized signals such as L2C or L5 have not been considered

in this thesis. The interested reader is invited to consult [KH06] for more details.

1.2 Satellite Navigation

1.2.1 Global Positioning System

The Navstar (Navigation System by Timing and Ranging) GPS, most commonly referred as sim-

ply GPS, is a LOS weather independent, world-wide continuously available Radio Frequency (RF)

positioning system, that provides three-dimensional position, velocity and time synchronization ca-

pabilities to end-users with an appropriate receiver. The GPS parameters are framed geometrically

in the ECEF (earth centered earth fixed) WGS-84 (World Geodetic) world-wide common grid ref-

erence system. The position calculation is done by triangulation of distance measurements between

the user and the satellite. GPS applies the concept of one way time of arrival (TOA), utilizing satel-

lite transmissions referenced to highly stable atomic clocks on board the satellite and “synchronized”

with the reference GPS system time. Satellites transmit continuous waveforms that can be easily
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related with a time scale. In fact, the received signal is compared with a locally generated copy.

Assuming the receiver is ideally synchronized with the satellite clock, the time difference between

the received and generated signals will be the propagation delay. If the transmitted time and the

satellite position are known, the distance between the receiver and the satellite (i.e. the range mea-

surement) can be obtained. The satellite position is included in the transmitted ephemeris as well

as other parameters to correct the drift of the satellite clock. In this way a 3D position solution

is obtained. The user velocity is computed from the Doppler shift caused by the relative motion

between the satellite and the receiver. However, in real life, receiver clocks are not stable and can

drift significantly from the GPS time. This drift will strongly impact the correct computation of the

propagation time. Hence, the GPS measurement will not exactly correspond to the receiver/satellite

distance and it will be actually called pseudorange measurement. This fourth unknown parameter

will be added to the other three basic ones (corresponding to the three-dimensional receiver position).

Four satellites are thus needed to correctly determine user latitude, longitude, height and receiver

clock offset from internal system time. GPS is composed of three different segments, each of them

aimed at performing very specific tasks. These segments are related to satellite constellation (Space

segment), ground-control/monitoring network (Control segment) and user receiving equipment (User

segment).

Space segment

The space segment was originally specified for 24 satellites. The constellation is designed to operate

in six Earth-centered orbital planes, 60◦ degrees apart, nominally inclined at 55◦ to the equator.

Each orbital plane contains four to five satellites orbiting at an altitude of 20183km from the mean

surface of the Earth, with a period of one-half of a sidereal day (approx. 11 hours and 58 seconds).

However, the system currently employs more satellites than specified in the nominal constellation,

and at the time of writing, the GPS constellation consisted of 31 Block II/IIA/IIR satellites (each

block corresponds to a different phase of development). With the increased number of satellites, the

constellation was changed to a nonuniform arrangement. Thus, the current optimized constellation

has up to 7 orbital slots unevenly spaced around each plane. Such an arrangement was shown to
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improve reliability and availability of the system relative to a uniform system. In this way about 9

satellites are visible from any place at any time, considering an elevation mask of 5◦. Note that under

this elevation the degradations suffered by the GPS signal due to its passage through the atmosphere

prevent a precise positioning to be guaranteed. The system currently includes two different carrier

frequencies to modulate the GPS signal: L1 (at 1575.42 MHz) and L2 (at 1227.60 MHz). Both signals

are modulated by spread spectrum codes with an unique pseudo-random (PRN) sequence associated

to each satellite. These two emitted GPS signals are thus expressed as follows:

sL1
i (t) =

√
2Adi(t)Ci(t) cos(2πf1t+ θ1) +

√
Adi(t)Pi(t) sin(2πf1t+ θ1), (1.1)

sL2
i (t) =

√
A

2
di(t)Pi(t) cos(2πf2t+ θ2), (1.2)

where,

• i = 1, ..., ny, ny denoting the number of visible satellites,

• A is the mean power of the ith emitted signal.

• di(t) represents the navigation data corresponding to the ith satellite. It mainly provides the

means for the user to determine the location of the satellite at the time of signal emission. This

message includes information about the satellite position (i.e. its ephemeris), clock behavior

with respect to GPS time, system status and ionospheric error models.

• Ci(t) denotes the coarse/acquisition (C/A) pseudo random noise (PRN) code for the ith satellite,

• Pi(t) denotes the Precision (encrypted) (P(Y)) PRN code for the ith satellite,

• f1 = 1575.42MHz and f2 = 1227.60MHz denote the carrier frequencies associated to the L1

and L2 signals respectively.

The sL1 signal is modulated using a quaternary phase shift keying (QPSK) digital modulation. The

in-phase channel is modulated by the C/A code, while the quadrature channel is modulated by the

P(Y) code. The sL2 contains just the P(Y) code with a binary phase shift keying (BPSK) modulation.
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The C/A nd P(Y) codes differ in their periods and chipping rate. The higher the chipping rate and

the longer the period of the code, the more precise the positioning solution but the slower the time

of acquisition. Table 1.1 summarize the GPS signal characteristics.

GPS band L1 L2

Carrier Frequency f1 = 1575.42MHz f2 = 1227.60MHz

Code C/A P(Y) P(Y)

Power -160dBW -163dBW -166dBW

Chip rate 1.023MHz 10.23MHz 10.23MHz

Period 1ms 1 week 267 days

Navigation message
Data rate Chip width Period

50 bps 20 ms 12.5 min

Table 1.1: GPS signal characteristics

C/A codes are widely known and available to any civilian user, while the P(Y) codes are only

available to the U.S military and other authorized users. This limited access to code information

entails to different positioning services: the civil Standard Positioning Service (SPS) and the military

Precise Positioning Service (PPS). The service provided on L2 and L1 with the P(Y) code is not

considered within this thesis. All the results present hereafter will correspond to measurements

obtained from the SPS. The PRN codes are used for spreading the signal frequency spectrum and to

identify the received satellite. This CDMA (code division multiple access) technique allows several

signals to share the same spectrum bandwidth with limited interference among each other. The

original signal power is spread through a large bandwidth so that it gets almost masked by thermal

noise. In this way, the signal becomes highly robust to jamming or interferences, with a low probability

of being detected. Moreover, thanks to the code properties, each signal can be uniquely identified

through a correlation operation. These code properties will be exploited by the receiver to estimate

the signal time of arrival. For this purpose, a spreading code local replica of the desired satellite will be

generated by the user’s receiver and it will be correlated with the received signal. The code properties

must be as close as possible to those of an infinite random noise sequence. In other words, it must
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have a delta-like autocorrelation function centered in 0 and very weak cross-correlation properties to

ensure precise synchronization and limited interference from other satellites. However, the code must

have at the same time a finite length to enable the receiver to reproduce it and perform the signal

acquisition within a short period time. The Gold code family presents an interesting equilibrium for

this trade-off and they are consequently used to generate the C/A code.

Control segment

The control segment ensures the surveillance of the GPS constellation. Its principal functions consist

of

• keeping the satellite in its adequate orbit and position,

• monitoring the satellite health,

• estimating and predicting the satellite clock drift parameters and ephemeris

• generating and distributing the navigation message to be uploaded into the satellite navigation

message payload

It is composed of three different sections aimed at performing the navigation tracking function, pro-

viding central command and control, and contacting and transmitting data to the satellites. Eleven

monitoring stations (MS) are scattered around the globe and provide the Master Control Station

(MCS) located in Colorado, with necessary raw pseudorange, carrier phase and metereological mea-

surements. The MCS, which is the major brain of the control segment, processes this data to construct

precise ephemerids and clock predictions. It also instructs the system if any change in the GPS satel-

lite configuration must be achieved. The controls and updated navigation parameters are transmitted

through the four exiting upload stations. The new navigation message is uploaded at least once a

day to the satellite payload memory and transmitted to the GPS user.

User segment

This segment mainly deals with the GPS user receiving equipment. Any person equipped with a

suitable GPS receiver around the world can process the received signals and obtained a position,
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velocity and time (PVT) solution. As already explained, the encrypted P(Y) code is only known

by the military, so normal civilians won’t have access to this high precision service. A commercial

receiver will achieve the signal tracking for the signals with known C/A spreading codes.

A block diagram for a generic digital receiver is presented in Fig. 1.1. The received signal must

first follow a “down-conversion stage” to allow all the posterior base-band processing. At this point

the signal is ready to be processed by each of the N digital receiver channels where N determines the

maximum number of possible satellites to be tracked (N is specific to each kind of receiver). Within

these channels several functions such as loop discriminators and filters, data demodulation or C/N0

computation are performed. Once the navigation message is demodulated, the ephemerids and error

model parameters are processed to obtain the satellite position.

Figure 1.1: GPS receiver block diagram

At the receiver antenna the L1 signal will be composed by the sum of all the different LOS satellite

signals and their associated reflections (i.e. multipath components), according to Eq. (1.3)

r(t) =


ny∑
i=1

Mi∑
j=0

Ajidi(t− τ
j
i )ci(t− τ ji ) cos(2π(f1 + f jd,i)t− θ

j
i )

+ w(t), (1.3)

where

• the index i denotes the ith LOS signals,
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• Mi is the number of multipaths associated to the ith visible satellite,

• Aji is the signal amplitude corresponding to the jth path of the ith satellite,

• τ ji is the signal propagation delay associated to jth path of the ith satellite,

• f1 is the L1 frequency,

• f jd,i is the Doppler frequency associated to jth path of the ith satellite,

• θji is the Doppler phase shift corresponding to the jth path of the ith satellite,

• w(t) is an additive white noise.

In the down conversion stage, the received L1 signal is amplified, filtered, downconverted (to an

intermediate lower frequency) and digitalized. The signal is then going to be processed by each of

the N channels to identify the N possible visible satellites. Each channel will decompose the signal

associated to the tracked satellite in its in-phase (I) and quadrature (Q) components. The resultant

I-Q signals will be then correlated with a local code replica for the desired satellite. These correlation

samples are later going to be used by the code and carrier loops at the acquisition and tracking stage.

In the absence of multipath, the correlator outputs for the I and Q components corresponding to the

ith satellite are written as,

Ii(τ) =
Ai
2
di

[
sin(π∆fiTb)
π∆fiTb

]
R(τ − τ̂i) cos(π∆fiTb + (θi − θ̂i)) + nI,i(t), (1.4)

Qi(τ) =
Ai
2
di

[
sin(π∆fiTb)
π∆fiTb

]
R(τ − τ̂i) sin(π∆fiTb + (θi − θ̂i)) + nQ,i(t), (1.5)

where

• di is the navigation data considering that no data bit transition occurs during the integration

time,

• ∆fi is the error induced by the difference between the real and estimated Doppler frequency,
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• Tb is the integration time,

• R(·) is the C/A code correlation function,

• τ̂i is the estimated propagation delay,

• θ̂i is the estimated Doppler phase shift,

• (nI,i(t), nQ,i(t)) are the noises associated to the in-phase and quadrature signals respectively.

The signal acquisition stage is required in order to look for a rough code delay and carrier fre-

quency matching the received signal. This two dimensional search involves simultaneously finding

a synchronized copy of the C/A code and carrier Doppler corresponding to the desired satellite. A

search detector is deployed. For every delayed code/phase combination a statistical hypothesis test

is computed. The test involves correlating the received signal with the local generated replica. If

the two codes are aligned and the local carrier frequency matches the incoming signal’s one, there

is a maximum correlation. If the test exceeds a given threshold, the acquisition stage is considered

completed.

The tracking stage consists of performing a fine synchronization of the signal’s phase and code

delay considering the initial estimations obtained from the acquisition stage. A delay lock loop (DLL)

is used to track the code delay while a phase lock loop (PLL) is used to track the carrier phase and

the Doppler-shift due to the relative motion between the user and the satellite. Both tracking loops

are simultaneously deployed and their output is used to generate synchronized local replica. If the

alignment in the range domain (i.e. code delay domain) is successful, the code is removed from

the signal so the navigation message can be demodulated. In parallel, the PLL generates sinusoidal

signals to match the phase and frequency of the received signal. The carrier tracking loop may also

be achieved by a frequency lock loop (FLL). Though this FLL is less sensitive to dynamic stress and

therefore more robust to degraded scenario, it presents a lower accuracy. It is possible to used a

FLL-assisted-PLL carrier tracking loop to improve performances.
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Types of measurements

Three different GPS measurements can be computed from the received signal: the pseudorange

(obtained from the code phase), carrier phase and Doppler measurement. Further details on the

characteristics associated to each of these measurements, as well as their domain of application, will

be given in chapter 4. In the following, measurement models, and their relation to the vehicle state,

are presented.

Pseudorange measurement As already introduced in the previous section, once the received

signal is identified, the DLL estimates the shift between the local generated C/A code and received

signal code. When the point of maximum correlation is found, synchronization is achieved. The

estimated code shift allows to obtain the propagation time between the satellite and the receiver.

Multiplying this time shift by the speed of light results in the apparent satellite-to-user range (i.e.

the pseudorange). The pseudorange model for nominal open-sky scenarios can be written as

ρi = ri + c
(
∆tR −∆tSi

)
+ εephi + εionoi + εtropoi + εreli + nρi , (1.6)

where

• ρi is the pseudorange measurement in meters associated to the ith signal,

• ri represents the effective geometric range between the ith satellite and the receiver,

• c is the speed of light,

• ∆tR is the receiver clock error with respect to the GPS time,

• ∆tSi is the ith satellite clock error with respect to the GPS time,

• εephi is the error related to ephemeris inaccuracies.

• εionoi is the error induced by the ionospheric delay on the ith satellite signal,

• εtropoi is the error induced by the tropospheric delay on the ith satellite signal,
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• εreli is the relativistic time error for satellite i,

• nρi is the noise affecting the ith pseudorange measurement.

The compensation of errors introduced by the ionosphere, troposphere, satellite clock and inaccuracies

in the ephemeris parameters is addressed in section 1.2.2. These errors are going to be addressed in

the following as “modeled” errors because they can be locally modeled and partially compensated.

The induced relativistic effect is compensated thanks to the correction model parameters included in

the navigation message. Hence, under clear-sky conditions, the pseudorange model to be considered

hereafter for the receiver position computation is expressed as

ρi =
√

(x− xsi )
2 + (y − ysi )

2 + (z − zsi )
2 + bt + nρi , (1.7)

where

• ρi is the pseudorange measurement after the modeled errors have been compensated,

•
√

(x− xsi )
2 + (y − ysi )

2 + (z − zsi )
2 denotes the range measurement ri where both the satellite

and receiver position are made explicit,

• (x, y, z) denotes the receiver coordinates in the geodetic Earth-centered-Earth-fixed (ECEF)

frame according to the World Geodetic System WGS-84,

• (xsi , y
s
i , z

s
i ) denotes the satellite coordinates in the geodetic ECEF for the ith GPS satellite,

• bt is the receiver clock bias, where bt = c∆tR,

• nρi represents the noise affecting the measurement plus the residual errors after correction.

Therefore a minimum of 4 satellites is needed to solve for the 3 dimension vehicle position and receiver

clock bias. For more details on the different existing coordinate frames please refer to chapter 2.

Doppler measurement Doppler measurements are based on an existing relative motion between

two sources. For a moving emitter (namely a satellite) or a moving receiver, the received frequency is

shifted with respect to the emitted one. By measuring this frequency shift and knowing the satellite
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velocity (using ephemeris data) and clock drift, the receiver’s velocity can be determined. Considering

a similar model to (1.7), where the “modeled” drift errors have already been compensated, the Doppler

measurement can be written as

Di = −L1
c

[(
ve − vSi

)T • lLOSi + dt

]
+ nDi (1.8)

where

• Di is the Doppler measurement in Hz for the ith satellite

• ve is the receiver velocity vector in geodetic ECEF coordinates,

• vSi is the satellite velocity vector in geodetic ECEF coordinates,

• the operator • denotes the inner product,

• lLOSi is the unit line of sight vector between the i th satellite and the receiver,

• dt is the receiver clock drift error with respect to the GPS time so dt = ∆ṫR,

• nDi is the Doppler measurement noise.

The receiver’s Doppler contribution is represented by ve • lLOSi , while the satellite’s Doppler con-

tribution is represented by vSi • lLOSi . Indeed, the Doppler shift is the projection of the relative

satellite-to-user motion into the LOS vector. This unit LOS vector is obtained as:[
x− xsi
ri

,
y − ysi
ri

,
z − zsi
ri

]T
, (1.9)

where ri =
√

(x− xsi )
2 + (y − ysi )

2 + (z − zsi )
2. Note that a previous position estimation is necessary

to calculate the lLOSi vector. A minimum of four Doppler measurements is needed to estimate the

3 dimension vehicle velocities and the receiver clock drift. It is interesting to consider that as the

vehicle coordinates are indirectly used in the Doppler measurement model, positioning could be done

by using the Doppler measurements. However, this approach is substantially less precise than the

pseudorange positioning [AB96].
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Carrier measurement The carrier phase is an indirect and ambiguous measurement of the user-

to-satellite range. If the carrier signal is constantly tracked, the accumulation of the time varying

carrier phases leads to a knowledge on the changes in the observed range. This measurement is

commonly used in high-accuracy applications such as static or dynamic surveying or attitude deter-

mination. Considering a previous compensation of the atmospheric effects and satellite clock bias,

the measurement is expressed as follows

φi =
√

(x− xsi )
2 + (y − ysi )

2 + (z − zsi )
2 +Niλ+ bt + nφi , (1.10)

where

• φi is the accumulated delta range measurement corresponding to the ith satellite,

• Ni is the carrier phase ambiguity corresponding to the signal from the ith satellite,

• λ is the L1 carrier phase wavelength,

• nφi is the noise affecting the delta range measurement.

This measurement will not be used within this PhD. Further discussions are provided in chapter

4.

Measurement errors in open-sky scenario

Several different errors affect the received signal as already introduced in (1.6). They can be classified

in three categories: satellite-based errors, signal propagation errors and receiver-based errors. The

satellite-based errors include satellite clock and ephemerids errors. Among the signal propagation

errors, ionospheric and tropospheric errors are found. The receiver errors are mainly associated to

receiver noise affecting the correct functioning of the tracking loops. The ability to obtain accurate

and reliable tracking capabilities, resides in the predictability, controllability, and detectability of the

measurement errors. In the following, the different sources of errors affecting measurements in an

open-sky scenario are described.
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Satellite clock error Although the atomic clocks contained by the GPS satellites are highly stable,

they are also affected by a small drift. These errors are due to offsets in the clock frequency of each

satellite with respect to the reference clock. The satellite errors are modeled via a polynomial, whose

coefficients are transmitted as a part of the navigation message. The satellite clock error is usually less

than 1 ms and, after implementing the broadcast correction, the remaining error is in the order of 8 to

10 ns (2 to 3 m). The relativistic correction is also included in the polynomial clock correction model

to account for the fact that the slight eccentricity of the satellite orbit causes it to travel through

different levels of gravitational potential. For instance, when the satellite is at perigee (i.e. closest to

the Earth) the gravitational potential and the satellite velocity are higher, causing the clock to run

slower. The contrary effect is observed when the satellite is at apogee.

Ephemeris error The ephemeris error (also called orbital errors) results when the transmitted

ephemerids do not accurately describe the true satellite position. Therefore, the accuracy of the

model for predicting the satellite position is limited. A typical ephemeris error is of approximately 1

meter on the range measurement.

Ionospheric error The ionosphere is a dispersive medium which extends from about 50 to 1000

km above the Earth and is characterized by an abundance of free electrons and ions. When the signal

travels through the ionized air, the signal speed decreases from the vacuum speed of light and therefore

results in phase advance and code delay. Ionospheric effects show diurnal and seasonal variations.

They depend on the solar cycle and the geographic location of the receiver. The ionospheric delay

is also a function of frequency. Dual frequency GPS users can utilize this property to correct the

error in range and Doppler measurements. However this approach is out of the scope of this thesis.

Single frequency users can compensate for ionospheric error using the approximate model (e.g. the

Klobuchar model [Klo96]), which is based on broadcasted parameters included in the GPS navigation

message. This algorithm removes nearly the 50% of the ionospheric error. The ionospheric error is

typically around 2 to 20 m [ME01] depending on the satellite elevation angle with respect to the

receiver.
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Tropospheric error The troposphere is the lower of the Earth atmosphere and affects GPS signals

at altitudes up to 50-70 km above the surface. The introduced error will be characterized by the

humidity, pressure and temperature along the signal path in the troposphere. It has to be computed

by the receiver according to average metereological parameters. Tropospheric delay is subdivided

into dry and wet components due to distinct influences on RF signal propagation. The dry portion

typically contributes 80-90% to the entire effect and it can be easily predicted. By contrast, the

wet term constitutes the remaining 10-20% of the total error, and it is far more difficult to estimate

because vapour density varies with the local weather. One simple model that is often used for the

tropospheric error compensation is the Hopfield model [Hop69]. For most users and circumstances, a

simple model should be effectively accurate to about 1m [Spi96].

Tracking Loop Jitter The presence of noise in the tracking process will affect the phase shift and

code delay measurements, and therefore the final pseudorange or Doppler measurement. For these

measurements noise increases as signal power decreases due to a growing thermal noise jitter and

dynamic stress error in the carrier and code tracking loop. Pseudorange measurement noise depends

on correlators’ spacing, precorrelation bandwidth, and on the bandwidth of the delay lock loop (DLL)

used in code tracking. It will also be determined by the type of code discriminator used [WBH06a].

The expression for the noise variance σ2
ρi affecting the code measurement considering a DLL with

dot-product discriminator can be written as follows [Die96]:

σ2
ρi ≈

BlCs
2C/N0

(
1 +

1
C/N0Tc

)
(1.11)

where

• σ2
ρi is expressed in (chips)2,

• Bl is the loop noise bandwidth,

• C/N0 carrier to noise power [Hz],

• Cs is the spacing between correlators,
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• Tc is the prediction integration time.

Similarly, the Doppler measurement noise mainly depends on the thermal noise of the frequency

tracking loop (considering that receiver effectively obtains this measurement from the FLL) and on the

correlation bandwidth. The expression for the noise variance σ2
Di affecting the Doppler measurement

considering a FLL with cross-product discriminator can be written as follows [Nat84]:

σ2
Di ≈

1
π2

BlB
2
I

C/N0

(
1 +

BI
2C/N0

)
. (1.12)

where σ2
Di is expressed in Hz and BI is the predetection noise bandwidth. The receiver noise is

generally 0.5m for code measurements and around 0.5Hz for frequency measurement.

Table 1.2 presents the pseudorange error characterization in terms of their 1σ standard deviation

according to [PS96]. Since the error sources are reasonably independent, the final measurement noise

is considered to be modeled as a zero mean Gaussian distribution with an associated variance given

by σUERE (where UERE stands for User Equivalent Range Error).

Class Error source 1 σ error [m]

Satellite Clock stability 2.1

Ephemerids inaccuracy 0.8

Propagation Ionosphere 4.0

Troposphere 0.7

Receiver Receiver noise and resolution 0.5

Table 1.2: Pseudorange error budget

Corrections to most of the above mentioned satellite-based and propagation errors are found in

the GPS navigation message and can be complemented by differential GPS strategies as it will be

explained in the next section. The receiver clock error has a known evolution model and it is included

as a navigation parameter to be estimated ((1.7), (1.8) and (1.10)). The noise introduced by the

tracking loops can also be accurately modeled according to the receiver characteristics ((1.11),(1.12)).



1.2. SATELLITE NAVIGATION 25

1.2.2 Differential GPS

Differential GPS (DGPS) is a method to improve the positioning or timing performance of GPS using

one or more reference stations at known locations, each equipped with at least one GPS receiver

[C+06b], [ME01]. Errors for the reference station pseudorange and carrier phase measurements are

expected to be similar to those experienced by a nearby user. The master station proceeds to compare

its known surveyed position to the position obtained from the received signals. Considering that

the master station is always located in clear-sky scenarios, an estimate of the actual atmospheric

and satellite-based errors can be obtained. This data is then transmitted to the user in order to

enhance its positioning accuracy. It has to be noted that DGPS techniques apply only for spatial

correlated errors, therefore excluding multipath or receiver-based errors [C+06b]. Time correlated

corrections present a great challenge in term of transmission data speed between master station and

user. However, this topic will not be treated within this thesis, because DGPS corrections will be

applied in post-processing.

Satellite based Augmentation systems The Satellite Based Augmentation systems (SBAS)

is a wide-area DGPS system that provides differential GPS corrections and integrity data using

geostationary (GEO) satellites [C+06b]. The DGPS data is transmitted in the L1 GPS frequency

band and can be thus also used as a pseudorange measurement to compute the receiver position.

The SBAS purpose is to improve the satellite visibility, DOP, integrity, and positioning accuracy in a

regional scale. Two main SBAS exist nowadays with regional coverage: the Wide Area Augmentation

System (WAAS) for United States [SHC04] and the European Geostationary Navigation Overlay

Service (EGNOS) for Europe and north Africa [S+04], [LGVT03].

EGNOS is aimed at complementing the positioning signals sent out by GPS and GLONASS

and thus to enhance their performances. The EGNOS signal is transmitted by three geostationary

satellites: two Inmarsat-3 satellites, one over the eastern part of the Atlantic, the other over the

Indian Ocean, and the European space agency (ESA) Artemis satellite above Africa. Unlike the

GPS and GLONASS satellites, these three satellites do not have signal generators on board. A

transponder transmits signals up-linked to the satellites from the ground. The sophisticated ground
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segment, where all the signal processing takes place, consists of 34 Ranging and Integrity Monitoring

Stations (RIMS), four master control centres and six up-link stations. The error correction parameters

broadcasted by each GEO satellite depend on their known and fix area coverage. EGNOS services are

going to be exploited in the following chapters to obtain accurate atmospheric, clock and ephemeris

error corrections. In particular, the EGNOS data will enable the computation of a more precise

pseudorange measurement by providing the following corrections [GNS03]:

• Fast corrections: they are used to correct the fast changing errors which were usually caused

by the satellite clock error due to degradation through selective availability techniques (now no

longer existing). Therefore this term was not used in this thesis.

• Slow corrections : they are aimed at correcting the slowly varying errors. Among these errors

we can cite the satellite position errors caused by errors in the ephemerids transmission and

the degradation of the satellite position calculation with the time. They also complement the

satellite clock error model provided by the GPS message.

• Ionospheric corrections: they provide a more accurate ionospheric correction than the one com-

puted from the GPS message. A more complex ionospheric grid model is used.

In the presence of EGNOS corrections, the pseudorange measurement corresponding to the model

given in (1.7) will be obtained as,

Yi = ρ
′
i +RCifast +RCiiono +RCitropo +RCiclock, (1.13)

where

• ρ′i is the pseudorange measurement computed after applying the satellite position corrections

present in the EGNOS message.

• RCfast are the fast corrections for the ith satellite computed from the EGNOS message,

• RCiono are the ionospheric corrections for the ith satellite computed from the EGNOS message

• RCtropo are the tropospheric correction corresponding to the ith satellite computed by the

receiver,
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• RCclock are the satellite clock corrections corresponding to the ith satellite computed from the

EGNOS message (they belong to the slow corrections).

It is important to notice that the tropospheric correction will be computed at the receiver. The

RCtropo term does not depend on the reception of any correction information transmitted in the

EGNOS signal. They depend on metereological conditions whose parameters are interpolated from

already tabulated tables. The expression given in (1.13) corresponds to the error correction model

given in [GNS03]. Furthermore, EGNOS provides not only necessary parameters for error correction,

but also an upper bound on the residual error after corrections were applied. This bound is given in

the form of a Gaussian variance. Hence, the actual variance of the pseudorange measurement is going

to be calculated according to the model given in [GNS03],

σ2
i = σ2

i,flt + σ2
i,iono + σ2

i,tropo + σ2
i,rec (1.14)

where

• σ2
i is the total pseudorange measurement variance

• σ2
i,flt is the variance of the residual error after the fast and slow corrections were applied,

• σ2
i,iono is the variance of the residual error after the ionospheric corrections were applied,

• σ2
i,tropo is the variance of the residual error after the tropospheric corrections were applied,

• σ2
i,rec is the variance for the receiver errors (it depends on the receiver characteristics (1.11)).

1.2.3 Urban navigation phenomena

GPS navigation in urban scenarios (contrary to open-sky scenarios) presents one of the most chal-

lenging topics within the GNSS community. The presence of several urban-based error sources such

as multipath, interference, signal masking and poor constellation geometry entails an important loss

of precision in the navigation solution. Signal attenuation is caused by the presence of obstacles such

as trees in the LOS path between the user and the receiver. Weak signals arriving to the receiver

seriously degrade the navigation performance. Cross-correlation errors appear in the presence of noisy
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signals. The erroneous tracking of a multipath is also possible when either the received signal is too

weak or inexistent (i.e. an obstacle was totally obstructing the LOS path). This section is aimed

at providing some details on these types of error sources. Indeed, it must be pointed out that due

to their strong environmental dependency, urban navigation errors cannot be easily modeled as it is

the case for errors presented in section 1.2.1. Hence, they remain as the main uncompensated error

source. Their interference is usually presented as one of the main causes of precision degradation in

the navigation solution. The purpose of this PhD is to study different approaches to try to minimize

or mitigate the errors introduced by urban canyon phenomena.

Multipath interference

Multipath is one of the largest GPS error sources, especially in weak signal environments [Sal04]. In

urban areas, the signal emitted from a satellite is very likely to get reflected and to follow different

paths before arriving to the receiver. High buildings and tree foliage are typical reflecting surfaces.

Multipath signals are always delayed, since they travel longer distances than direct (LOS) satellite

signals. They can cause the measured range to be too large or too small with respect to the true

range, depending on the phase of the reflected signal.

The received signal will be thus composed by a sum of different and attenuated delayed replicas.

For satellite navigation purposes, only the direct signal is useful while the multipath components

are considered as undesired signals. The expression for the nominal received composite signal with

M i reflected components is obtained from (1.3) by setting i to the desired tracking satellite (i.e.

neglecting the presence of secondary satellites). It is very difficult to analyze the bias introduced

by several simultaneous multipath signals on the estimation of the final TOA of the signal. The

introduced error will depend on the power, phase and delay of each of the reflected signals [WBH06a].

Considering a single multipath model and neglecting noise, the composite correlation function at the

output of the receiver correlators can be expressed as

ri(τ) =
A0
i

2
die
−j[π∆f0

i Tb+(θ0i−θ̂i)]sinc(∆fiTb)Rx(τ−τ0
i )+

A1
i

2
die
−j[π∆f1

i Tb+(θ1i−θ̂i)]sinc(∆f1
i Tb)Rx(τ−τ1

i ),

(1.15)

where
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• (A0
i , A

1
i ) represent the amplitudes of the corresponding LOS and multipath signal for the ith

satellite,

• (∆f0
i ,∆f

1
i ) represent the difference between the estimated and real Doppler frequencies for the

LOS and multipath signal respectively,

• (θ0
i , θ

1
i ) represent the phase of the corresponding LOS and multipath signal for the ith satellite,

• θ̂i is the phase of the locally generated code replica for the ith satellite,

• sinc(·) denotes the cardinal sine function,

• Rx(·) is the correlation function associated to the C/A spreading code,

• (τ0, τ1) represent the time taken by the corresponding ith LOS and multipath signal to propa-

gate from the satellite to the receiver.

The expression in (1.15) is formed by the resulting correlation between a local generated code

replica with phase θ̂ and both the direct signal and multipath delayed code. As a consequence

the nominal correlation function to be used by the code discriminator (neglecting the phase and

frequency error) will be deformed as depicted in Fig.1.2. This deformation will entail a bias in the

receiver computation of the direct signal parameters such as the time of arrival τ0, its amplitude A0

and phase θ0. Hence, the posterior calculation of the position will be subjected to errors. In theory,

pseudorange multipath error can reach magnitudes of about 0.5 of a code chip [PS96], i.e. 150m in

the C/A case, depending on the receiver correlation technology.

For land applications, especially in kinematic mode, the magnitude of the multipath error quickly

changes in a manner that is difficult to anticipate or to model mathematically [CL92]. In highly

urbanized areas, LOS signals can be very weak with respect to the strength of the multipath signal

or they can be completely blocked [Mez05]. In either situations, the receiver will track the reflected

signal and a highly biased position estimation can be obtained. The magnitude of the induced error

will no longer by limited to half a chip code (150m), because now the multipath is the main signal

being tracked.
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Figure 1.2: Correlation function in the presence of one multipath component. The final correlation

function in full red line is the result of the addition between the direct signal (dashed blue line) and

multipath (dash-dotted green line) correlation function.
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Figure 1.3: Modes of multipath presence in urban environments.

Cross correlation errors

Cross correlations effects are caused by the limited dynamic range of GPS Gold Codes and present a

significant problem in the observation of weak GPS signals [GD04]. The use of 1,023 chip Gold-codes

for the GPS C/A spreading-codes represents a compromise between the need for rapid acquisition

and the cross correlation dynamic range of the spreading codes. Although Gold codes generally work
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well, there exist certain situations for which the tracking of weak GPS signals in the presence of other

strong GPS signals can lead to cross-correlation errors. For these cases the use of these Gold codes

represents a significant difficulty. A relatively short 1,023 chip Gold code with a chipping rate of

1.023 MHz and period of 1 ms was selected in order to minimize the code acquisition time, although

a consequence of this choice is a cross correlation dynamic range of approximately 23 dB, which is

not sufficiently large for some scenarios. Considering satellite i as the satellite being processed within

the chosen channel and neglecting multipath and noise influence, the signal at the correlator output

can be written as [DEM02],

r(τ) =
Ai
2
die
−j[π∆fit+(θi−θ̂i)]Rx(τ − τi) +

ny∑
k=1,k 6=i

Ak
2
dk

∫
Tb

e−j[π∆fkt+(θk−θ̂i)]ci(t)ck(t− τk)dt, (1.16)

where

• the expression
∫
Tb
ci(t)ck(t − τk)dt represents the nominal cross correlation function between

the desired satellite i and the secondary satellite k,

• ∆fk denotes the difference between the estimated ith Doppler frequency and the actual Doppler

frequency of the kth satellite,

• θk represents the kth signal phase.

Equation (1.16) shows that the cross correlation between satellite i and each other satellite k depends

not only on their spreading-codes, but also on the Doppler frequency error. Indeed, if we considered

that Doppler frequency fd,i for ith satellite is accurately estimated by the carrier tracking loops, the

second term in (1.16) will also be determined by the relative Doppler-frequency difference between

the ith and kth satellite [GD04]. In the case of GPS, the Doppler difference can result in several

carrier cycles occurring within the integration time Tb. As a result, prediction of any C/A code

cross correlation must take into account the carrier phase difference between the codes. When the

Doppler difference between satellite i and k is an integer multiple of 1 kHz, this mixing process will

be relatively constant between successive C/A epochs and the cross correlated outputs will appear

to be rotating at the same frequency as satellite i. Hence although the cross correlation samples
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rotate at the same frequency as the strong kth signal from which they are sourced, the frequencies

are aliased into the bandwidth of satellite i. Data bit changes within the kth satellite signal can also

cause a problem because since the codes are asynchronous, a data bit transition will typically occur

within the code sequence for satellite k. This means that data-bits and relative Doppler effectively

randomize the ideal cross correlations making them difficult to be predicted.

Low C/N0

In urban scenarios, different types of obstacles, such as tree foliage or glass windows, can attenuate the

received GPS signal causing a significant drop in the carrier-to-noise density ratio (C/N0).The C/N0

is the most fundamental parameter describing navigation signal quality. C/N0 is an instantaneous

measure of the ratio of the carrier power with respect to noise power density measured per Hertz of

bandwidth (and similarly for dBW/ Hz). With a nominal noise floor spectral density of about −204

dB-Hz and minimum guaranteed signal power at −160 dB-W/Hz, the nominal C/N0 magnitude is

around 44 dBHz [WBH06b]. When the C/N0 goes beyond 28 dBHz approx., the signal is weak, likely

erroneous, and highly susceptible to loss of lock by the receiver. This situation presents an important

constraint for urban navigation where the quality of the received signal can be very low. In [Mac03] it

was shown that pseudorange noise could increase by up to 1025m for signals degraded by 20− 25dB.

Carrier lock loops are specially susceptible to noise measurements. The amount of tolerable

frequency error during the total dwell time depends on the length of coherent integration and the

type of carrier tracking performed [WBH06a]. A common approach to deal with these types of

situations is to use high sensitivity techniques that enable one to wider the C/N0 range for which

signals can be tracked. This solution especially adapted to degraded scenarios is presented in the

next section.

Reduced visibility over the GPS satellite constellation

The lack of redundant measurements in urban scenarios presents a main navigation problem. High

buildings block the visibility of medium/low elevation satellites and tunnels completely disrupt the

GPS based navigation. In this way, partial (less than 4 visible satellites) or total (no visible satellites)
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outages prevent the continuity over the position estimation to be guaranteed. This is a critical issue

for applications such as safety of life.

1.2.4 High Sensitivity GPS

The accuracy degradation caused by signal masking (low C/N0) and poor geometry can be mitigated

to some extent by the use of innovative High Sensitivity (HS) GPS technology [PBH97]. Unlike

conventional GPS receivers, High Sensitivity GPS (HSGPS) receivers make measurements in signal

conditions where conventional sensitivity receivers fail. HS receivers are capable of tracking and

acquiring signals in challenging environments, which often include the interior of buildings, under

heavy foliage and in urban canyons [CG00]. HS receivers are specially designed to track low power

GPS signals. The L1 C/A-code repeats every millisecond. This can be used by the GPS receiver, so

that the signal can be integrated for extended periods of time in order to obtain a higher Signal-to-

Noise Ratio. The longer integration time, the better the reduction of the noise power at the output of

the correlator. The increase in the coherent/non-coherent integration time allows signals with power

as low as -188dBW to be processed. However, this technique is still affected by multipath, jamming

or cross-correlation errors. Longer coherent integration is possible, if the navigation bits are known a

priori, but this process is still restricted by the residual errors due to receiver and satellite movements

during the integration interval [Sal04]. In fact, here relies one of the main HSGPS limitation: under

very low signal-to-noise ratios, the bit error rate associated to the demodulation of the navigation

message is extremely high. hence, without indispensable information such as ephemerids or the

satellite clock correction, the navigation solution cannot be computed.

The Assisted GPS technology [Kub07] appeared in the last years as a solution to enhance HSGPS

performances and its tracking of weak signals. Navigation data is transmitted through the mobile

network to the receiver. In this way, a navigation solution can be provided even in very degraded

scenarios where the HSGPS technique fails. However, this technique is out of the scope of this thesis.
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1.3 Conclusion

The general structure of the Global Positioning system (GPS) was introduced in this chapter. The

transmitted signal properties were presented. Possible measurements that can be obtained at the

receiver output were described together with their error sources. Special attention was given to

urban canyon phenomena were the received signals are susceptible to multipath interference, cross-

correlation effects and/or signal attenuation. All these concepts will be of a major importance in the

next chapters. Indeed, the scope of this thesis is to propose different approaches to deal with the lack

of integrity presented by the erroneous signals (hereafter referred as outliers) in urban environments.
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2.1 Dead reckoning

Dead reckoning (DR) is the use of sensors that provide relative positioning information [Bul95]. DR

navigation is based on the knowledge of the vehicle dynamics and an original starting point to calculate

the actual vehicle position. Different sensors provide attitude rate angle and velocity measurements.

These measurements are used to propagate the position estimations done on previous time instants

and thus keep track of the vehicle trajectory.

Gyroscopes, accelerometers and wheel speed sensors (WSS) are among the most common DR sen-

sors used for land vehicle navigation. Other sensors such as magnetometers or barometers might also

be included in the navigation system to enhance performances. The Inertial Navigation System (INS)

[FB99] is an especially well known example of dead reckoning navigation combining accelerometers

and gyroscopes. If WSS information is available for two opposite wheels, a WSS-based navigation

system is also possible [Zha97].

In many aspects, dead reckoning systems are a perfect complement to GPS. They are self-contained

and not affected by atmospheric propagation errors. However they need an absolute navigation system

such as GPS to provide an initial position estimation and to control their time diverging errors. DR

systems are particularly interesting in urban scenarios where GPS availability and reliability might

be frequently jeopardized. DR sensors provide an additional source of measurements in case of partial

or total GPS outage, and can help to mitigate or filter outlier presence.

This chapter begins with a presentation of the dead reckoning sensors to be used within this thesis.

As one of the main challenges of DR navigation involves coordinate frame transformations between

local and absolute reference frames, section 2.5 gives a brief insight into the different navigation frames

to be studied herein. Equations of motion are given in section 2.6 and 2.7 for the INS and WSS-based

navigation system respectively. Based on the error sources associated to each DR navigation system,

their propagation error equations are also specified.
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2.2 Inertial Sensors

2.2.1 Gyroscope

A gyroscope (also referred as gyro) is an instrument used to measure the rate of rotation or integrated

heading change of a platform. Quite a few different types of gyros are available, ranging greatly in

price and stability. Details for the different existing gyros can be found in for example in [GWA01] and

[KF97]. Gyros are classified into gimbaled or strap-down varieties, with gimbaled gyros maintaining a

fixed orientation in an inertial frame (relative to distant galaxies). Strap-down gyros measure rotation

on a fixed plane with respect to the vehicle, which is not generally on the plane orthogonal to the

gravity vector. Low cost sensors, as the one being used within this thesis, generally belong to this

last category.

Sensors are affected by many errors that vary with time, temperature, as well as with the motion

experienced by the sensor. The magnitude of these errors will depend on the quality of the used

sensors. The theoretical output model for the gyros can be expressed as [Jek00]:

ωout = (1 + SFg)ωreal + δSFgω
real + bω + δTpg + smag +mg

alig + ng, (2.1)

where

• ωout is the rotation rate delivered by the gyro,

• SFg is the scale factor affecting the true rotation rate,

• ωreal is the true rotation rate,

• bω is the bias affecting the gyro measurement,

• δSFg is the gyro scale factor error,

• δTpg is the gyro temperature sensitivity effect,

• smag is the magnetic sensitivity term,

• mg
alig is the misalignment error
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• ng is the gyro noise with ng ∼ N (0, σ2
g).

2.2.2 Accelerometers

An accelerometer measures platform acceleration, which can be integrated to give velocity, and double

integrated to give distance traveled. Accelerometers are generally based on observing the displacement

of a suspended mass caused by inertia [Ste00]. This mass can be classically suspended by either a

horizontal spring or vertical pendulum. Once a force is applied to this mass, the movement of the

mass would be sensed through capacitance, an optical method, or usually, by the use of a viscous

fluid medium. If the measured force is divided by the mass of the suspended mass, the final specific

force is obtained. This specific force f is the true acceleration measure by the accelerometer.

Figure 2.1: Accelerometers scheme [Ste00].

Similarly to the model used for the gyroscope in (2.1), the accelerometer output model is typically

given by [Jek00]:

fout = (1 + SFa)f real + δSFaf
real + bf + δTpa + e+ma

alig + na, (2.2)

where

• fout is the specific force delivered by the gyro,

• SFa is the scale factor affecting the force,
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• f real is the true specific force,

• δSFf is the accelerometer scale factor error,

• bf is the bias affecting the accelerometer measurement,

• δTpa is the accelerometer temperature sensitivity effect,

• e is the error due to loss of elasticity,

• ma
alig is the misalignment error,

• na is the accelerometer noise with na ∼ N (0, σ2
a).

2.2.3 Adopted noise models

Modeling and estimating all the errors associated to both the accelerometer and gyro presents a very

high cost. First of all, a large number of measurements coming from a complementary system such as

GPS would be necessary in order to guarantee the observability of all the parameters [Pet03]. This

condition could be hardly fulfilled in urban scenarios. The estimation of such a large number of errors

would jeopardize the stability and real-time response of the system. Moreover, while working with

low cost sensors, most of the errors would be indistinguishable from the noise component. Therefore,

the sensor model to be used hereafter will only be affected by a bias and noise term. The simplified

measurement model for the gyroscope and accelerometer is thus expressed as [Gir05]:

ωout ≈ (1 + SFg)ωreal + bg + ng ← gyro model (2.3)

fout ≈ (1 + SFa)f real + ba + na ← accelerometer model (2.4)

where any initial run-to-run bias for the gyro is considered to be compensated during the sensors

calibration stage. A first order Markov model is used for the bias characterization as follows:

ḃg = − 1
Tg
bg + wbg , (2.5)

ḃa = − 1
Ta
ba + wba , (2.6)
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where

• ba and bg are not necessarily equal to bf and bω respectively, but they represent all the possible

bias sources affecting the accelerometer and gyro measurements,

• Ta and Tg correspond to the process correlation time,

• (wba , wbg) are gaussian noises described by wba ∼ N (0, σ2
ba

) and wbg ∼ N (0, σ2
bg

) respectively.

These parameters account for the temporal variability of the time-varying parameters used in

the theoretical model [(2.1),(2.2)] such as temperature sensitivity effect, scale factors, etc.

Furthermore, considering that the time constants Ta and Tg are usually rather large, the biases

can be approximated by ḃa ≈ wba and ḃg ≈ wbg .

A small parenthesis is done on the description of DR sensor models, to introduce a tool that will

be employed in the following chapters to obtain an accurate characterization of the accelerometer and

gyroscope error terms. According to the sensors’ output models given in (2.3)-(2.4) and (2.5)-(2.6),

four noise terms need to be evaluated: (ng, wbg) for the gyroscope and (na, wba) for the accelerometer.

With this purpose, the Allan Variance technique will be briefly presented in the following section.

2.3 Allan Variance

The Allan variance [All66] is a method of representing the root mean square (RMS) random-drift

error as a function of averaging time. It is easy to compute and relatively simple to interpret and

understand. The Allan variance method can be used to determine the characteristics of the underlying

random processes that give rise to data noise. In particular it can be used to characterize the different

types of noises affecting the inertial-sensor data as shown in [ESHN08] and [ZLMR08]. To compute

the Allan variance, the output of the idle sensor is measured. The idea is that the data set is divided

in smaller data sub-sets (or sample groups) and the mean of each of these groups is computed. By

comparing the means of consecutive sample groups, the variance associated to the whole data set can

be calculated. The obtained variance will necessarily depend on the length, or averaging time, of the

sub-sets. Consider for instance that fig. 2.2 represents the output of an idle sensor.
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Figure 2.2: Idle sensor output [Cal07].

The length or averaging time α of the sample group bn is determined as a multiple of the data

sample period Ts = 1/Fs, so α = lTs, where l = 1, 2, 3.... The mean over bn is denoted b̄n. Then the

Allan variance is computed between two consecutive sample groups
(
b̄n+1, b̄n

)
all along the sequence

of N data samples available. The expression for the Allan variance is then given as a function of the

length of the sample group:

σ2
AL(α) =

1
2

〈(
b̄n+1 − b̄n

)2〉
, (2.7)

where 〈〉 denotes an infinite time average which, in practice, is necessarily approximated by a finite

sum including the N data samples. It is shown in [Teh83] that by varying the integration time α of

the sample groups, different random processes can be detected. A direct relation can be established

between the Allan variance and the power spectrum density of the desired random process. In

particular, the Allan deviation characteristic curve for the sensor white noise n (where n stands for

ng or na) can be derived by a log-log calculation:

log(σnAL(α)) = −1
2

log(α) + log (σAL(1)) , (2.8)

while for the noise wb driving the first order Markov model associated to the sensor bias (where wb

stands for wbg or wba) the expression is the following:

log(σbAL(α)) =
1
2

log(α) + log

(
σAL(3)√

(3)

)
. (2.9)

A typical curve for the Allan variance as a function of the sample group length α is given, in

logarithmic scale, in fig. 2.3. It can be easily deduced from (2.8) that if a tangent is drawn for the
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logarithmic Allan variance curve with slope −1/2 and its value in α = 1 is evaluated, the white noise

n spectral density is obtained (and straightforwardly the noise variance) [ZLMR08]. Similarly, from

(2.9), if a tangent is drawn for the Allan variance curve with slope 1/2 and its value in α = 3 is

evaluated, the white noise spectral density for the wb noise driving the Markov model random walk

is obtained. This method will be used in the next chapter to obtain an accurate characterization of

the sensor error terms.

Figure 2.3: Typical Allan deviation plot for a system [Cal07].

2.4 Odometers/Wheel Speed Sensor

An odomoter is a sensor that measures the distance traveled by a vehicle, or possibly by the individ-

ual tires, with respect to an initial position [Zha97]. A wheel odometer or wheel speed sensor (WSS)

typically measures the number of rotation counts (pulses) generated by a rotating wheel. This me-

chanical motion (i.e. the rotation counts) is then converted into an electrical signal whose frequency

is proportional to the rotational velocity of the wheel.

The Hall-effect odometer is one of the most common WSS installed on vehicles. It allows the

sensing of low wheel speeds better than many other simple mechanical or pulse detection sensors.

The Hall effect occurs when a charge carrier moving (i.e a current) through a material experiences

a deflection because of an applied magnetic field. This deflection results in a measurable potential

difference across the side of the material that is transverse to the magnetic field and the current

direction.
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Fig. 2.4 depicts a WSS based on the hall-effect [Ste00]. A ferrous wheel (i.e. the sensor ring) is

attached to the vehicle’s wheel. When a current is passed through the hall-effect device present in the

so called WSS, a voltage develops across the device perpendicularly to the direction of the current

flow and to the direction of magnetic flux. As the sensor ring rotates, the reluctance of the magnetic

field changes as the teeth pass the sensor. By multiplying the wheel rotational rate (in rad/s) by the

Figure 2.4: Wheel Speed Sensor scheme.

wheel radius, the velocity of the vehicle (inm/s) and therefore the distance traveled can be computed.

Errors associated to the speed estimation obtained from the WSS will be mainly related to slippage

effects and to errors in the nominal tire circumference as explained in [Ste00] and [Sve02]. Slippage

occurs if the vehicle accelerates or decelerates too rapidly or travels on a snowy/icy/wet surface. The

wheel diameter may vary due to changes in the tire pressure over time, wear of the tire or changes

in temperature. At the same time, wheel rotation causes a centrifugal force on the tire material that

tends to stretch it out as shown in Fig. 2.5.

Considering the different above-mentioned types of errors affecting the wheel velocity determina-

tion as well as the noise associated to the specific sensing of the rotational velocity, the output model

to be used for the WSS is expressed as:

vwss = ωw(Rw + δRw) + nw (2.10)

where
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• vwss is the velocity obtained from the WSS in m/s,

• ωw is the wheel rotational rate in rad/s,

• Rw is the wheel nominal radius,

• δRw represents a variation on the nominal radius due to temperature, pressure, speed...etc,

• nw describes both the noise associated to the senor and possible errors introduced by the wheel

slippage.

The radius error is described as white noise given by:

δRw = nr, (2.11)

where nr ∼ N (0, σ2
r ). It has to be noted that except from extraordinary situations such as flat tire,

the variation in the wheel radius is really small. For instance, modern tires have fairly constant size

and shape and they are designed to dissipate large amounts of heat caused by road friction. At the

same time, specially adapted tires for snowy or iced conditions and the ESP (Electronic Stabilization

Program) vehicle option help to reduce the slippage effect. In practice, the slippage effect can be

almost neglected for civilian land vehicle navigation (see [Enq00] for more details).

Figure 2.5: Speed effect on tire diameter [Ste00].
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Most vehicles are nowadays equipped with WSS to track the total distance traveled by the car.

WSS are used by the anti-lock braking system (ABS) and traction control system. ABS WSS data will

be exploited in this thesis. The ABS is becoming a standard feature in most vehicles, providing easily

accessible odometric data at no additional cost. Indeed, messages containing the wheels’ angular rate

velocity will be read from the ABS control area network (CAN) bus. Every car equipped with an

ABS contains an “on board diagnostic” (OBD) port which provides the necessary interface between

the CAN bus and the user. However, standards followed by the data transfer through this interface

are not directly compatible with personal computers (PCs). An “interpreter” device (Fig. 2.6) is

needed to act as a bridge between the OBD port and the nominal serial RS232 PC port.

Figure 2.6: Device to recover the WSS data.

Most ABSs provide two to four-wheel control. These different measurements can be exploited

to compute speed, distance traveled and heading by a technique called differential odometry. This

navigation strategy is presented in section 2.7.

2.5 Coordinate frames

All the above mentioned sensors are usually rigidly mounted on the vehicle so their measurements

are given in the vehicle-dependent or mobile frame. A frame transformation must be done to the

navigation or ECEF frame to enable data to be exploited by the user as positioning information.
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(a) (b)

Figure 2.7: Main coordinate frames used in inertial navigation.

In fact, this aspect represents one of the main difficulties of the dead reckoning navigation system.

Before discussing the position calculation, the different coordinate frames are going to be presented.

2.5.1 Inertial Frame (i-frame)

An inertial frame is considered as non-rotating and non-accelerating frame relative to distant stars.

The Earth’s centre of mass is its origin, with Xi pointing toward the mean vernal equinox and Zi

parallel to the earth’s instantaneous spinning axes (pointing toward the north pole). Yi is aligned to

complete a right-handed frame. The frame coordinates are depicted in Fig. 2.7(a) as i = (Xi, Yi, Zi).

2.5.2 Earth-Centered Earth-fixed frame (ECEF or e-frame)

The ECEF, described by its (Xe, Ye, Ze) axes, is linked to the Earth. It is deduced from the inertial

reference frame by applying a rotation about the Zi = Ze axis at the earth’s rotation rate ωie. The

Zi = Ze assumption is done by neglecting effects mainly due to polar motion [Int00]. The Xe axis

is given by the intersection between the equatorial plane and the plane containing the Greenwich

meridian.



2.5. COORDINATE FRAMES 47

2.5.3 Navigation frame (n-frame)

The Navigation frame n = (n, e, d) has its origin in the vehicle’s centre of mass. The north axis n

points toward the true north, the east axis e points toward the east and the down axis completes

the right handed coordinate system pointing toward the interior of the Earth, but not necessary to

the earth centre. It can be obtained by two consecutive rotations around the Xe and Ze axes of the

e-frame by magnitudes of geodetic latitude, λ, and longitude, ϕ. The navigation frame is presented

in Fig. 2.7(b).

2.5.4 Mobile frame(m-frame)

The mobile reference frame is attached to the mobile. In strap-down DR systems, as the ones used

herein, the mobile axis m = (Xm, Ym, Zm) are aligned with the inertial measurement unit (IMU)

frame. Its orientation with respect to the navigation frame is defined by the Euler angles (φ, θ, ψ)

standing for roll, pitch and heading (or yaw) angle. Each of these angles results from a rotation

around one of the mobile axis. In particular, as a 2D solution will be considered in this thesis, only

the rotation around the Zm axis (i.e. the heading angle) is of interest. Fig. 2.8 depicts the mobile

frame considering just a heading rotation.

Figure 2.8: Mobile frame (m).
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2.6 Inertial Navigation system

Inertial navigation is an autonomous process of computing position by doubly integrating the accel-

eration of a point, whose position is to be determined [Jek00]. It was developed for the second world

war and mainly conceived for aerial and spatial applications. This system relies on the measurements

provided by sensors contained in an Inertial Measurement Unit (IMU) [FB99]. This IMU is generally

composed of three accelerometers and gyroscopes.

There are two classifications of inertial systems: gimbaled and strapdown. A gimbaled INS deals

with the physical realization of the navigation frame using a free axis gyrostabilizer platform with

orthogonally placed accelerometers. Gimbaled gyroscopes are used to aligned the platform frame

with a specific navigation coordinate system. The isolation of the inertial platform from rotations

of the host vehicle can be exploited to eliminate many sensor error sources and to achieve very high

system accuracy [TW04]. However, gimbals are very sophisticated electromechanical assemblies that

are delicate and expensive to manufacture. For low cost land applications, as the one studied within

this thesis, strap-down systems are normally used. In strap-down systems, the sensors are fixed

to the vehicle itself and not to a stabilised platform. Strapdown gyroscopes are not used to keep

the accelerometer input axes stabilized, but they are used to maintain a coordinate transformation

between the vehicle and navigation frame. Inertial sensors for strap-down systems experience much

higher rotation rates than gimbaled systems and, consequently, they deliver poorer accuracy than

their gimbaled counterparts.

An INS is composed of an IMU and a computer [FB99]. The IMU provides the raw measurements

at the output of the inertial sensors. These measurements, including rotation rates and specific force

measurements, are converted by the computer into position, velocity and attitude information.

A 2D INS is particularly studied in this thesis. The IMU is composed by a 1 axis gyroscope

measuring the yaw rate and by 2 axes accelerometers in the along track and cross track direction.

Altitude h is considered almost constant and known. All expressions given hereafter will concern a 2D

INS. In fact, the choice for a reduce inertial navigation system was motivated by the low accuracy of

the available sensors. For sensors aligned with low dynamic axes, such as the down accelerometer or



2.6. INERTIAL NAVIGATION SYSTEM 49

the gyros measuring rotational rates around the (xm, ym) mobile coordinates, no useful information

could be generally extracted from the noisy output measurements.

2.6.1 Notation

In order to fully understand the INS equations presented in the next section, the following notations

relating parameters and their associated coordinate frames need to be introduced:

• xa is the projection of vector x into frame a.

• ωabc is the rotation rate vector of frame c, relative to frame b, expressed in the a frame.

• Ra2b is the rotation matrix from the a to b frame.

2.6.2 Equations of motion

Once the angular rates and accelerations are obtained from the IMU, the calculation algorithm can

be executed. Firstly, having the initial navigation information with respect to the navigation frame,

the angular rates are integrated to obtain the new orientation of the IMU. Secondly, using this

information, the accelerations are rotated into the n-frame, where they are twice integrated to obtain

velocity and position increments. The frame transformation relating velocity and position in the

navigation frame is given in (2.12). The geodetic position [λ, ϕ] considering the velocities in the

navigation frame vn = [vn, ve] are known is obtained according to:

ṗn =

 λ̇

ϕ̇

 =

 1
Rλ

0

0 1
Rϕ cos(λ)

 vn

ve

 , (2.12)

where

• ȧ denotes the rate of a in a continuous time domain,

• λ̇ is the latitude rate,

• ϕ̇ is the longitude rate,

• Rλ is the earth radius of curvature in a meridian at a given latitude,
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• Rϕ is the transverse radius (considering the WGS84 model for which the earth is an ellipsoid).

The Earth’s radii are obtained as follows

Rλ =
a(1− e2)

3
2

√
1− e2 sin2(λ)

, Rϕ =
a√

1− e2 sin2(λ)
, (2.13)

where a is the semi-major axis and e the eccentricity of the WGS-84 ellipsoid. Considering a two

dimension navigation solution, the velocity in the navigation frame is obtained as

v̇n = Rm2nfa + ae + ac, (2.14)

where

• v̇n is the rate of the velocity vector in the navigation frame,

• Rm2n is the frame transformation matrix from the mobile to the navigation frame,

• fa = [fu, fv]T is the 2D specific force vector in the mobile frame (i.e. the accelerometer output),

• Rm2nfa = [fn, fe]T represents the specific forces projected in the 2D navigation north-east

frame,

• ae = −ωnei ∧ ωnei ∧ vn are the centrifugal accelerations induced by the Earth rotation, also

called gravity anomaly parameters. The operator ∧ denotes the cross-product function. This

term will be neglected in the following because it is generally masked by the uncertainty of the

measurement itself.

• ac = (ωnen + 2ωnie) ∧ vn represents the Coriolis acceleration (to be considered in 2D)

Neglecting the gravity anomaly parameters introduced by the centrifugal forces, the developed

expression of eq. (2.14) can be written in a vector form as:

v̇n =

 v̇n

v̇e

 = Rm2nfa +

 −ve(ϕ̇+ 2ωie) sin(λ)

vn(ϕ̇+ 2ωie) sin(λ)

 , (2.15)

where the last left-size term represents the Coriolis acceleration and ωie is the Earth rotation rate

(≈ 7.2924 · 10−5rad/s = 4.17 · 10−3deg/s).
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The transformation frame matrix Rm2n is computed from the yaw rate provided by the gyro such

as:

Rm2n =

 cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)

 (2.16)

where ψ represents the yaw rate measured by the along track gyro (i.e the gyro aligned with the Xm

coordinate of the mobile frame). In theory, the yaw rate angle ψ̇ is not directly obtained from the

gyro output but according to the following expression:

ψ̇ = ωmnm = ωmim −Rn2m(ωnie + ωnen), (2.17)

where ωmim is gyro output, and ωnie is the inertial rotation rate of the Earth expressed in the navigation

frame so

ωnie = wie[cos(λ), 0,− sin(λ)]T . (2.18)

The maximum rate for eq. (2.18) is obtained either when the vehicle is at the equator or at the Earth’s

pole. The transport rate ωnen of the navigation frame relative to the Earth is application dependent

and it is given by

ωnen = [ϕ̇ cos(λ),−λ̇,−ϕ̇ sin(λ)]T . (2.19)

However, in practice, the second term in the right hand side of equation (2.17) can be considered

negligible when compared with typical noise values affecting low cost gyros used for land vehicle

navigation. It was shown in [Kub07], that this term can be considered as acting as a constant bias of

magnitude 5.5×10−3deg/s, which is generally far below the noise affecting the gyro output. Therefore,

the rotation rate of the mobile frame with respect to the navigation frame expressed in the mobile

frame ωmnm is approximated to the gyro output as:

ψ̇ = ωmnm ≈ ωmim. (2.20)

The yaw angle is thus updated at time t as

ψ(t) = ψ(t− 1) + ωmim∆t (2.21)

where ∆t is the sampling period.
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2.6.3 INS mechanization

The mechanization of the inertial navigation system consists of the different steps followed by the

inertial measurement unit in order to provide a navigation solution. These steps, for a 2D solution,

are mainly summarized by the differential equations given in (2.12) and (2.15), and can be separated

in four main categories:

1. Attitude update

2. Transformation of specific force to navigation frame of interest

3. Velocity calculation

4. Position calculation

The attitude update is obtained from (2.21) and the frame transformation of the accelerometers’

specific forces is given by the matrix Rm2n presented in (2.16). Velocity and position calculations

are respectively given by (2.15) and (2.12). A schematic illustration of the 2D INS mechanization,

neglecting centrifugal forces and considering the approximation given in (2.20), is depicted in Fig.

2.9.

Figure 2.9: INS mechanization.
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2.6.4 Error equations

No error considerations were included in the theoretical motion models presented in the previous

section. However, it is generally critical to have an estimate of these errors for the otherwise time

diverging INS position solution. Assuming that the vehicle position is accurately known during the

initialization process, the precision of the computed solution will mainly depend on the quality of the

inertial sensors. As already presented in eqs. (2.3) and (2.4) the gyro and accelerometer outputs are

considered to be affected by a white noise and a time varying bias that summarizes the contribution

of different error sources to the sensor measurements. Gyro errors will impact the Rm2n matrix

computation by introducing frame transformation errors. Accelerometer errors will be consequently

integrated to compute the final position. Errors introduced by the sensor biases on the velocity or

position computation can be derived from eq. (2.12) and (2.15). It is important to notice that the

successive integrations needed to compute velocity and position result in an approximative linear and

parabolic growth of the errors associated to the sensor biases. Just to give a clarifying example of the

impact the accelerometer and gyro biases have on the velocity and position calculation lets consider

the following ultra-simplified error equations (neglecting the Earth rotation effect and the dependence

between the north and east axes):
δṗne

δv̇n

δψ̇


︸ ︷︷ ︸

Xs

=


0 I2 0

0 0 −fn

0 1
R 0


︸ ︷︷ ︸

F̃


δpne

δvn

δψ

+


0

bna

bg


︸ ︷︷ ︸

B̃

(2.22)

where

• δ· denotes the difference between the actual value and the calculated (or measured) quantity,

• δpne denotes the position errors in the north-east frame so δpn = Rδλ and δpe = R cos(λ)δϕ,

• δvn and δψ denote the corresponding velocity and angle errors,

• I2 is a 2× 2 identity matrix,
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• R accounts for an average Earth radius,

• −fn =

 −fe
fn

 is the vector including the accelerometer forces in the navigation frame,

• bna represents the accelerometer bias vector in the navigation frame,

• bg accounts for gyroscope bias.

Considering null initial conditions the analytical solution is given by [Gir05]:

Xs(t) =
∫ t

t0

exp(F̃ (t− u))B̃du (2.23)

so,

δpne(t) ≈ bna
∆T 2

2
+ fnbg

∆T 3

3
, (2.24)

δv(t) ≈ bna∆T + fnbg
∆T 2

2
, (2.25)

where ∆T=t− t0. Generally speaking, for short periods of time, the inertial navigation errors (2.24)-

(2.25) appear as exponentially divergent. It is thus crucial to estimate the biases affecting the INS.

Linear equations are usually employed to describe the INS error dynamics. Therefore, a first order

approximation of the INS differential navigation equations is done. Given the real complexity of the

system, no full derivation is given here. The adopted 2D model for INS error state equations used

in this thesis is directly derived from the 3D model given in [FB99]. The linearized state transition
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model for position, velocity, heading angle and sensor biases is summarized as:

δṗn

δv̇n

δψ̇

ḃa

ḃg


INS

=



Fpp Fpv Fpϕ 02×2 02×1

Fvp Fvv Fvϕ Fvba 02×1

Fϕp Fϕv Fϕϕ 02×2 Fvbg

02×2 02×2 02×1 −diag(1/Ta) 02×1

01×2 01×2 0 01×2 −diag(1/Tb)


︸ ︷︷ ︸

F̃ INSt



δpn

δvn

δψ

ba

bg


INS

+



02×2 02×1 02×2 02×1

DaRm2n 02×1 02×2 02×1

01×2 σg 01×2 0

02×2 02×1 DbaI2×2 02×1

01×2 0 01×2 σbg


︸ ︷︷ ︸

B̃INSt

w, (2.26)

where

• δpn = (δλ, δϕ) denotes the INS position errors in the navigation frame,

• δvn = (δvn, δve) denotes the INS velocity errors in the navigation frame,

• δψ is the heading (or yaw) angle error,

• 0i×j denotes a i× j zero matrix,

• Da =

 σxa 0

0 σya

 is a diagonal matrix containing the noise standard deviations (stds) for the

accelerometers aligned with the x and y axis of the mobile frame,

• Dba =

 σxba 0

0 σyba

 is a diagonal matrix containing the Markov model noise stds for the

accelerometers aligned with the x and y axis of the mobile frame,

• w is a gaussian noise vector so w ∼ N (0, I6×1).
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A detailed expression for all sub-matrices is found in [FB99]. Please note that the above presented

sub-matrices are a reduced version of the 3D sub-matrices given in [FB99], where just the 2D pa-

rameters are considered. The final INS position solution is given by (λINS + δλ, ϕINS + δϕ), where

(λINS , ϕINS) is the calculated INS position (from the INS mechanization) without any error correc-

tion.

2.7 Navigation based on Wheel Speed Sensors

This section describes the main elements of differential odometry [Ste00]. Differential odometry

is a technique to provide both distance traveled and heading rate information by integrating the

outputs from two odometers, corresponding to a pair of front or rear wheels. When a vehicle turns,

the differential allows the inside tire to travel a shorter distance than the outside tire without greatly

increased slippage. The individual wheel speeds would therefore vary from the actual along track

speed while the vehicle is turning. The vehicle velocity is computed by averaging the two wheel

velocities. The heading change is computed as the difference between the wheel’ velocities divided

by the axle length (i.e. length between wheels). A 2D position solution can be then calculated from

the average speed and heading measurements. Figure 2.10 shows WSSs located on the front and

rear wheels. The first index of the different variables refers to the front f or rear r axes whereas

the second index corresponds to the left l and right r sides of the car. Consequently, the wheel radii

(resp. angular velocities) are denoted as Rrl, Rrr, Rfl and Rfr (resp. ωrl, ωrr, ωfl and ωfr). The

other notations used in Fig. 2.10 are L for the length between wheels and ψ̇ for the vehicle yaw rate.

This work focuses on velocity and yaw rate calculations using rear wheels. This choice is motivated

by the fact that acceleration and deceleration have less effect on the output of the non driven wheels

[Zha97].

Assume first that the wheel radii are constant and known. The mean speed of the vehicle can be

computed as [Sve02]:

V =
ωrlRrl + ωrrRrr

2
+ nV . (2.27)

where nV ∼ N (0, σ2
V ) represents the noise due to errors in the sensing of the angular velocities,
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Figure 2.10: Illustration of WSS definition.

misalignment of wheels and slippage effects. The yaw rate of the vehicle can be calculated similarly

as a function of the angular velocities of each wheel (2.28). By neglecting side slip effects and modeling

the vehicle as a rigid body, the vehicle yaw rate expresses as

ψ̇ =
ωrlRrl − ωrrRrr

L
+ nψ. (2.28)

where nψ ∼ N (0, σ2
ψ) considers the impact in the yaw angle calculation of the same error sources

described for nV . Assuming a constant vehicle altitude and a correct initialization of the yaw angle,

changes in the position can be computed as: vn

ve

 =

 V cos(ψ)

V sin(ψ)

 , (2.29)

2.7.1 Error equations

Errors in the wheel radii will have a strong impact on localization accuracy when getting propagated

through the angle and velocity expression. Indeed, any non corrected error will result in an accumu-

lative increasing error. In particular, as the yaw rate is computed from the difference between the

two wheel velocity, a non corrected wheel radius error, will entail a very high proportional error, so

that when integrated over time, the final yaw angle will substantially differ from the really yaw angle.

By using (2.28), the resultant bias produced at time t by a radius error can be written as [CCP02]:

biasψ ≈
∫ t

0

ωrlt δR
rl
t − ωrrt δRrrt
L

dt, (2.30)
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where δRrrt and δRrlt are modeling the radius variations in the time interval [0, t]. Therefore the

interest of modeling and estimating the radii errors. The linearized error equations proposed for the

differential odometry navigation, derived from eqs. ((2.27),(2.28),(2.12),) , are expressed as follows

δλ̇

δϕ̇

δV̇

δψ̇

δṘrl

δṘrr


WSS

=



0 0 cos(ψ)
Rλ+h V − sin(ψ)

Rλ+h 0 0
V tan(λ)2

Rϕ+h 0 sin(ψ)
(Rϕ+h) cos(λ) V cos(ψ)

Rϕ+h 0 0

0 0 0 0 ωrl

2
ωrr

2

0 0 0 0 ωrl

L −ωrr

L

0 0 0 0 0 0

0 0 0 0 0 0


︸ ︷︷ ︸

F̃WSS
t



δλ

δϕ

δV

δψ

δRrl

δRrr


WSS

+



0 0 0 0

0 0 0 0

σV 0 0 0

0 σψ 0 0

0 0 σrl 0

0 0 0 σrr


︸ ︷︷ ︸

B̃WSS
t

w, (2.31)

where

• δV is the WSS along track velocity error,

• δψ is the WSS yaw rate error,

• δRrl represents the error in the nominal radius of the rear-left wheel,

• δRrr represents the error in the nominal radius of the rear-right wheel,

• w is a gaussian noise vector so w ∼ N (0, I4×1).

To overcome WSS accuracy limitations to the yaw angle computation, chapter 4 proposes a WSS-

based navigation system augmented by a 1 axis gyro. In this way, the WSSs only provide speed
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measurements and the gyro provides the necessary yaw angle data. This is one of the most commonly

used dead reckoning navigation approaches for land vehicle navigation. The only difference with the

above presented model is that ψ is directly measured from the gyro (as in the INS) and not obtained

as a function of the wheels’ angular velocities. The gyro error model given in (2.5) is thus used to

define the error equations.

2.8 Conclusions

This chapter addressed different DR-based navigation systems for 2D land vehicle navigation. The

inertial navigation system (INS) was presented along with a Wheel Speed Sensor(WSS)-based nav-

igation system. Motion and error equations were given for both systems. All the explained DR

principles given herein will be used in the next chapter to define a filtering model to be applied to

hybrid navigation solutions.
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Hybrid navigation systems: integrating
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Reliability and continuity over the navigation solution cannot be generally ensured for the GPS.

Several phenomena, such as lost of visibility over the satellite constellation, referred as outages,
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or highly corrupted signals, referred as outliers, can seriously degrade the navigation performance.

Additional measurement sources are thus necessary to compensate for these effects. This chapter

exploits information given by inertial sensors and on-board Wheel Speed Sensors (WSS) to propose

hybrid navigation techniques.

The Extended Kalman Filter (EKF) is traditionally used within the navigation community. It

has a low computational cost and it provides general acceptable performances. However, it can lead

to suboptimal results if the first order linearization that must be applied to the system model entails

large linearization errors. As a response to this limitation, an enhanced solution started gaining a

wide acceptance during the last decade: the Unscented Kalman Filter (UKF). The properties of both

Kalman-based filtering techniques will be explored in this chapter and its performances contrasted.

3.1 Integration strategies

There exists several strategies to integrate GPS and dead-reckoning data into a common system.

They all depend on the measurements available at the GPS level and the way they are combined with

dead-reckoning data. The best choice for an integration strategy is generally application-dependent

and it is commonly determined by the quality of the sensor data, the navigation scenario and the

affordable system complexity. The main principle shared by all the integration strategies is that GPS

updates are utilized to calibrate the dead-reckoning sensors.

The most intuitive approach to a hybrid GPS/DR system would be to estimate the vehicle cin-

ematic parameters. However, high vehicle dynamics would demand the estimates to be updated at

a very high frequency and therefore a very short filter time response would be needed. To overcome

this expensive filtering approach, DR navigation errors are usually estimated. As errors experienced

lower dynamics than navigation parameters, the filtering conditions are relaxed. There are four main

types of integration strategies: the loose, tight, ultra-tight and the deep integration [Jek00]. In the

loose strategy (also referred as “loosely coupled”) GPS position and velocity information are exploited,

while the tight strategy (also referred as “tightly coupled”) uses the raw GPS measurements, such as

the pseudorange or Doppler measurements, for the integration approach. In the ultra-tight strategy,
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integration is done at a very high level. GPS updates are obtained at the correlator outputs and they

are utilized to calibrate the DR system. At the same time, DR is used to aid the GPS receiver tracking

loops during interference or other degraded signal conditions [SS97]. An extension of this concept

is the deeply coupling method. In this case the integrating navigation filter is implemented as one

element of the receiver tracking loop. Using inertial information in combination with the in-phase and

quadra-phase signals of the receiver signal processing an optimal controlling value for the numerical

oscillator can be computed. Optimisations of signal tracking performance are the goal of this method.

However, these last two types of integration methods require access to the receiver firmware, or at

least to the tracking loop information. They are usually implemented by equipment manufacturers

and thus they are not within the scope of this work. Therefore, further discussions will only concern

loose and tight integration. Both strategies will be presented for an open-loop configuration.

3.1.1 Loose integration

The loose integration scheme fuses GPS and DR at the lowest level. It works with the position and

velocity estimations at the output of the GPS navigation filter, and compares them to its analogous

DR estimations. The GPS filter independently processes the tracked satellites and provides a position

and velocity estimation. The IMU outputs are fed to the INS computer to get position, velocity and

attitude estimation. GPS and INS navigation parameter estimations are then fed to the “coupling

or integration filter” as shown in Fig. 3.1. The updated state covariance matrix of the GPS filter

is commonly used as the measurement covariance matrix in the coupling filter. The DR solution is

finally corrected by the estimated DR errors.

Figure 3.1: Loose coupling integration scheme.
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For this integration method GPS and DR position solution are computed in separated filters. This

division enables a low complexity system implementation while precision is sacrificed. A minimum of

four visible satellites is needed for the GPS navigation solution to be determined and the DR growing

errors to be compensated. This condition cannot be guaranteed in urban scenarios or under situation

where the received signal is degraded. Moreover, if an outlier is present, no fault detection techniques

can be applied at the measurement level. Therefore an undetected error would get easily propagated

to the position solution.

3.1.2 Tight integration

Tight integration works with raw GPS measurements (such as pseudorange or Doppler measurements)

which are used as an input to the “coupling filter”. In this strategy GPS measurement, and not

navigation parameters, are independently combined with the DR data. Indeed, DR position cinematic

parameters are used to estimate the received GPS raw measurements. The “coupling filter” estimates

DR errors, and corrections are applied directly on the DR navigation solution. A tight integration

scheme is given in Fig. 3.2.

Figure 3.2: Tight coupling integration scheme.

This integration strategy appears as a very interesting solution in many aspects. First of all, if

less than four satellites are tracked the DR errors can still be estimated, so this approach is highly

suitable for urban environments. Moreover, fault detection techniques can be applied to each GPS

raw measurement to prevent positioning errors introduced by outliers [Kub07]. However, it presents

the disadvantage of introducing non linear measurement equations, so that its implementation is more
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complex and expensive than the loosely coupled strategy.

3.1.3 Chosen integration

Before stating the integration strategy adopted in this work, some remarks must be done on the

tight and loose integration performances in urban scenarios. As already explained, tight coupling is

generally considered as the best urban navigation solution because of its tolerance to limited visibility

over the GPS constellation. Even in the presence of less than 4 GPS satellites the INS can still be

corrected. However, a main problem arises when the GPS measurement to provide inertial corrections

are subjected to important errors. As corrections are done at a higher level in the tight integration

approach, a non detected outlier will have a stronger impact on the position solution than when

using a loose integration strategy where the already filtered GPS position solution is compared to the

DR-based position. Of course, the more accurate the DR sensors, the lower the impact of the outlier.

Nevertheless, this presents an import trade off to be considered when performing urban navigation

with relative low quality sensors. On the other hand, as shown in [Pet03], no significant differences

are found between the loose and tight integration in open sky scenarios.

The main idea of this chapter is to introduce a suitable integration strategy that will be further

exploited in the next chapters to develop fault detection techniques for GPS signals in urban scenarios.

Hence, tight integration is chosen as the coupling approach to be used herein. As already explained,

one of the main drawbacks of the tight integration approach is the use of non linear measurement

equations for the pseudorange or Doppler measurements. An Unscented Kalman Filter (UKF) will

be implemented to test the impact of such non linearities. Results will be compared to those obtained

when using a standard Extended Kalman filter (EKF).

3.2 Filtering framework

The estimation principle for dynamic systems consist of recursively evaluating the evolution of the

system variables X from some available noisy observations Y. In particular, we are going to work with
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markovian systems that can be modeled by the following state-space equations:

Xt = ft(Xt−1) + vt, (3.1)

Yt = ht(Xt) + wt. (3.2)

Eq. (3.1) describes the a priori dynamics followed by the unknown parameters Xt and eq. 3.2 is the

measurement model that associates the parameters with the measurements Yt, where

• Xt ∈ Rnx is the state vector containing the parameters to be estimated,

• ft is the non linear state transition function,

• Yt ∈ Rny is the measurement vector (also called observation vector),

• ht is the non linear measurement function,

• vt ∈ Rnx and wt ∈ Rny are additive white noises.

The filtering problem is resolved by calculating an estimator that maximises a given criterion that it is

usually application dependent. The filtering techniques presented in the following applied a minimum

mean square error (MMSE) criterion. The MMSE estimator (X̂t)MMSE is expressed as:

(X̂t)MMSE = E [Xt|Y1:t] =
∫
Xt

Xtp(Xt|Y1:t)dXt, (3.3)

where Y1:t = (Y1, . . . , Yt) and p(Xt|Y1:t) is the conditional probability density (also called a posteriori

probability density) of the state vector considering all the received measurements. The dynamic

nature of the above described system implies a growing number of measurements Y1:t with time. To

avoid having an increasing system complexity, a recursive approach is used to estimate the probability

density at every time instant t. This approach is separated in two different stages:

1. Prediction

The state vector is propagated at time instant t conditional to the previous received measure-

ments and according to an a priori knowledge on the state evolution. From the Chapman-

Kolmogorov equation we obtain:

p(Xt|Y1:t−1) =
∫
Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1, (3.4)



3.3. THE OPTIMAL KALMAN FILTER (KF)- LINEAR SYSTEMS 67

where p(Xt|Xt−1) is the state transition prior.

2. Correction The predicted state is updated by the received measurement according to Bayes

rule:

p(Xt|Y1:t) =
p(Yt|Xt)p(Xt|Y1:t−1)

p(Yt|Y1:t−1)
, (3.5)

where p(Yt|Xt) is the observation likelihood density, and the normalizing factor p(Yt|Y1:t−1) is

obtained from

p(Yt|Y1:t−1) =
∫
Xt

p(Yt|Xt)p(Xt|Y1:t−1)dXt. (3.6)

The application of these two stages provides the optimal filtered solution for a non linear system.

In practice, eq. (3.4) and (3.6) involve the calculation of multidimensional integrals that can be

difficult to evaluate. However, for the specific case of linear systems with Gaussian random variables

the optimal solution can be computed, and it is given by the well known Kalman filter proposed in

[Kal60] for the discrete case and in [KB61] for the continuous case. For most real world models (such

as the navigation model addressed in this thesis) the multi-dimensional integrals are intractable and

approximated solutions must be used. The Extended Kalman Filter (EKF) and Unscented Kalman

filter (UKF) will be discussed with this purpose.

3.3 The optimal Kalman Filter (KF)- Linear systems

Kalman [Kal60] derived a recursive form to update the conditional mean of the state random variables

X̂t = E[Xt|Y1:t] (i.e. to compute MMSE estimator given in eq. (3.3)) and its covariance Pt, given by

the following expressions:

X̂t = X̂t|t−1 +Kt

(
Yt − Ŷt|t−1

)
, (3.7)

Pt = Pt|t−1 −KtPt|t−1K
T
t , (3.8)

where X̂t|t−1 is the predicted state vector, Ŷt|t−1 is the predicted measurement vector, and Kt is the

optimal gain matrix. The gain matrix is one of the crucial points in the Kalman filter strategy and

it can be understood as a weighting factor indicating how much of the new information contained in
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the measurements should be accepted by the system. Generally speaking, it weights the information

from the measurements against the current knowledge of the states.

While the recursion presented in (3.7)-(3.8) is linear, it must be noted that no linearity of the

model was assumed. At the same time, no assumptions are made on the noise distribution or its

Gaussian behavior. In fact, Kalman stated that consistent minimum variance estimates of the system

random variables and hence the posterior state distribution can be calculated by maintaining only

the first and second moments. In this way, general expressions for the predicted state variables,

measurements and Kalman gain are given by:

X̂t|t−1 = E [ft(Xt−1) + v] , (3.9)

Ŷt|t−1 = E [ht(Xt) + w] , (3.10)

Kt = E
[
(Xt − X̂t|t−1)(Yt − Ŷt|t−1)T

]
E
[
(Yt − Ŷt|t−1)(Yt − Ŷt|t−1)T

]−1
(3.11)

= PX̂Y P
−1

Ŷ
, (3.12)

where PXY is the expected cross-correlation matrix (covariance matrix) of the state prediction error

and the observation predicted error, and PŶ is the expected auto-correlation matrix of the observation

predicted error. Indeed, for the optimal solution to be computed (i.e to obtain exact “analytical”

results for (3.9)-(3.12)) the filter must be applied to linear Gaussian systems. Under this condition,

the Bayesian recursion in 3.5 can be exactly evaluated, and the computed mean and covariance

parameters (3.7)-(3.8) fully characterized the resulting Gaussian noise. The dynamic state-space

model for a linear Gaussian system is written as:

Xt = FtXt−1 + vt, (3.13)

Yt = HtXt + wt, (3.14)

where Ft and Ht are the linear transition and measurement functions. The noise terms vt and wt

follow zero-mean Gaussian distribution with vt ∼ N (0, Qt) and wt ∼ N (0, Rt), where Qt and Rt are

the noise covariance matrices. The prediction and correction steps are thus described by the following
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equations:

Prediction

State propagation

X̂t|t−1 = FtX̂t−1 (3.15)

State covariance matrix propagation

Pt|t−1 = FtPt−1F
T
t +Qt (3.16)

Predicted measurement from the state vector variables

Ŷt|t−1 = HtX̂t|t−1 (3.17)

Correction

Kalman’s gain

Kt = Pt|t−1H
T
t

(
HtPt|t−1H

T
t +Rt

)−1 (3.18)

State vector update

X̂t = X̂t|t−1 +Kt

(
Yt − Ŷt|t−1

)
(3.19)

State covariance matrix update

Pt = (Inx −KtHt)Pt|t−1 (3.20)

where the error between the true observation and the predicted observation Yt − Ŷt|t−1 is usually

called the innovation, whose covariance matrix is given by PŶ = HtPt|t−1H
T
t + Rt (PŶ will be also

referred hereafter as St). More details about the Kalman filter can be found in [AM79].

3.4 Non-linear systems

As it was already explained, non linear systems prevent the Bayesian recursion to be analytically

resolved. Therefore, suboptimal strategies must be implemented to address this problem. In particular

two categories summarize the different types of approximations that are generally applied:

• the non linear function(s) are approximated by their linearized first order Taylor expansion,
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• the approximation is done on the a posteriori distribution p(Xt|Yt) (i.e. just a limited number

of moments is used to describe the distribution).

In particular, the Extended Kalman Filter is based on the first proposal, while the Unscented Kalman

Filter addresses the second proposal.

3.4.1 The Extended Kalman Filter (EKF)

The extended Kalman filter, detailed in [AM79] and [Jaz70], is an “extension” of the Kalman filter to

non linear dynamic state-space models. It linearizes the system around the current estimate using a

first order truncation of the multi-dimensional Taylor series expansion. If the state variables do not

exhibit strong dynamics withing the sampling period, the linearized transformations can be considered

reliable (i.e. no important information is lost). The a posteriori distributions are still approximated

by Gaussian posterior density functions (pdfs). The first and second order moments (i.e. mean and

variance) are propagated using the optimal KF equations. The linearized state model is constructed

as follows

Xt ≈ Ft
(
Xt−1 − X̂t−1

)
+ ft

(
X̂t−1|t−1

)
, (3.21)

with

Ft =
δft

δXt−1
‖X̂t−1|t−1

. (3.22)

Similarly, the linearized measurement model is written as

Yt ≈ Ht

(
Xt−1 − X̂t|t−1

)
+ ht

(
X̂t|t−1

)
, (3.23)

with

Ht =
δht
δXt
‖X̂t|t−1

. (3.24)

Ft and Ht are usually referred as the Jacobian matrices of ft and ht respectively. The full recursive

algorithm is given in Table 3.1.
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• Initialization

X̂0 = E [X0] , P0 = E

[(
X0 − X̂0

)(
X0 − X̂0

)T]

• For t = 1, . . . , end:

1. Prediction

◦ Compute the state linearized transition matrix

Ft = δft
δXt−1

‖δXt−1|t−1

◦ Compute the predicted state mean and covariance

X̂t|t−1 = ft
(
X̂t−1

)
Pt|t−1 = FtPt−1F

T
t +Qt

◦ Compute the linearized measurement matrix

Ht = δht
δXt
‖δXt|t−1

◦ Compute the predicted observation mean, innovation and innovation covariance

Ŷt|t−1 = ht
(
X̂t|t−1

)
It = Yt − Ŷt|t−1

St = HtPt|t−1H
T
t +Rt

2. Correction

◦ Compute Kalman’s gain

Kt = Pt|t−1H
T
t (St)

−1

◦ Update the state mean and covariance matrix with the received observations

X̂t = X̂t|t−1 +KtIt

Pt = (Inx −KtHt)Pt|t−1

Table 3.1: The Extended Kalman Filter.
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EKF limitations

The “first order Taylor series linearization” used by the EKF introduces a number of serious limitations

to its application domain. A brief discussion of its most important flaws is given in the following. An

illustration of the distortions introduced by the linearization process is given in Fig. 3.3.

1. The linearized transformations are reliable if the error propagation can be correctly approxi-

mated by a linear function during the sampling period. Otherwise, it can lead to important

problems in the stability of the filter [Gir05].

2. The computation of the linearized or jacobian matrices cannot always be possible. Systems can

be subjected to abrupt changes, singularities or discontinuities that would unable the jacobian

computation. At the same time, depending on the complexity of the system, the calculation of

the jacobians can entail an unfordable large computational cost.

3. As explained in [vdM04], the first order Taylor series linearization ignores the fact that the state

variables are random variables themselves by failing to account for the “probabilistic spread”

of these variables. It is important to understand that though the state covariance matrix Pt

plays an important role in the validity of the EKF “first order linearization”, it is completely

ignored during the linearization process. In other words, when the predicted measurement mean

Ŷt|t−1 is computed just as a function of the predicted state mean Ŷt|t−1 = ht
(
X̂t|t−1

)
, no higher

orders of the Taylor series expansion accounting for the actual variable spread (Xt − X̂t|t−1)

are considered. This linearization around a single point can have serious consequences on the

accuracy and consistency of the filter.

The unscented Kalman filter [JU04] was developed to address the deficiencies of the EKF lineariza-

tion by providing a derivativeless strategy using several propagated points that enable a correct

characterization of the state a posteriori mean and covariance up to a second order.
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Nonlinear transformation

Linearized transformationPDF PDF

Real

Figure 3.3: Linearized transformation (EKF).

3.4.2 The Unscented Kalman Filter (UKF)

The unscented Kalman filter introduced by Julier and Uhlmann in [JU96; JU04] is aimed at over-

coming the flaws presented by the EKF due to the need of linearizing the system equations. It is

a minimum mean square (MMSE) estimator based on the optimal Kalman filter framework. In the

UKF the state distribution is still represented by a Gaussian random variable, but it is specified by

a minimal set of point (sigma points) which are deterministically chosen. These points completely

capture the true mean and covariance of the state vector variables. So when propagated through the

true non-linear system, they provide a posterior mean and covariance accurately to the second order

of any non linearity. In comparison, the EKF only calculates the posterior mean and covariance ac-

curately to the first order by truncating all the higher orders. The criterion for choosing the adequate

set of sigma points is based on the unscented transformation [JU96]. The idea is to overcome the

EKF linearization drawbacks by not incuring in the implementation nor computational cost of higher

order filtering schemes. The principles for this transformation are presented in the next section.

Unscented transform (UT)

The UT is built on the principle that it is easier to approximate a probability distribution than an

arbitrary non linear function. The method allows to calculate the statistics of a random variable that

undergoes a non linear transformation by using a set of weighted sigma points [JU96]. The following

steps summarize the UT approach:

1. A set of sigma points χi and their associated weights Wi is computed so at least the mean
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X̂ and covariance P of the prior random variables are totally captured. The weights can be

positive or negative, but to provide an unbiased estimate they must obey the condition:

2nx∑
i=0

Wi = 1. (3.25)

where nx is the dimension of vector X̂.

2. The sigma points are propagated through the true non linear function h(·) to generate a set of

transformed sigma points according to:

Υi = h (χi) . (3.26)

3. The posterior statistics (i.e. mean, covariance and cross-covariance) are computed by using the

propagated sigma points and their respective weights as follows:

Ŷ =
2nx∑
i=0

WiΥi, (3.27)

PŶ =
2nx∑
i=0

Wi(Υi − Ŷ )(Υi − Ŷ )T , (3.28)

PXY =
2nx∑
i=0

Wi(χi − X̂)(Υi − Ŷ )T , (3.29)

(3.30)

Unscented transformation

Nonlinear transformation

PDFPDF

Figure 3.4: Unscented transform.

Note that Ŷ , PŶ and PXY are all second order approximations. The UT principle is illustrated

in Fig. 3.4. A set of weighted sigma points that satisfies the above mentioned conditions consists of
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a symmetric set given by:

χ0 = X̂, W0 =
k

(nx + k)
(3.31)

χi = X̂ +
(√

(n+ k)P
)
i
, Wi =

1
2(nx + k)

(3.32)

χi+nx = X̂ −
(√

(nx + k)P
)
i
, Wi+nx =

1
2(nx + k)

(3.33)

where i = 1, ..., nx and nx is the dimension of the state vector. The parameter k is a scaling parameter

and
(√

(nx + k)P
)
i
denotes the ith column (or row) of the matrix square root of the weight covariance

matrix (nx+k)P . The matrix square-root is usually obtained by means of the Cholesky factorization.

The values for the weights and sigma point locations are obtained by comparing the Taylor series

expansions of the estimators (3.27)-(3.29) with the true quantities and choosing the weights and sigma

point locations such that the first and second order terms match exactly. Details on the sigma-point

computation can be found in [vdM04]. The scaling factor λ is aimed at providing an additional degree

of freedom to control some aspects of the higher moments of the distribution of the sigma points. It

was discussed in [JU96] that λ = 3 − nx is optimal for a single-state Gaussian distribution, and for

multi-dimensional systems, if 0 < nx+λ < 3, then the absolute error in the predicted mean is smaller

than with linearization.

It is important to understand that though the UT appears to share common principles with the

particle filter, there are several fundamental differences. First, the sigma points are not randomly but

deterministically chosen. Second, the associated weights Wi can take values that lie outside the [0, 1]

interval, which will be considered inconsistent with the particle filter sampling approach. Moreover,

the computational cost of the UT algorithm is the same order of magnitude as the EKF.

The sigma-point selection used in the UT has the property that as the dimension of the state-space

(nx) increases, the radius of the sphere containing the sigma points increases as well. Though the

mean and covariance of the prior distribution are still correctly captured, as the χi,i 6=0 sigma points

get spread further away from the mean of the distribution, the possibility of sampling undesired

non-local effects is important. If the nonlinearities in question are important, this can lead to severe

difficulties [vdM04]. The scaled unscented transformation proposed in [Jul02] helps to address this

problem by scaling the sigma points to be used.
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The scaled unscented transformation (SUT)

An interesting example is given in [Shi05] to understand the necessity for a scaled unscented tranfor-

mation (SUT) when working with low-cost INSs. For instance, imagine that the heading angle error

from a highly inaccurate gyroscope must be estimated. Consider a high dimension state vector with a

spreading factor for the sigma points
(√

(nx + k)
)
≈ 4, and a heading angle uncertainty of 30◦. The

heading angle will thus be sampled in the range of ±120◦ enabling non-local effects to be introduced

in the transformation. Furthermore, attitude angles do not belong to a vector space in the sense they

have a period of 360◦ and they thus repeat themselves. Hence, for large heading uncertainties, some

angles can be sampled twice. To avoid this effect, the SUT [Jul02] replaces the original set of sigma

points with a transformed set given by

χ
′
i = χ0 + α(χi − χ0) i = 0, . . . , 2nx, (3.34)

where α is a positive scaling parameter that can be made arbitrary small (0 < α < 1) to minimize

the sampling of non local effects. The new set of sigma point weights is then computed as:

W
′
i =

 W0/α
2 + (1− 1/α2) i = 0

Wi/α
2 i = 1, . . . , 2nx

(3.35)

where indeed, a further parameter β will be introduced to allow for the minimization of higher order

errors if prior knowledge (e.g. kurtosis) of the distribution of X is available. The zeroth sigma point

χ0 will be therefore affected with two types of weights: one used for the mean calculation in (3.27)

and the other one for the covariance calculations in [(3.28),(3.29)] which is defined as a function of β.

The final set of sigma points is thus described as:

χ0 = X̂,

 W
(m)
0 = λ

(nx+λ)

W
(c)
0 = λ

(nx+λ) + (1− α2 + β)
(3.36)

χi = X̂ +
(√

(nx + λ)P
)
i
, W

(m)
i = W

(c)
i =

1
2(nx + λ)

(3.37)

χi+nx = X̂ −
(√

(nx + λ)P
)
i
, W

(m)
i+nx

= W
(c)
i+nx

=
1

2(nx + λ)
(3.38)

where λ = α2(L + k) − L and β is a non negative weighting term (β = 2 is optimal for Gaussian

distributions [JU04]). W (m)
0 and W (c)

0 are the respective zeroth weights associated to the mean and
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covariance calculation.

Filter implementation

The UKF is a direct application of the unscented transformation to the recursive Kalman filter.

However, to directly apply the Kalman filter principles to the sigma points obtained in (3.36)-(3.38),

the state vector is generally augmented with the process and noise terms such as:

Xa
t =


Xx
t

Xv
t

Xw
t

 =


Xt

vt

wt

 (3.39)

where Xa
t is the new augmented state vector of dimension nax = 2nx + ny and ny is dimension of

the measurement vector. The sub-vectors Xx
t , Xv

t and Xw
t refer to the nominal EKF state vector,

state noise and measurement noise terms, respectively. Similarly, the new augmented state covariance

matrix is given by

P at =


Pt 0nx×nx 0nx×ny

0nx×nx Qt 0nx×ny

0nx×nx 0nx×nx Rt

 (3.40)

where Pt is the same state covariance matrix used for the EKF, and Qt and Rt are the state and

measurement noise covariance matrices. By including the noise terms in the augmented system, the

noise statistics are captured with the same accuracy as the state variables. The UKF algorithm is

described in table 3.2, where χa = (χx,χb,χw)T and X̂t and Pt denote the final estimated mean and

covariance matrix of the nominal state vector Xt.

In particular, when the state and measurement noises are additive (zero mean) noises, the com-

plexity of the previous algorithm can be reduced. The noise terms need not to be included in the

state vector, so both the quantity and dimension of the sigma points are decreased [WvdM01; vdM04].

Though the main structure of the UKF algorithm given in table 3.2 remains unchanged, some ex-

pressions need to be modified to account for the noise contribution. Table 3.3 summarizes the UKF

algorithm in the presence of additive zero mean noise.
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• Initialization

X̂0 = E [X0] , P0 = E

[(
X0 − X̂0

)(
X0 − X̂0

)T]

X̂a
0 = E[Xa

0 ] = [X̂0,01×nx ,01×ny ]T , P a0 =


P0 0nx×nx 0nx×ny

0nx×nx Q0 0nx×ny
0nx×nx 0nx×nx R0

 ,

• For t = 1, . . . , end:

◦ Calculate sigma points and weights:

χat−1 =
[
X̂a
t−1, X̂

a
t−1 +

√
(nax + λ)P at−1, X̄

a
t−1 −

√
(nax + λ)P at−1

]
W a
t−1 =

[
W0,Wi,Wi+nax

]
, from eqs. (3.36)-(3.38) with i = 1, ..., nax

◦ Time-update sigma points:

χxt|t−1 = f(χxt|t−1,χ
v
t|t−1)

◦ Calculate mean and covariance of the predicted sigma points:

X̂t|t−1 =
∑2nax

i=0 W
a,(m)
i χxi,t|t−1

Pt|t−1 =
∑2nax

i=0 W
a,(c)
i

(
χxi,t|t−1 − X̂t|t−1

)(
χxi,t|t−1 − X̂t|t−1

)T
◦ Apply the observation model to the predicted sigma points:

Υi = h
(
χxt|t−1,χ

w
t|t−1

)
◦ Calculate mean, covariance and cross-covariance associated to the predicted

observations:

Ŷt =
∑2nax

i=0 W
a,(m)
i Υi,t|t−1

PŶt =
∑2nax

i=0 W
a,(c)
i

(
Υi,t|t−1 − Ŷt

)(
Υi,t|t−1 − Ŷt

)T
PXtYt =

∑2nax
i=0 W

a,(c)
i

(
χxi,t|t−1 − X̂t|t−1

)(
Υi,t|t−1 − Ŷt

)T
◦ Update the sate vector using standard KF equations:

Kt = PXtYtP
−1

Ŷt

It = Yt − Ŷt
X̂t = X̂t|t−1 +KtIt

Pt = Pt|t−1 −KtPŶtK
T
t

Table 3.2: UKF algorithm.



3.4. NON-LINEAR SYSTEMS 79

• Initialization

X̂0 = E [X0] , P0 = E

[(
X0 − X̂0

)(
X0 − X̂0

)T]
• For t = 1, . . . , end:

◦ Calculate sigma points and weights:

χt−1 =
[
X̂t−1, X̂t−1 +

√
(nx + λ)Pt−1, X̂t−1 −

√
(nx + λ)Pt−1

]
Wt−1 = [W0,Wi,Wi+nx ] , from eqs. (3.36)-(3.38) with i = 1, ..., nx.

◦ Time-update sigma points:

χ̃t|t−1 = f(χt|t−1)

◦ Calculate mean and covariance of the predicted sigma points:

X̂t|t−1 =
∑2nx

i=0 Wiχ̃i,t|t−1

Pt|t−1 =
∑2nx

i=0 Wi

(
χ̃i,t|t−1 − X̂t|t−1

)(
χ̃i,t|t−1 − X̂t|t−1

)T
+Qt

◦ New set of redistributed sigma points to account for state noise:

χt|t−1 =
[
χ̃t|t−1, χ̃0,t|t−1 +

√
(nx + λ)Qt, χ̃0,t|t−1 −

√
(nx + λ)Qt

]
◦ Apply the observation model to the predicted sigma points:

Υi = h
(
χt|t−1

)
◦ Calculate mean, covariance and cross-covariance associated to the predicted

observations:

Ŷt =
∑2nx

i=0 W
(m)
i Υi,t|t−1

PŶt =
∑2nx

i=0 W
(c)
i

(
Υi,t|t−1 − Ŷt

)(
Υi,t|t−1 − Ŷt

)T
+Rt

PXtYt =
∑2nx

i=0 W
(c)
i

(
χi,t|t−1 − X̂t|t−1

)(
Υi,t|t−1 − Ŷt

)T
Expressions for Kt, It, X̂t and PXt are the same as for 3.2.

Table 3.3: UKF algorithm for additive noise.
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3.5 Cramer Rao bound

All the filtering approaches presented so far provide suboptimal approximated solutions to the nav-

igation problem. To analyze the quality of the estimations and to quantify the errors introduced

by approximations, it is of great practical interest to compare the computed quadratic errors to a

lower bound. Within this context, the Cramer-Rao bound is normally used because it provides a

lower bound on the estimator mean square error [Jaz70]. The Cramer Rao bound can be viewed as a

reference to which the state MSEs of suboptimal algorithms can be compared. It is a mathematical

statistical tool that can be applied to any kind of linear or non linear statistical system with Gaus-

sian or non Gaussian noise. In particular, the additive Gaussian noise will be studied in this thesis.

The bound is strictly related to the information introduced in the system by the observations. It is

obtained as the inverse of the Fisher information matrix. For a linear Gaussian case, the bound and

the KF covariance matrix are the same.

This thesis will focus on the posterior Cramer-Rao bound (PCRB) which is often referred to as

the Bayesian version of the Cramer-Rao bound [Tre68]. Usually, the Cramer Rao bound is defined in

the parametric framework and it is based on the likelihood of the estimation problem. It is applied to

unknown but fixed parameters. On the other hand, the PCRB is aimed at random parameters which

are represented by their prior distribution. Here, the joint density of parameters and observations

plays the role of the likelihood in the parametric bound. Another difference, resides in the fact that the

PCRB can be applied to biased estimators where the a priori conditions for the unknown parameter

distributions are weak. Recently, in [TMN98] and [Ber01], extensions to the use of the PCRB to

nonlinear discrete systems were proposed.

Considering a non-linear system given by eqs. (3.1) and (3.2), the Fisher information matrix Jt

at time instant t is given by

Jt = Ep(Xt,Y1:t)

[
−∂

2 log p(Xt, Y1:t)
∂Xt∂Xt

]
(3.41)

where Y1:t = (Y1 . . . Yt), ∂Xt represents the partial derivative with respect to Xt and p(Xt, Y1:t) is

joint density of (Xt, Y1:t) expressed as

p(Xt, Y1:t) = p(X0)p(Yt|Xt)p(Xt, Y1:t−1). (3.42)
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Therefore, for any estimator X̃(Y1:t), the PCRB verifies

Pt = E
[
(X̃(Y1:t)−Xt)(X̃(Y1:t)−Xt)T

]
≥ J−1

t = PCRBt (3.43)

where the matrix comparison given by the logic operator ≥ means that the difference between the

expected mean square error correlation matrix and the PCRB matrix is positive semi-definite.

All the filtering tools presented so far will be applied to different configurations of hybrid GPS/DR

land navigation systems. The performances of the EKF and UKF will be compared to the optimal

CRB. The validity of the filtering assumptions done for both the EKF and UKF will be analyzed.

3.6 GPS/Dead-reckoning-sensors hybrid systems

This section will present two multi-aided land navigation systems combining either GPS and WSS

measurements (GPS/WSS), or further including the INS outputs (GPS/INS/WSS).

3.6.1 GPS/WSS integration

The parameters to be estimated by the filter include the WSS and GPS errors. Indeed, GPS mea-

surements will aid to update WSS errors. The error model for the WSS measurements was already

introduced at the end of chapter 2. Just the two main equations describing the measured velocity

and yaw rate are recalled herein,

Vt =
ωrlt R

rl + ωrrt R
rr

2
+ nVt . (3.44)

ψ̇t =
ωrlt R

rl − ωrrt Rrr

L
+ nψt . (3.45)

where Vt and ψ̇t are the measured variables. Both eqs. (3.44) and (3.45) will be affected by errors

due to a difference between the real wheel radius and the nominal one so Rreal = Rnominal + δR. The

rear wheel radius errors
(
δRrlt , δR

rr
t

)
are considered as white noise sequences:

δRrrt = nrt , δRrlt = nlt,

where nrt and nlt are white noise sequences.
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State model

The wheel radius is going to be considered the main source of error affecting the WSS measurements

and it will be thus included in the filter state vector. Similarly, GPS errors must also be modeled

and predicted. In chapter 1, several error sources affecting the GPS measurement were described. In

particular, errors induced by satellite-based inaccuracies (i.e. satellite clock error or ephemeris errors)

and atmospheric propagation, such as the ionospheric and tropospheric error, are considered to be

correctly compensated by EGNOS. Among the remaining errors, multipath or interferences are not

usually included in the state vector because they are application dependent and therefore difficult to

be modeled. Therefore, just the receiver clock bias and drift are estimated. A second order model

adequately describes the error behavior: ḃt

ḋt

 =

 0 1

0 0


︸ ︷︷ ︸

F̃GPSt

 bt

dt

+

 σb 0

0 σd


︸ ︷︷ ︸

B̃GPSt

wt, (3.46)

where bt denotes the GPS receiver clock offset in meters, dt is the derivative of bt and wt is a Gaussian

noise vector w ∼ N (0, I2). The standard deviations of the noise distributions (σb, σd) depend on the

type of local oscillator used by the receiver [Kub07]. The resulting time-continuous state vector for

the GPS/WSS strategy is composed of the errors in the vehicle position, velocity, angle of direction

(heading), radii and receiver clock parameters:

Ẋt =
(
δλ̇t, δϕ̇t, δV̇t, δψ̇t, δṘ

rl
t , δṘ

rr
t , ḃt, ḋt

)T
GPS/WSS

∈ R8. (3.47)

The linear state transition matrix F̃GPS/WSS
t and the state noise matrix B̃GPS/WSS

t (so that the

state covariance matrix Q̃
GPS/WSS
t = B̃

GPS/WSS
t (B̃GPS/WSS

t )T ) are obtained as the block matrix

concatenation of the WSS-based error matrix described in 2.30 and the GPS bias and drift error

model presented in eq. (3.46):

F̃
GPS/WSS
t =

 F̃WSS
t 0

0 F̃GPSt

 , B̃
GPS/WSS
t =

 B̃WSS
t 0

0 B̃GPS
t

 . (3.48)
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Measurement model

The GPS/WSS hybrid strategy uses the GPS measurements to correct the WSS navigation errors. In

particular the pseudorange measurements will be exploited in this chapter. The observation vector

Yt will be then composed by the pseudoranges corresponding to the ny visible satellites:

Yt =
(
ρ1, . . . , ρny

)T (3.49)

where ρi denotes the ith pseudorange. The pseudorange expression was already given in chapter 1

and it is recalled in eq. (3.50):

ρi =
√

(x− xsi )
2 + (y − ysi )

2 + (z − zsi )
2 + bt + nρi (3.50)

where i = 1, . . . , ny, (x, y, z) is the vehicle position and (xsi , y
s
i , z

s
i ) is the ith satellite position both

in the in the ECEF frame. The measurement equation is thus obtained by relating the state vector

variables in (3.47) to the pseudorange expression in (3.50). A frame transformation is therefore

necessary to convert the geodetic coordinates (λWSS
t +δλt, ϕ

WSS
t +δϕt, ht) into cartesian coordinates

(x, y, z):

g(δλt, δϕt)


xt = (N + ht) cos(λWSS

t + δλt) cos(ϕWSS
t + δϕt),

yt = (N + ht) cos(λWSS
t + δλt) sin(ϕWSS

t + δϕt),

zt = [N(1− e2) + ht] sin(λWSS
t + δλt)

(3.51)

where N = a√
1−e2 sin(λ)2

is the length of the normal to the ellipsoid, from the surface of the ellipsoid to

its intersection with the ECEF z-axis frame, for a = 6378137m (ellipsoid semimajor axis length) and

e = 0.0818 (eccentricity of the ellipsoid). For the assumed 2D model, height ht is considered known

(i.e. it will be given by the high quality navigation reference system described in section 3.8.2). The

ECEF position coordinates can be then used to calculate the ny received pseudoranges according to

the following measurement model [Gir05]:

Yt = ht(Xt) + nρ, nρ ∼ N (0, Rt) (3.52)

ht(Xt) = qt ◦ g(δλt, δϕt) + bt = qt(g(δλt, δϕt)) + bt (3.53)
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where a ◦ b denotes the function composition a composed with b, and qt is the function for the range

measurements:

qt(xt, yt, zt) =



√(
xt − xs1,t

)2
+
(
yt − ys1,t

)2
+
(
zt − zs1,t

)2

...√(
xt − xsny ,t

)2
+
(
yt − ysny ,t

)2
+
(
zt − zsny ,t

)2

(3.54)

Assuming the pseudoranges are independent, the measurement noise covariance matrix Rt is expressed

as

Rt =


σ2
t,1 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 σ2
t,ny

 . (3.55)

where the pseudorange variances are a function of the carrier to noise power ratio C/N0 measured by

the receiver and the EGNOS corrections as explained in chapter 1.

3.6.2 GPS/INS/WSS integration

The commonly used state-space model for the GPS/INS hybrid system will be first introduced. Based

on its nominal dynamic state-space model the system will be further augmented to include navigation

data provided by the WSS outputs. Indeed, the “augmented” state vector will include the wheel

radius errors while the observation model will include the vehicle along track velocity and yaw angle

computed from the WSS outputs. The idea is that the WSSs will enhance the system performances

by providing additional measurements for the estimation of the INS errors. Indeed, in the presence

of GPS signals, the WSS contribution will not be significant [GPC06]. However, during GPS partial

or total outages, WSS measurements will help to control the growing INS errors.
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GPS/INS

The GPS/INS hybrid system is one of the most well-known integration techniques. Several references

can be found in the literature concerning the performances of GPS/INS systems applied to different

scenarios. The common GPS/INS coupling techniques use the GPS pseudorange measurements to

correct the INS errors in order to obtain reliable position estimation. For instance, [Pet03] studied

how the integration of a high grade tactical IMU significantly improves both the solution accuracy

and the system reliability. By reliability, we mean the capacity to detect outliers when the received

measurement is compared to a given bound or protection level. The inclusion of a good quality IMU

to the navigation system helps the uncertainty in the position estimation to be reduced and therefore

fault/outlier detection performances are enhanced.

The variables to be estimated for the GPS/INS system generally include the different sources of

errors affecting the GPS and INS measurements. The time-continuous state vector is thus constructed

as follows,

Ẋt =
(
δṗt, δv̇t, δψ̇t, ḃa,t, ḃg,t, ḃt, ḋt

)T
GPS/INS

∈ R10, (3.56)

where (bt, dt) describe the GPS clock errors affecting the pseudorange measurements, and the sub-

vector (δṗt, δv̇t, δψ̇t, ḃa,t, ḃg,t) contains the INS errors given by

• δṗt =
(
δλ̇t, δϕ̇t

)
denotes the INS position errors in the navigation frame,

• δv̇ = (δ ˙vn,t, δ ˙ve,t) denotes the INS velocity errors in the navigation frame,

• δϕ̇t is the heading (or yaw) angle error,

• ḃa,t is the two dimension accelerometer bias and ḃg,t is the gyro bias associated to the heading

angle.

The INS error state model describing F̃ INSt and B̃INS
t was already given at the end of chapter 2, so

no further discussion will be done herein. Similarly to (3.48), the state matrices are constructed as:

F̃
GPS/INS
t =

 F̃ INSt 0

0 F̃GPSt

 , B̃
GPS/INS
t =

 B̃INS
t 0

0 B̃GPS
t

 . (3.57)
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The measurement model will be analogous to (3.52) where the position errors are now obtained from

the state vector in eq. (3.56) and are used to correct the INS position solution as (λINSt +δλt, ϕ
INS
t +

δϕt, ht).

Originally, the GPS/INS systems were aimed at aerial and spatial applications where highly

precise IMU were used. However, for commercial land vehicle navigation such inertial systems are

not affordable and thus lower quality sensors must be used. The problem is that during GPS outages

the errors of the INS for this type of low cost IMU can reach unacceptable values. For a low cost IMU

as the one employed in this thesis with sensors based on micro electro-mechanical system (MEMS)

technology, a positioning error of 100 meters can be attained after 30 seconds of GPS outage [God06].

To overcome this loss of accuracy, a second source of dead reckoning measurements is going to be

introduced. In particular we propose to exploit the already on board odometric data provided by the

ABS wheel speed sensors.

GPS/INS/WSS

State model

The state vector (3.56) is augmented by radius errors affecting the WSS measurements yielding

Ẋt =
(
δṗt, δv̇t, δψ̇t, ḃa,t, ḃg,t, ḃt, ḋt, δṘ

rr
t , δṘ

rl
t

)T
GPS/INS/WSS

∈ R12. (3.58)

Considering (3.57), the linear state transition matrix F̃GPS/INS/WSS
t and the state noise matrix

B̃
GPS/INS/WSS
t for the GPS/INS/WSS approach in a time-continuous space are obtained as:

F̃
GPS/INS/WSS
t =


F̃
GPS/INS
t 0

0

 0 0

0 0


 , B̃

GPS/INS/WSS
t =


B̃
GPS/INS
t 0

0

 σrl 0

0 σrr


 ,

(3.59)

where σrl and σrr are the noise standard deviations for the left and right wheel radius errors.

Measurement model

The proposed GPS/INS/WSS integration uses not only the pseudorange measurements, but also

the along track velocity and yaw rate computed from the WSS as measurements to correct the INS
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errors. In particular, non-holonomic constraints are going to be considered for the INS velocity vector

in the mobile frame as in [GPC06]. The idea is to derive the observations from constraint equations

reflecting the behavior of a land vehicle so as to have a maximum number of measurements available

during GPS outages. Assume that the side slip effects can be neglected as in [Enq00], and there is no

misalignment between the body frame and the vehicle. Therefore, it is valid to say that the cross-track

velocity should be zero vy = 0 (i.e. using a non-holomonic constraint [GPC06]). These additional

virtual measurements will mainly help to keep track of INS errors under degraded GPS visibility.

Indeed, for civil land vehicle navigation, the cross-track accelerations are usually so weak that they

are almost masked by the low cost sensor noise. Within this context, better performances can be

generally obtained when setting the velocity constraint vy = 0 [God06; Shi05] (a noise component is

also associated to this constraint as later presented in (3.76)). However, a frame transformation has

to be used to compare the velocities given by the WSS and INS. Here, INS velocities are transformed

into the vehicle frame (an alternative would be to express WSS velocities in the navigation frame).

The WSS velocity measurement equation is given by Vt

0


WSS

−RTm2n(vnt )INS = hv(δRrrt , δR
rl
t , δψt, δv

n
t ) + nvmt , (3.60)

where

• hv(.) is the measurement function accounting for the WSS velocity errors and the INS mobile

frame velocity errors in terms of the state vector variables (δRrrt , δR
rl
t , δψt, δv

n
t )

• nvmt ∈ R2 is a white noise vector nvmt ∼ N (0, Rvt )

• RTm2n denotes the navigation to mobile transformation matrix as defined in chapter 2 (from the

equivalence Rn2m = RTm2n),

• (vnt )INS is the vehicle velocity in the navigation frame obtained from the INS.

The expression for hv(.) is given by

hv(δRrrt , δR
rl
t , δψt, δv

n
t ) = δ(RTm2n(vnt )INS)−

 δVt

0


WSS

(3.61)
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where the error propagation was done according to a+ δa = b+ δb⇒ a− b = δb− δa. The expression

for δ(RTm2n(vnt )INS) is obtained by propagating the errors present in RTm2n and vnt as

δ(RTm2n(vnt )INS) = δ(RTm2n)(vnt )INS +RTm2nδ(v
n
t )INS = RTm2nV

n
INS,tδψt +RTm2nδ(v

n
t )INS (3.62)

where the term RTm2nV
n
INS,tδψt is derived from the small angle transformation assumption (as it was

implicitly done when presenting the INS error model in chapter 2) [FB99]. The principles for this

assumption are explained in the following. Consider R∗m2n the real 2D transformation matrix from

frame m to frame n and Rm2n the analogous transformation matrix but computed with the heading

angle given by the INS. Rm2n will differ from R∗m2n in a additional rotation caused by the error in

the INS heading angle δψt. The two transformation matrices can be thus related as follows:

R∗m2n =

 cos(δψt) − sin(δψt)

sin(δψt) cos(δψt)

Rm2n. (3.63)

Consider now a very small angle error so that cos(δψt) and sin(δψt) can be correctly approximated

by cos(δψt) ≈ 1 and sin(δψt) ≈ δψ. In that case, (3.63) can be rewritten as

R∗m2n =

 1 −δψt

δψt 1

Rm2n (3.64)

R∗m2n =

I2 +

 0 −δψt

δψt 0


︸ ︷︷ ︸

ξ

Rm2n (3.65)

= Rm2n +Rm2nξ = Rm2n + δRm2n

In particular, as we are interested in the navigation n to mobile m transformation Rn2m, it is useful

to introduce the following relation [FB99, p.200]:

R∗n2m = (R∗m2n)T = Rn2m

I2 −

 0 −δψt

δψt 0

 (3.66)

where this relation is accurate to first order and can be easily verified by considering (I − ξ)−1 =

(I + ξ) to first order and ξT = −ξ. Therefore, the term associated to the error introduced by the
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transformation matrix in (3.62) is expressed as:

δ(RTm2n)(vnt )INS = RTm2n(−ξ)T (vnt )INS (3.67)

where for convenience the right hand side of (3.67) is explicitly expressed as a linear function of the

state vector variable δψt as follows

δ(RTm2n)(vnt )INS = RTm2n

 0 −δψt

δψt 0

 vn

ve


︸ ︷︷ ︸

(vnt )INS

= RTm2n

 −ve
vn


︸ ︷︷ ︸
V n

INS,t

δψt (3.68)

The last term in the right hand of eq. (3.61) represents the WSS velocity error in terms of the radii

errors. This term can be easily deduced from eq.(3.44) by considering that the actual wheel radius

differs from the nominal radius R in δR. The expression for δVt, which was already given in chapter

2 and used to construct the FWSS
t matrix used in (3.48), is recalled here:

δVt =
ωrlt δR

rl
t + ωrrt δR

rr
t

2
. (3.69)

The measurement model for the WSS yaw angle is straightforward since no frame transformation

must be done. Similarly to (3.60), the measurement model is given by the difference between the two

DR navigation systems as:

(ψt)WSS − (ψt)INS = hψ(δRrrt , δR
rl
t , δψt) + nψt , (3.70)

where (ψt)WSS is the yaw angle measured by the WSSs, (ψt)INS is the yaw angle measured by

the INS and nψt ∈ R1 is the noise vector nψt ∼ N (0, σ2
ψ). The expression for hψ(.) is given by the

difference between the INS angle error δψ and the radius errors propagated through the WSS yaw

rate expression (3.45):

hψ(δRrrt , δR
rl
t , δψt) = δψt −

ωrrt δR
rr
t − ωrlt δRrlt
L

. (3.71)

The final measurement vector is thus given by the concatenation of the GPS measurements (3.49)
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and the WSS-based measurements ((3.60) and (3.70)) as:

Y a
t =



ρ1

...

ρny

Vt − (vxt )INS

−(vyt )INS

(ψt)WSS − (ψt)INS



T

(3.72)

where (vxt , v
y
t )INS are the INS velocities in the mobile frame. Hence, the augmented measurement

model is described as:

Y a
t = ha(Xt)GPS/INS/WSS + na, (3.73)

ha(Xt)GPS/INS/WSS =


h(·)

hv(·)

hψ(·)

 , (3.74)

where

• ha(·) represents the augmented measurement function formed by the concatenation of h(·), hv(·),

and hψ(·),

• h(·) is the measurement function for the pseudorange measurements described in (3.52) where

(λWSS
t , ϕWSS

t ) are replaced by (λINSt , ϕINSt ),

• hv(·) is the measurement function based on the WSS velocity measurement described in (3.61),

• hψ(·) is the measurement function based on the WSS yaw angle measurement described in

(3.71),

• na ∈ Rny+3 is a white noise na ∼ N (0, Rat ).
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The augmented measurement noise covariance matrix Rat is obtained from the block matrix concate-

nation of each of the different measurement noises:

Rat =


Rt 0 0

0 Rvt 0

0 0 σ2
ψ

 (3.75)

where Rt was defined in (5.4), σ2
ψ is the WSS yaw rate noise variance as defined in chapter 2, and Rvt

is given by

Rvt =

 σ2
V 0

0 σ2
cons

 (3.76)

where σ2
V is the WSS velocity noise variance as defined in chapter 2. In [Shi05] the noise variance of

the constraint-measurement vy = 0 is related with some possible small misalignment angle ϑ between

the IMU and the vehicle frame. The constraint-based noise variance is thus given by σ2
cons ≈ vxt sin(ϑ),

so for standard land vehicle applications it can be set to σ2
cons ≈ 1m/s [God06].

3.7 Discrete state model

A discretization must be done to the GPS/WSS and GPS/INS/WSS continuous-time state models

so they can be applied to the discrete EKF and UKF algorithms presented in table 3.1 and 3.3. The

discrete state model can be written as:

Xt = FtXt−1 +Btut, (3.77)

where Bt is the coefficient matrix used to shape white noise input so Qt = BtB
T
t and ut ∼ N (0, 1).

Consider the state model is time invariant for the time interval Ts over which the prediction is to be

performed. As a consequence, the continuous-time state vectors (3.47) and (3.58) can be discretized

by replacing derivatives by finite differences, e.g. ẋ(t) by x[(n+1)Ts]−x[(nTs)]
Ts

. The closed form simple

solution for the discrete transition matrix is given by

Ft = eTsF̃t . (3.78)
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Furthermore, assuming that
∥∥∥TsF̃t∥∥∥

∞
is small enough the exponential can be approximated by eTsF̃t =

Inx + TsF̃t, so that the final discrete transition matrix is expressed as [Nor01]:

Ft = Inx + TsF̃t (3.79)

Similarly, the covariance of the discrete noise sequence can be written as [Nor01]:

E
[
Btutu

T
t B

T
t

]
= Ts

(
Inx +

Ts
2
F̃t

)
B̃tQ̃tB̃t

(
Inx +

Ts
2
F̃ Tt

)
+
T 3
s

12
F̃tB̃tQ̃tB̃

T
t F̃

T
t , (3.80)

where for practical reasons the last term is generally neglected, yielding the following explicit

solution for Bt,

Bt =
∫ t+Ts

t

(
Inx + (t+ Ts − τ)F̃t

)
B̃tdτ = Ts

(
Inx +

Ts
2
F̃t

)
B̃t. (3.81)

3.8 Results

The two proposed hybrid approaches, GPS/WSS and GPS/INS/WSS, are tested using the EKF and

UKF. Parameters tunning the UKF are listed in table 3.4 according to values used in [Shi05].

UKF parameters

k = 0 α = 0.001 β = 2

Table 3.4: UKF scaling parameters.

Performances are compared in terms of 2D horizontal error (HE). We recall here that the horizontal

position error can be defined as functions of the latitude δλ and longitude δφ errors by

HE =
√

(Rδλ)2 + (Rδϕ cos (λ))2, (3.82)

where R stands for the Earth’s radius. The proposed navigation strategies are first validated using

simulated data and later tested on real data.
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3.8.1 Synthetic data

Several simulations have been conducted to compare the different coupling techniques. All results

presented in this section have been averaged over 25 Monte-Carlo runs (note that the vehicle trajec-

tories differ from one Monte Carlo run to another). An example of the simulated vehicle dynamics

corresponding to an acceleration variance of 2m/s2 is depicted in Fig. 3.5(a). The pseudo-range

measurement accuracy for the GPS signal is 12m (i.e. the standard deviation of nρi in (3.50) equals

12m). The WSS parameters have been adjusted according to standard vehicles, i.e. L = 1.8m and

Rrr = Rrl = 0.23m. INS errors have been simulated according to a Honeywell HG1700 tactical IMU

[GPC06] to outline the IMU contribution to the hybrid system. Its performances will be contrasted

in the next section to a real low cost IMU. The spectral noise densities for the HG1700 [Pet03] inertial

sensors are summarized in table 3.5. The standard deviations for the WSS noise components (σV ,

σψ, σrr, σrl) are summarized in the table 3.6 according to standard values given in [CCP02].

Gyroscope Accelerometers

σg σbg σxa σxba σya σyba
[◦/s/

√
Hz] [◦/s/

√
Hz] [m/s2/

√
Hz] [m/s2/

√
Hz] [m/s2/

√
Hz] [m/s2/

√
Hz]

1, 5.10−3 1, 8.10−4 4, 1.10−3 4.10−6 4, 1.10−3 1, 1.10−5

Table 3.5: HG1700 2D sensor noise parameters.

WSS

σV σψ σrr = σrl

[m/s] [◦] [m]

0.04 3 10−5

Table 3.6: WSS sensor noise parameters.

A scenario with full GPS visibility is first presented. The GPS receiver is assumed to view 7

satellites in line of sight (LOS). Figure 3.5(a) shows an example of real trajectory followed by the

vehicle and the estimated position obtained when using WSS only (WSS trajectory). The estimated
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trajectory resulting from the coupling approach GPS/WSS (Filtered trajectory) is also depicted. The

coupling between GPS and WSS is clearly necessary for this example. Fig. 3.5(b) shows the posi-

tioning errors for the GPS/WSS coupling approach which are compared to the corresponding PCRB.

These errors fluctuate from 10 to 15 meters. Note that the coupling technique performs similarly when

using the EKF or the UKF. The vehicle dynamics is sufficiently slow for this example to linearize effi-

ciently the measurement equation (3.52). Therefore the UKF doesn’t show any improvement over the

EKF. Note also that the hybridization approach reaches almost the best achievable precision, provided

by the Posterior Cramer Rao bound. Similar results obtained for the GPS/INS/WSS hybridization

can be observed in Figs. 3.6(a) and 3.6(b). A comparison between both coupling techniques shows

that the GPS/INS/WSS outperforms the GPS/WSS approach. Adding INS measurements to GPS

and WSS data results in improved accuracy. For instance, the GPS/INS/WSS positioning errors

fluctuate from 5 to 10 meters.

For further comparisons, a more realistic urban scenario is presented with partial GPS availability.

The idea is to observe the behavior of the different coupling techniques with a reduced number of

visible GPS satellites. For this, we have simulated a 30s time interval during which only two GPS

satellites are visible, followed by a 30s GPS outage (both indicated by vertical black lines in Fig. 3.7).

Fig. 3.7 compares the positioning errors obtained for the different coupling and filtering strategies

for this example. The GPS/INS/WSS coupling clearly outperforms GPS/WSS during limited GPS

visibility and GPS outages. The use of INS helps to keep a bound over the positioning errors, avoiding

loosing track of the vehicle. Consequently, GPS/INS/WSS hybridization provides reliable positions

during longer periods than the GPS/WSS system. Note also that a slight improvement is observed

with the UKF (versus the EKF) when regaining full GPS visibility.

Another way of comparing the different coupling strategies is to analyze the corresponding hori-

zontal position PCRBs for different numbers of LOS satellites. Table 3.7 shows that the asymptotic

horizontal error PCRBs corresponding to the GPS/WSS coupling tend to diverge over time when

working with a small number of satellites, contrarily to the GPS/INS/WSS hybridization. Note that

there is a significant gain when passing from 5 to 6 satellites in the GPS/WSS case. Indeed, the sixth

satellite has a very good visibility (in terms of Dilution of Precision) for this GPS constellation.
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Figure 3.5: GPS/WSS approach.
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Figure 3.6: GPS/INS/WSS approach.
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Figure 3.7: Position errors for urban scenario. (a) GPS/WSS approach with EKF and UKF (green

and red solid lines). (b) GPS/INS/WSS approach with EKF (dash-dotted) in magenta and UKF

(dotted lines) in blue.

Nř of LOS sat. GPS/WSS GPS/INS/WSS

1 div 60 m

2 div 17 m

3 21 m 8 m

4 18.6 m 5 m

5 16 m 4.7 m

6 10 m 4 m

7 9.5 m 3.7 m

Table 3.7: Asymptotic Horizontal PCRBs.
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3.8.2 Tests done on real data

The previous section was aimed at studying the theoretical performances and relevance of the differ-

ent integration strategies. The PCRB was contrasted to the theoretical results to conclude on the

correctness of the proposed system. An extension of these performances to real data is now analyzed.

In particular, tests will be done under challenging scenarios including urban canyon phenomena.

The experimental data was obtained from a test field campaign carried out in ISAE campus,Toulouse

(France). This trajectory was specially chosen because it presented open sky areas and a semi-urban

scenario phenomena. By semi-urban scenarios we understand that the measurement error sources

(multipath, signal attenuation, partial or total GPS outages, etc...) are not as severe, in magnitude

and duration, as for highly corrupted urban scenarios. The idea is to analyze the system behavior

in conditions where the integrity of the GPS measurements is not assured (i.e. they do not behave

according to their theoretical error model). The reference navigation solution was obtained from a

synchronized position attitude navigation (SPAN) system composed by a Novatel receiver, with dif-

ferential GPS (DGPS) approach, and a high-accuracy IMAR inertial unit. The reference trajectory

is shown on white in Fig. 3.8. The followed path is 1.7 km long and it was done in 3.5 minutes.

Figure 3.8: Vehicle circuit in ISAE campus, Toulouse.

The collected GPS data was obtained from an Ublox TIM-LR receiver. The pseudo-range mea-

surements were processed at 4Hz. The ionospheric and tropospheric errors were corrected using the

EGNOS messages in post-processing, simulating a real-time link obtained through a communication

device. The GPS measurement noise variances were computed as a function of the measurement
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(a) Ublox Evaluation Kit using a

TIM-LR receiver

(b) Xsens MT9 IMU with body-

fixed coordinate system overlay

Figure 3.9: Equipment used for the test field campaigns.

C/N0 provided by the receiver and EGNOS variances accounting for inaccuracies in the error correc-

tion models. A detailed expression of the noise variance computation was already given in chapter

1.

Odometric data was obtained from the already on board ABS WSSs. Data was recuperated

through the on-board diagnostic (OBD) port using an ELM327 device as the one showed in chapter

2. The velocity frames were produced and processed at 50Hz. The inertial data was provided by a

typical low cost MEMS-based IMU: Xsens MT9 [Xse04]. This unit works with analog components

whose individual price is around 15USD. A 2 axis accelerometer and 1 axis gyro were used. Their

frequency is 100 Hz. No significant loss of information was found when sub-sampling the INS data at

50Hz, so in this way the frequency of both dead reckoning systems was propagated at the same rate.

The correct modeling of the DR sensor errors presents a key point in the integration performance.

An underestimation of the sensor error parameters would prevent the GPS measurements from cor-

rectly compensating the sensor biases (because not enough importance would be given to pseudorange

measurements). On the other hand, an overestimation of the error parameters would decrease the

relevant contribution of the dead reckoning sensors to filter possible instantaneous anomalies in the

GPS measurements. The next section describes the different methods employed in this thesis for the

characterization of the DR sensors.
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Sensor characterization

According to the error models given in chapter 2 for the WSSs and INS outputs, the following noise

parameters need to be characterized:

• the wheel radius noises: σ2
rl and σ

2
rr

• the noise of the WSS-derived yaw rate: σ2
ψ

• the noise of the WSS-derived velocity: σ2
V

 ∈WSS measurements

• accelerometer noise: (σxa)2 and (σya)2

• noise for the accelerometers’ bias evolution: (σxba)2 and (σyba)2

 ∈ INS measurements

Indeed by WSS measurements we mean the velocity and yaw rate measurements derived from the

WSS outputs.

Noise parameters for WSS measurements

Typical procedures to model the sensor errors include measuring the output of the static or idle

sensor. In this way, no external time varying forces are considered to be significantly affecting the

sensor output. The measured data is thus only representing the different error sources affecting the

sensor. However, such characterization is not possible for the ABS-based WSSs. Wheel speed sensors

(WSSs) used in this research always output zero speed when the vehicle is not moving. Hence no

sensor characterization can be performed in usual static or idle conditions. A sub-optimal technique is

thus proposed. An in-motion characterization is done where external factors possibly contributing to

sensors’ errors are minimized. The reference solution provided by the Novatel-IMAR-SPAN solution

can provide velocity accuracy at a millimeter per second level and yaw-rate accuracy at millidegree

per second. Considering that both WSS velocity and yaw-rate measurements usually present lower

accuracies in at least one or two orders of magnitude, is suitable to consider the Novatel-IMAR-SPAN

system as the navigation reference. To avoid sensing for errors in the nominal wheel radii or slippage

effects, data collection for the WSS measurement characterization is done at slow velocities and for

a straight trajectory. Results are presented in Fig. 3.10 for the velocity measurement and in Fig.

3.11 for the yaw-rate measurement. Figs. 3.10(a) and 3.11(a) depict the resulting error sequences

and Figs. 3.10(b) and 3.11(b) illustrate the respective error histograms. The chosen noise variances
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Figure 3.10: Characterization of the noise variance for the WSS velocity.

are summarized in table 3.8. Due to the sub-optimal characterization technique, conservative noise

parameters are to be considered herein.

On the other hand, it was out the scope of this thesis to test for real changes in the wheel radius

under different conditions. According to [Ste00], a logical noise variance accounting for variations in

the wheel radius can be set to σrl = σrr = 10−5m.

WSS

σV σψ σrr = σrl

[m/s] [◦] [m]

0.1 3 10−5

Table 3.8: WSS simulated sensor noise parameters.
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Figure 3.11: Characterization of the noise variance for the WSS yaw-rate.

Noise parameters for IMU sensors

To evaluate the noise terms affecting the INS sensors, data was collected at the output of the idle

sensors during several hours. Under static conditions, the IMU measures the Earth’s rotation rate

and the force of gravity. However, as these two quantities remain constant during the data collection

period, they will not interfere with the Allan variance computation (see chapter 2 for more details).

Moreover, for very low cost gyros as the one employed in this thesis, the Earth’s rotation rate is

usually masked by the sensor noise.

The Allan variance curves for the used Xsens MT9 accelerometers and gyroscope are respectively

shown in Fig. 3.12 and Fig. 3.13. Evaluating the curves according to the principle explained in section

2.3 yields the sensor noise spectral densities presented in table 3.9. The used sensor bandwidth is

50Hz.

Comparing table 3.9 with table 3.5, it becomes evident that performances to be obtained with the

real Xsens MT9 IMU will be poorer than the ones obtained in the previous section with a simulated

HG1700-like IMU. In this way, the relevance of the contribution of the INS to the hybrid system will

be analyzed in terms of the IMU quality.
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Gyroscope Accelerometers

σg σbg σxa σxba σya σyba
[◦/s/

√
Hz] [◦/s/

√
Hz] [m/s2/

√
Hz] [m/s2/

√
Hz] [m/s2/

√
Hz] [m/s2/

√
Hz]

1.10−1 8.10−2 2.10−3 3.10−4 2.10−3 4.10−4

Table 3.9: Xsens MT9 2D sensor noise parameters.
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Figure 3.13: Allan variance for the Xsens MT9 accelerometers.

Navigation Performance

A first study is done for a standard stand-alone GPS strategy using an EKF. Fig. 3.14 shows the

horizontal 2D positioning error and Fig. 3.15 the number of visible satellites during the test field
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campaign. A first phenomenon is observed during the first 50 seconds: a constant bias of approxi-

mately 10 meters is affecting the error solution. This undesired effect can be certainly expressed by

the presence of erroneous pseudorange signals during the initialization period. Indeed, the starting

point was surrounded by tall buildings, so it is highly possible that a constant multipath signal was

tracked during the first seconds introducing a constant bias in the position solution. Two other in-

teresting phenomena, highlighted by magenta circles, will be analyzed herein. Around time instant

t = 100s and t = 135s important errors have a sudden impact on the navigation accuracy. From

Fig. 3.16 it can be observed that these time intervals correspond to zones with tall buildings and/or

with deep foliage. At the same time Fig. 3.15 shows that no significant reduction over the visible

GPS constellation can justify the presence of important errors. Multipath interference, signal atten-

uation and cross-correlation errors will certainly be affecting the received GPS signals and thus the

pseudorange measurements. As already explained in chapter 1, to distinguish the contribution of

each individual phenomena to the signal’s error presents major difficulties. Hence, all these effects

degrading the signal quality will be summarized hereafter under the name of “measurement errors”.

In the following, the contribution of real DR sensors to cope with all the above mentioned phenomena

will be analyzed.
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Figure 3.14: Horizontal error (HE) for stand alone GPS.
Performances for the different hybrid approaches are presented in Fig. 3.17 and summarized in

Table 3.10 and Table 3.11. To account for error statistical properties (which are not as straightforward

as for the simulated data), different parameters are computed. The 50% bound represents a lower

threshold under which half the error values are found. The bound is obtained by arranging the errors



104CHAPTER 3. HYBRID NAVIGATION SYSTEMS: INTEGRATING GPS, INS AND ODOMETRIC DATA

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

10

Nu
mb

er 
of 

vis
ibl

e s
ate

llit
es

Time [s]

Figure 3.15: Number of visible satellites.

Figure 3.16: Intervals subjected to measurement errors.

in an ascending order and taking the median of the error set. Similarly, the 95% bound represents

the lower threshold under which the 95% of the errors are found. It is important to understant that if

just the means were compared for the different strategies, the presence or absence of high error peaks

would get masked within the mean computation. In this way, for instance, the 95% bound provides

useful information on the presence of error peaks. To facilitate the comparison, error values (in terms

of mean and 95% bound) corresponding to the best performing strategy are highlited in green.

Similarly to results obtained from simulated data, no significant difference is observed between the

UKF and EKF performances. Moreover, Table 3.10 shows that for the ensemble of the trajectory, the
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stand alone GPS and GPS/WSS or GPS/INS/WSS approach present similar results. For scenarios

assuming a good visibility over the GPS satellites, DR sensors do not really provide a meaningful

contribution to the navigation solution. Indeed, in the presence of good quality GPS signals, the low-

cost/low-accuracy DR navigation solution is not assigned an important “weight” during the filtering

process. However, the DR contribution is put in evidence under degraded GPS reception conditions

as summarized in Table 3.11. As a similar behavior was observed for the EKF and UKF, result are

just given for the EKF. In the presence of “measurement errors” affecting the GPS signal, DR sensors

will enable a smoothed or filtered position solution to be provided. Furthermore, results presented

in Fig. 3.17 and the 95% bound in Table 3.11 show that the GPS/WSS strategy is better suited to

smooth the sharp peak errors than the GPS/INS/WSS. It is recalled that in the GPS/WSS strategy

the WSS fully determines the state vector while in the GPS/INS/WSS approach it is included in

the measurement vector together with pseudoranges. It is also interesting to notice that from the

comparison of the first 50 seconds in Fig. 3.14 and Fig. 3.17, it can be seen that DR sensors allow

for a gradual compensation of the multipath interference during the initialization interval.
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Figure 3.17: Horizontal error for different filters and hybrid systems.

So far, the relevance of the individual contribution of the INS or WSS was not really put in

evidence. With this purpose, GPS partial (less than 4 visible satellites) or total outages (no visible

satellites) are simulated in post processing as follows,
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Mean 50% bound 95% bound

EKF

GPS 6.85 6.63 13.27

GPS/WSS 7.44 6.71 13.51

GPS/INS/WSS 6.74 6.67 13.15

UKF
GPS/WSS 7.41 6.73 13.68

GPS/INS/WSS 6.78 6.73 12.81

Table 3.10: Horizontal error statistics in meters (error values highlighted in green represent the best

performances).

1st interval with degraded pseudoranges

Mean 50% bound 95% bound

GPS 12.20 9.66 21.95

GPS/WSS 9.69 8.70 13.32

GPS/INS/WSS 8.26 6.95 13.41

2nd interval with degraded pseudoranges

GPS 13.03 13.63 18.12

GPS/WSS 9.65 8.62 15.23

GPS/INS/WSS 9.44 8.56 17.51

Table 3.11: Horizontal error statistics in meters for the GPS degraded intervals using the EKF

• total GPS outage for 20s between t = 30s and t = 50s

• partial GPS outage for 15s between t = 120s and t = 135s

• total GPS outage for 20s between t = 150s and t = 170s

Fig. 3.18(a) presents the location of the outages in the vehicle trajectory. The locations were chosen

to test the DR performances for different dynamics (straight or curved trajectory). The respective

number of visible satellites is depicted in (Fig. 3.18(b)). Satellites with good elevation angles (>60◦)

were chosen for the partial GPS outage. Fig. 3.19 shows the different filtering and hybrid system

performances for this scenario and Table 3.12 summarizes the results for the outage intervals. Once

more the EKF and UKF applied to either the GPS/WSS or GPS/INS/WSS approach, attained
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similar performances. For both partial or total outages the WSS-based strategy clearly outperforms

the INS/WSS-based strategy. In contrast with the simulated scenario, where a better quality IMU was

simulated, the Xsens MT9 IMU doesn’t show any positive contribution to the navigation solution.

In the presence of partial or total outages, the available measurement (pseudoranges, if present,

and WSS measurements) are not enough to estimate all the errors of the high dimension INS state

vector. Hence, no serious control can be obtained over the exponentially growing INS position errors.

Either a biased (partial outage) or diverging solution (total outage) is obtained. However, WSS-

based navigation solution is still reliable for GPS outages. Even for the 2nd total GPS outage, which

takes place during a 360◦ turn, the WSS errors remain bounded. Fig 3.20 and Fig. 3.21 emphasize

the contrast in the performances obtained by the stand-alone WSS-based navigation solution when

compared to the stand-alone INS. It is clear that no substantial enhancement can be introduced by

the low-cost Xsens MT9 IMU , if WSS data allowing for differential odometry (i.e. velocity and

yaw-rate measurements) is available.
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Figure 3.18: GPS outage characterization.
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Figure 3.19: Horizontal error for different filters and hybrid systems.

1st total outage interval

Mean 50% bound 95% bound

EKF
GPS/WSS 8.70 8.54 10.16

GPS/INS/WSS 14.81 14.07 23.50

UKF
GPS/WSS 8.67 8.51 10.09

GPS/INS/WSS 15.18 14.40 24.23

Partial outage interval

EKF
GPS/WSS 7.05 6.62 8.50

GPS/INS/WSS 12.08 10.10 21.05

UKF
GPS/WSS 6.70 6.42 7.80

GPS/INS/WSS 11.33 9.40 19.95

2nd total outage interval

EKF
GPS/WSS 6.14 6.09 10.51

GPS/INS/WSS 22.27 20.01 46.65

UKF
GPS/WSS 5.99 5.93 10.51

GPS/INS/WSS 25.38 20.18 57.08

Table 3.12: Horizontal error statistics in meters for GPS outage intervals



3.8. RESULTS 109

0 50 100 150 200
0

10

20

30

40

50

60

70

Time [s]

H
o

ri
z
o

n
ta

l 
e

rr
o

r 
[m

]

(a) Horizontal position error

0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257
0.7604

0.7604

0.7604

0.7604

0.7604

0.7604

0.7604

0.7604

0.7604

0.7604

0.7605

Longitude [rad]

L
a

ti
tu

d
e

 [
ra

d
]

 

 

Reference trajectory
WSSs trajectory

(b) Trajectory comparison

Figure 3.20: Stand alone WSS navigation solution.
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Figure 3.21: Stand alone INS solution.
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3.9 Conclusions

The principles of the different integration strategies were presented in this chapter. Two different

filtering techniques were proposed for the navigation solution: the commonly-used Extended Kalman

Filter (EKF) and the Unscented Kalman Filter (UKF). The UKF is aimed at overcoming the EKF

limitations due to the linearization applied to the system model. In parallel, two dead-reckoning(DR)

augmentations were proposed to the stand-alone GPS approach. Wheel speed sensors (based on

differential odometry strategy) and a 2D IMU were studied as complementary navigation systems to

the GPS. Two hybrid systems were proposed: GPS/WSS and GPS/INS/WSS.

Tests were done using both simulated and real data. Non linearities in the measurement model

were tested during degraded GPS reception conditions. Non linearities in the state model were tested

during GPS outages where DR error dynamics tend to be specially high. However, for none of these

scenarios the UKF presented significant performance improvements over the EKF. Land vehicles are

subjected to slow varying dynamics yielding similar performance for both techniques.

Tests done on simulated data validated the correct modeling of the hybrid strategies when con-

trasted to the Posterior Cramer Rao Bound (PCRB). The asymptotic PCRBs were also computed

under varying numbers of LOS GPS satellites. The theoretical stability in terms of accuracy for

the GPS/INS/WSS system appeared superior to GPS/WSS. Having more DR measurement sources

enables the GPS/INS/WSS approach to be better adapted to work in urban areas affected by limited

GPS availability.

The hybrid GPS/WSS and GPS/INS/WSS approaches showed important improvements over the

stand alone GPS when tested for real data under degraded scenarios (i.e. in the presence of measure-

ment errors affecting the GPS signal). Indeed, DR measurements helped to filter for abrupt changes

(i.e. errors) in the position estimation induced by the presence of outliers. During GPS outages DR

measurements ensured the continuity over the position estimation. While the WSSs presented highly

interesting performances in real stand-alone mode, the relevance of the contribution of the INS to the

WSSs navigation solution was shown to be subjected to the inertial sensors’ quality. For simulated

data, a good quality low cost IMU was considered. In this scenario, the GPS/INS/WSS strategy
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presented better performances. However, for the tested Xsens MT9 IMU, the coupling approach us-

ing just the WSSs (GPS/WSS) was preferred to the GPS/INS/WSS. Therefore, the GPS/INS/WSS

strategy is discarded in the next chapters as a possible hybrid navigation solution. It is important to

note, that this decision derives exclusively from the fact that the available low-cost IMU presented

very poor performances. No generalization to the GPS/INS/WSS strategy has to be done.
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In the previous chapter performances in terms of horizontal accuracy were given for the different

hybrid strategies. However, no details on the reliability or consistency of the results were provided.

Indeed, no knowledge was given on how accurate the error models were adapted to the real error values.

This is the purpose of the last two chapters of this manuscript. Conclusions on the performance of

a navigation technique will not only be evaluated according to the final horizontal position error but

also by considering the system capacity to provide a consistent confidence interval for the estimated

position. In other words, a position solution must be given with a respective bound accounting for

113
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the accuracy of the estimation. In this chapter the robustness of Doppler measurements to urban

canyon phenomena is going to be investigated. Indeed, this study is motivated by the interesting

results shown in [KMM06] when including this type of measurement in the filtering model. Doppler

measurements are going to be presented as a complement/ alternative to “noisy” pseudoranges. If the

received pseudorange measurement does not appear to be consistent with its error model, Doppler

measurements are going to be used for the navigation solution. In particular, Doppler measurements

will be introduced in the system according to a “smooth correction criterion”. Based on results

presented in the previous chapter, the overall system performance will also be tested in the presence

of DR navigation systems.

4.1 Different types of GPS measurements

Chapter 1 presented the models for different types of measurements that can be obtained after pro-

cessing the received GPS signal. These measurements are:

• Pseudorange measurements,

• Phase measurements,

• Doppler measurements.

The properties related to each of these measurements are determined by the tracking loop used for

their computation [WBH06a]. A code synchronization is achieved by the delay lock loop (DLL) to

obtain the pseudorange measurement. This type of tracking loop is very robust to dynamic stress

but doesn’t provide very accurate measurements (consider that synchronization is done over a code

whose chip length is ≈ 300m). As the code tracking loop directly measures the signal time of arrival,

the presence multipath will highly affect the tracking performance.

Phase measurements are obtained from a phase lock loop (PLL). PLLs replicate the exact phase

and frequency of the incoming carrier signal to perform the carrier wipeoff function (i.e., convert the

received modulated signal to its base bandwidth). Considering that the received signal is modulated

in L1=1575.42MHz frequency, the phase synchronization is done over a signal wavelength of 0.19m
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providing very accurate cm-level measurements. Though this type of loop produces the most accu-

rate velocity and positioning measurements, it is very sensitive to dynamic stress. Therefore it is

not suitable for noisy scenarios such as urban environments or to perform the system initialization

process. Moreover, phase measurement can be affected by cycle slips especially at low C/N0 or high

dynamics. Therefore the phase measurement cannot be exploited in degraded environments. Phase

measurements are generally used for high accuracy applications in open-sky scenarios where steady

state low or moderate dynamics can be guaranteed. It is important to note that even under very

favorable conditions, pseudorange measurements are needed to initialize the phase measurement am-

biguity term. Indeed, carrier smoothing techniques, as the Hatch filter [Hat82] explained in section

4.2, are commonly used to propagate an initial pseudorange measurement by the phase measurement.

In this way, the initial ambiguity is resolved, and high precision positioning can be assessed.

The Doppler measurement can be still obtained in degraded scenarios thanks to the tolerance of

the frequency lock loop (FLL) to high dynamic stress (a maximum FLL dynamic stress tolerance of

50Hz is assumed). FLLs perform the carrier wipeoff process by replicating the approximative carrier

frequency, and they typically permit the phase to rotate with respect to the incoming carrier signal’s

phase. They provide less accurate velocity measurements than the PLL and absolute positioning

cannot be achieved. Similarly to dead-reckoning systems explained in chapter 2, “relative” information

given by Doppler measurements needs to be integrated to obtain the position solution. Hence, stand-

alone Doppler navigation is not used because of its growing errors over time. However, it is an

interesting measurement to be exploited in urban navigation because of the FLL robustness to noisy

scenarios and to multipath interference [WBH06a]. For instance, typical FLLs can track signals down

to 23dBHz, for a noise bandwidth of 15Hz [Die96], while the PLL threshold is typically set around

30dBHz. The multipath “immunity” assumption is based on the fact that as the FLL performs the

tracking over a high frequency signal (with a wavelength of approx. 20cm), the impact of multipath

errors is highly bounded (contrary to the DLL case where the tracking is done over a code with chip

length equal to 300m).

Considering the aforementioned characteristics for the three types of GPS measurements, a Doppler-

based smoothing approach will be discussed in this chapter. The idea is that degraded pseudorange
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measurements, mostly affected by urban canyon phenomena, may be complemented by more robust

Doppler measurements. In particular, under good-visibility/low-interference GPS conditions, pseu-

dorange measurements are considered to be reliable and they can be used for the position solution.

Otherwise, if one of these two conditions is not satisfied, Doppler measurements are exploited. One of

the ideas explored in this chapter deals with the merging of pseudorange and Doppler measurements.

The principle for this merging is somehow linked to typically used carrier smoothing techniques briefly

presented in the next section.

4.2 Carrier smoothing

A common processing technique that combines the absolute pseudorange measurement with the highly

accurate carrier phase measurement is referred to carrier smoothing. A well known carrier smoothing

algorithm is based on the Hatch filter [Hat82] where the filter measurements are given by (neglecting

the clock bias and noise term):

ρ̆t,i = βt,iρt,i + (1− βt,i) (ρ̆t−1,i + (φt,i − φt−1,i)) , (4.1)

where

• ρ̆t,i is the smoothed pseudorange at time instant t for the ith satellite,

• βt,i is the ith satellite weight term which varies from 1 to ≥ 0 by small increments (≤ 0.1),

• φt,i is the phase measurement at time instant t for the ith satellite (1.10),

• (φt,i − φt−1,i) is the range difference between two consecutive carrier phase measurements,

• ρt,i is the ith measured pseudorange at time instant t (3.50).

The principle of this filter is the following: the pseudoranges are merged with the carrier phase

measurements in a recursive filter that progressively increases the weight of the carrier phase while

decreasing the weight of the pseudo-range measurement. The goal of this method is to smooth

the pure pseudorange by the carrier phase measurement and eventually provide a smoothed range
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measurement that it is mostly obtained from the accurate carrier phase measurement. The time of

transition between a highly dominated pseudorange and a highly dominated phase measurement is

given by the filter smoothing time. This convergence time is set to be superior to multipath correlation

time. Apart from the fact that in urban scenarios the user cannot rely on the continuity of the phase

measurement, another limitation of this algorithm is the danger that the smoothed pseudorange ρ̃ is

initialized by a biased pseudorange ρ (for ex. with multipath interference). In this case, an erroneous

measurement will be delivered. This error can be somewhat limited by keeping the weight βt at

a value greater than zero so once the pseudorange is no longer affected by a multipath the initial

introduced error can be eventually compensated.

4.3 Doppler smoothing

Based on the carrier smoothing technique we propose to use a new type of measurement for the

navigation solution especially suited to urban scenarios. Contrary to the expression given in (4.1), we

propose to use Doppler measurement to smooth pseudoranges. The Doppler measurement needs to

be expressed as a pseudorange rate to enable one to merge pseudorange and Doppler measurements.

We recall that the Doppler effect is caused by the relative motion of the transmitting satellite with

respect to the receiver. The expression given in chapter 1 for the Doppler measurement Dt,i (1.8) is:

Dt,i = −L1
c

[(
vet − vSt,i

)T • lLOSi,t + dt

]
+ nDt,i . (4.2)

where

• L1 = 1575.42MHz and c is the speed of light,

• ve is the receiver velocity vector in geodetic ECEF coordinates,

• vSi is the satellite velocity vector in geodetic ECEF coordinates obtained from ephemeris,

• lLOSi is the unit line of sight vector between the i th satellite and the receiver,

• dt is the receiver clock drift,
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• nDi,t ∼ N (0, σ2
Dt,i) and σ2

Dt,i is mainly determined by (1.12).

This equation can be easily modified to achieve a range rate equation. Considering that the range

measurement is given by:

rt,i =

√(
xt − xst,i

)2
+
(
yt − yst,i

)2
+
(
zt − zst,i

)2
, (4.3)

the range rate ṙ can be directly obtained by calculating the partial derivatives of (4.3) with respect

to the vehicle position (x, y, z)

ṙt,i =
(ẋt − ẋst,i)(xt − xst,i) + (ẏt − ẏst,i)(yt − yst,i) + (żt − żst,i)(zt − zst,i)√(

xt − xst,i
)2

+
(
yt − yst,i

)2
+
(
zt − zst,i

)2
, (4.4)

where ȧ denotes the changing rate (i.e. the velocity) of a. Hence, comparing (4.2) with (4.4) we have

that:

ṙt,i =
(
vet − vSi,t

)T • lLOSt,i , (4.5)

so the pseudorange rate derived from the Doppler measurement is written as:

ρ̇ = − c

L1
Dt,i =

(
vet − vSt,i

)T • lLOSt,i + dt −
c

L1
nDt,i . (4.6)

The filter measurement obtained from the Doppler smoothing can now be expressed as

ρ̃t,i = αt,iρt,i + (1− αt,i)
(
ρ̃t−1,i −

c

L1
Dt,i∆t

)
(4.7)

where

• ρ̃t,i is the smoothed pseudorange at time instant t for the ith satellite,

• αt,i is the ith satellite weight

• ∆t is the sampling time,

We will denote nρ̃t,i the noise corresponding to the ith smoothed pseudorange given in (4.7), so

that nρ̃t,i ∼ N (0, σ2
ρ̃t,i

). The measurement noise variance σ2
ρ̃t,i

is obtained as follows:

σ2
ρ̃t,i = α2

t,iσ
2
t,i + (1− αt,i)2

(
σ2
ρ̃t−1,i

+
( c

L1
σDt,i∆t

)2
)

(4.8)
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where σ2
t,i is the noise variance associated to the ith pseudorange measurement at time instant t.

Contrary to section 4.2, eq. (4.7) proposes an approach where the weights will not be time-correlated.

Indeed, their value will be constantly estimated according to the pseudorange measurement reliability.

Note that for the initialization of ρ̃t,i αt,i is forced to 1.

4.4 Measurement reliability

Reliability is described in [Pet03] as the ability to identify and reject non-modeled errors in the

measurements. These erroneous measurements, called outliers, will bias the navigation solution and

thus it is important to detect any anomaly in the observation and provide an adequate processing

strategy. The actual identification of outliers is performed via testing of the measurement residuals in

the least square case, and of the innovation sequence in the case of the Kalman filter. The detection

of model errors is based on statistical hypothesis testing. Assuming a correct nominal measurement

model, observation residuals/innovations indicate the extent to which the measurements are internally

consistent with their assumed error model. Usual strategies employed by commercial receivers to verify

the quality of the received signals are based on the receiver autonomous integrity monitoring (RAIM)

strategy [C+06a]. This strategy is based on the least squares observation residuals and it is presented

in section 4.4.1. It is usually complemented by a fault detection estimation (FDE) technique. The

RAIM+FDE strategy is presented herein as a test-bench solution. Section 4.4.2 presents an innovative

strategy for mitigating the presence of unreliable pseudorange measurements. Doppler measurements

are proposed herein as an alternative to fight against urban phenomena.

4.4.1 RAIM+FDE strategy

Integrity is generally defined as a measure of the trust that can be placed in the correctness of the

information supplied by a system. It also includes the availability of the system to provide timely

and valid warnings to the user when it is inadvisable to use the system for navigation. This study

particularly focuses on the first of these two characteristics describing integrity. An error bound is a

measure of trust on the accuracy of the estimation being done. Among the different existing integrity
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procedures, the snapshot RAIM is the best known and widely implemented approach [C+06a]. The

FDE is a complement to this system where not only the presence of an anomaly is detected but

its source (i.e. the corresponding satellite) is identified and further excluded from the navigation

solution. The weighted least square (LS) estimator of the state vector at time instant t, derived from

the linearized measurement model is classically defined as

X̂t = X̂t−1 + ∆X̂t, (4.9)

with

∆X̂ = (HT
t R
−1
t Ht)−1R−1

t HT
t ∆Yt,

∆Yt = Yt − h(X̂t−1),

where Ht is the linearized measurement matrix around X̂t−1, Rt is the measurement noise covariance

matrix and X̂t−1 is the initial value of the state vector. The vector of LS residuals is thus defined as:

wt = Yt − h(X̂t) = ∆Yt −
[
h(X̂t)− h(X̂t−1)

]
=
[
Iny −Ht(HT

t R
−1
t Ht)−1R−1

t HTt
]

∆Yt.

Different test statistics can be used with the snapshot RAIM strategy to detect an anomaly. The

range comparison method [Lee86], the least square (LS) residual method [PA88] and the parity method

[Stu88] are three of the main snapshot RAIM algorithms that use different test statistics. Due to its

low computational cost, the LS residual method is going to be used in this paper. The corresponding

test statistics is defined as:

SSE = wtR
−1
t wTt = ‖wt‖2 . (4.10)

where SSE stands for sum of the squared errors. The test statistics SSE follows a χ2 distribution

with ny − 4 degrees of freedom [MH06]. Therefore a minimum of 5 satellites is needed to perform the

integrity test. However its detection capability presents many drawbacks. For instance, as the state

vector used to compute the residuals was initially computed using the received “defective” measure-

ments, an assimilation of the error might already be present in X̂t. Especially in the occurrence of

large or multiple biases, a compensation might be done within the residuals so the abnormal situation
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is finally not detectable. This occurs because when computing the residual term (4.10), a projection

of ∆Yt is done on the null space of HT
t [MH06]. If the combination of measurement errors is such

that the angle between ∆Yt and this subspace is big enough, many information will be lost in the

projection. The norm of the residual vector w will be small and the error detection will fail.

The exclusion procedure is performed after an error detection has been achieved. The fundamental

assumption used by the snapshot RAIM+FDE approach is that just one outlier can be present. A

total of ny subsets each containing ny−1 satellites is built. For this purpose a minimum of 6 satellites

must be available. A fault detection condition is performed over the ny subsets as in the detection

step. Just the subset excluding the outlier will be under a given fault detection threshold. Therefore,

this subset will be kept to compute the final position estimation. The covariance matrix Pt associated

to the estimate state vector X̂t is given by:

Pt = (HT
t R
−1
t Ht)−1. (4.11)

Considering that a correct detection and exclusion was achieved for the received measurements, matrix

Pt should be accurately modeling errors in the estimated navigation solution. Though the snapshot

RAIM+FDE approach is widely accepted for civil aviation applications, its principles of functioning

and specifications are not appropriate for land vehicle navigation. Due to either the presence of

multiple outliers or to a limited GPS satellite constellation, the snapshot RAIM+FDE system is

often unavailable in urban scenarios.

In this chapter signal reliability in urban scenarios is addressed not by excluding erroneous mea-

surements but by replacing them by other types of measurements that may be less affected by urban

phenomena. For this approach a minimum number of satellites is not required because each measure-

ment is individually tested for anomaly presence using EKF innovations. The idea is that depending

on the consistency between the received measurement and its associated error model, different types

of measurements are going to be exploited. In particular, the smoothed pseudorange based on Doppler

measurements (4.7) is going to be used.
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4.4.2 Smooth correction function

Reliability testing results will determine the type of measurement to be used for the navigation filter.

We recall the expression for the EKF innovation vector It (table 3.1):

It = Yt − Ŷt|t−1, (4.12)

where

• It = (It,1, . . . , It,ny),

• Yt is the measurement vector Yt = (Yt,1, . . . , Yt,ny),

• Ŷt|t−1 = h(X̂t|t−1) is the vector containing the pseudorange measurements predicted from the

propagated state vector.

Assuming the state and measurement noises follow a zero mean Gaussian distribution and that their

covariance matrices can be accurately characterized, the innovation covariance St matrix is given by:

St = HtPt|t−1H
T
t +Rt, (4.13)

where

• Ht is the first order Taylor series expansion of the non linear measurement function ht,

• Pt|t−1 is the a priori state covariance matrix,

• Rt is the noise covariance matrix associated to Yt.

The innovations associated to different time instants are assumed to be independent. The variance

of the ith innovation at time instant t (denoted as s2
t,i) is given by the ith element of the diagonal of

St. As a consequence, in nominal situations (i.e. when measurement models are consistent with the

observations) the ith innovation error is distributed according to a zero-mean Gaussian distribution

with variance s2
t,i, i.e. with pdf

p(It,i) =
1√

2πst,i
exp

(
− 1

2s2
t,i

I2
t,i

)
. (4.14)
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The EKF minimizes the mean square error (MSE) of the state vector considering that the received

measurements have a Gaussian distribution with known parameters. If such a hypothesis is not ful-

filled, the convergence and stability of the filter are no longer guaranteed. Hence, it is very important

to detect any inconsistency in the filter models.

An indicator of received pseudorange quality will be obtained by comparing the values obtained

in (4.12) with their assumed statistical distribution given by (4.13). It must be pointed out that any

lack of consistency in the innovation sequence will be attributed to the uncorrect modeling of the

measurement noise distribution given by Rt. Neither the state model nor the linearized measurement

transition matrix will be considered to introduce significant errors. We recall that noise variances

σ2
t,i included in Rt are obtained as a function of the C/N0 parameter and EGNOS corrections as

explained in chapter 1, section 1.2.2. In particular, in the absence of temporal correlation in the

pseudorange measurements and among the receiver channels, Rt is a diagonal matrix fully described

by σ2
t,i. In open-sky scenarios, it can be reasonably considered that pseudoranges follow a zero mean

Gaussian distribution where the C/N0 parameter provides reliable information on the signal quality.

However, due to the particular properties of urban canyon phenomena, “measurement errors” are not

fully captured by the C/N0 parameter. In this case, the noise terms are usually underestimated and

the pseudorange measurement model determined by N (0, σ2
t,i) is no longer valid.

The test statistic usually employed to detect the presence of an anomaly in the ith received

measurement is given by:

Tt,i =
|It,i|
st,i

(4.15)

where |a| denotes the absolute value of a. The test is normally compared to an established threshold

ζ. If Tt,i < ζ the nominal hypothesis is kept (in our case the pseudorange measurement is exploited)

and if Tt,i > ζ an anomaly in the measurement is declared (in our case the pseudorange is replaced

by a Doppler measurement). The correct choice of the threshold is one of the most delicate issues

for the well-conditioning of these kinds of tests. Indeed, we propose to relax the critical role of the

threshold computation by replacing it by an interval. Two thresholds (ζ1, ζ2) are now related to the

test statistics. An extra degree of freedom is thus introduced to the global anomaly detection. Test

results performed for each of the ith visible satellites can lead to three different conclusions:
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• Tt,i < ζ1 the measurement model described by σ2
t,i is considered correct and the ith pseudorange

measurement is used to update the state vector.

• Tt,i > ζ2 the received pseudorange is considered unreliable with respect to its noise model and

possibly affected by multipath, cross-correlation errors, etc. The Doppler measurement is used

to update the state vector.

• ζ1 < Tt,i < ζ2 the smoothed pseudorange measurement presented in (4.7) is used. The merging

weight αt,i is determined by a smooth correction function which linearly depends on the values

taken by the test between the interval ζ1 < Tt,i < ζ2.

For a typical one-threshold-based anomaly detection is done for 3 < ζ < 6 [BFGK06]. We propose

herein to set ζ1 = 2 and ζ2 = 4. This choice has been motivated by results obtained for several

sets of real data as presented in [SJCD08]. If the innovation is smaller than twice its associated

variance, which accounts for the 95% of the cases if the noise model is correct, the pseudorange is

exploited. Otherwise, the pseudorange is totally ignored if the innovation is greater than four times its

associated variance, which corresponds to a fault detection probability of 0.06%. Figure 4.1 illustrates

the decision criterion.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Test statistic 

P
D

F

Smoothed
pseudorange
measurement

Doppler
measurement

ζ
2
=4ζ

1
=2 T

t,i

Pseudorange 
measurement

Figure 4.1: Test statistic for the EKF innovation.
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The smooth correction function used for the weight computation is given by:

αt,i = − 1
ζ2 − ζ1

(Tt,i − ζ1) + 1 ∀ ζ1 < Tt,i < ζ2. (4.16)

Indeed, it can be also extended to Tt,i < ζ1 where the weight is constantly set to αt,i = 1 (Fig.

4.2). Therefore, ρ̃t,i = ρt,i and the pseudorange measurement is used for the filter update. However,

the extension of the function to Tt,i > ζ2, implying that the weight is constantly set to αt,i = 0 for

this interval, is not considered. If αt,i = 0 the used measurement, in the absence of bias and noise

terms, would be given by ρ̃t,i =
(
ρ̃t−1,i − c

L1Dt,i∆t
)
. This would mean that the stand-alone Doppler

measurement is used to estimate position and not velocity parameters. Therefore integrated errors

would unnecessarily be propagated. Moreover, we will need to assume that a reliable previous ρ̃t−1,i

exists, which might not always be the case. In conclusion, if Tt,i > ζ2 Doppler measurements are used

to estimate the vehicle velocity according to the model given in eq. (4.2).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Test statistic

α
t,

i

ζ
2
=4ζ

1
=2

T
t,i

Figure 4.2: Weight function.

To ensure the accuracy and reliability of the chosen measurements some constraints must be

considered:

1. Stand-alone Doppler measurements are used to estimate velocity. If tracked for long periods,

integration errors will get accumulated and divergent position estimations will be obtained. We
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propose to allow the use of consecutive Doppler measurements for the same satellite for a period

not exceeding the 5 seconds. Otherwise the system will switch to the pseudorange measurement

providing absolute positioning.

2. For the smoothed pseudorange expression (4.7) to be valid for ζ1 < Tt,i < ζ2, a previous

reliable pseudorange ρt−1,i or smoothed pseudorange ρ̃t−1,i is needed to propagate the Doppler

measurement. If the measurement used for the ith satellite in t−1 was a Doppler measurement,

eq. (4.7) cannot be used. In this case the system will switch to the Doppler measurement (if

this situation is not in contradiction with the previously described constraint) .

Figure 4.3 summarizes the above mentioned constraints applied to the ith received signal. Considering

that urban canyon phenomena are correctly mitigated by the use of smoothed pseudorange and

Doppler measurements, the final position estimation should be consistent and accurately described

by the updated EKF state covariance matrix (table 3.1).

Pt = (Inx −KtHt)Pt|t−1, (4.17)

where the expressions for Ht, Kt and Pt|t−1 can be easily derived from the filter state-space models

presented in the following sections.

Figure 4.3: Constraints on the choice of the type of measurement to be exploited.
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4.5 State-space models for GPS filter using smooth correction crite-

rion

In a first approach, a stand-alone GPS filter is used to test the relevance of the proposed smooth

correction criterion. The time continuous state vector (always assuming a 2D navigation with known

height) is given by:

Ẋt =
(
λ̇t, ϕ̇t, v̇n,t, v̇e,t, ḃt, ḋt

)T
GPS
∈ R6, (4.18)

according to notations given in the previous chapter. The state propagation matrix Ft corresponds

to a random walk model where the acceleration has a zero mean Gaussian distribution modeled by

the state noise covariance matrix Qt. The acceleration variances associated to (vn,t, ve,t) are denoted

as
(
σ2
n, σ

2
e

)
. In a continuous time model the state matrices are constructed as follows:

F̃t =


02×2 A 02×2

02×2 02×2 02×2

02×2 02×2 F̃GPSt

, A =

 1
Rλ+ht

0

0 1
(Rϕ+ht) cos(λ)

,

Q̃t = diag(02×2, σ
2
n, σ

2
e , σ

2
b , σ

2
d). (4.19)

where A was described in (2.12), and F̃GPSt and (σ2
b , σ

2
d) were defined in (3.46). The measurement

model (3.2) is redefined at every time instant depending on the type of measurement being used for

each of the ny visible satellite. The measurement vector is defined as:

Yt = (Yt,1, . . . , Yt,ny)
T , (4.20)

where Yt,i, i = 1 . . . ny, can be either a pseudorange ρt,i, smoothed pseudorange ρ̃t,i or Doppler

measurement Dt,i. According to this, the measurement function ht will be constructed as the con-

catenation of the individual measurement functions describing the exploited measurements:

ht =


ht,1
...

ht,ny

 , where ht,i =

 qt,i ◦ g(λt, ϕt) + bt if Yt,i = ρt,i or Yt,i = ρ̃t,i

pt,i ◦ k(vn,t, ve,t)− L1
c dt if Yt,i = Dt,i

(4.21)
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where qt(·) was given in (3.54), and gt(·) is obtained from (3.51) considering that the position esti-

mates are given by the state vector variables (λt, ϕt). Similarly to the pseudorange model, a frame

transformation must be done so the Doppler measurement can be written as a function of the state

vector parameters. The function for the Doppler measurement pt is given by:

pt,i(vet ) = −L1
c

[(
vet − vSt,i

)T • lLOSi,t

]
(4.22)

where vet = (vx,t, vy,t, vz,t)T is the vehicle velocity in the ECEF frame. Hence, k(vn,t, ve,t) denotes the

frame transformation matrix from the NED to ECEF frame expressed as,

k(vn,t, ve,t) =


vx,t

vy,t

vz,t

 =


− sin(λt) cos(ϕt) − sin(ϕt)

− sin(λt) sin(ϕt) cos(ϕt)

cos(λt) 0


 vn,t

ve,t

 . (4.23)

4.6 Enhanced hybrid filter using smooth correction criterion

The smooth correction criterion is going to be implemented using DR sensors to provide a final

navigation system that is well-adapted to urban scenarios. DR data can provide a highly informative

reference frame to achieve a reliability monitoring on the GNSS signals. The “autonomous integrity

monitoring extrapolation” [DH96] and the “multiple solution separation” [Bre95] are examples of

integrity schemes that use inertial information to improve fault detection and exclusion functions.

However they were developed according to civil aviation requirements and their functioning and

assumptions are not directly suitable for land vehicle navigation.

Based on results obtained in chapter 3 the well performing wheel speed sensors (WSS) are going

to be used. Details on the WSS hybrid system based on differential odometry were given in section

3.6.1. While the state model remains unchanged, the measurement model is now based on (4.21). A

further frame transformation must be done to obtain the north-east velocities used in the Doppler

measurement model. If Yt,i = Dt,i in (4.21), the measurement function for the ith satellite at time
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instant t is as follows,

ht,i = pt,i ◦ k(t, i) ◦ u(δVt, δψt)−
L1
c
dt, (4.24)

u(δVt, δψt) =

 vn,t = (V WSS
t + δ, Vt) cos(ψWSS

t + δψt)

ve,t = (V WSS
t + δVt) sin(ψWSS

t + δψt)
(4.25)

where state vector parameters (δVt,δψt) represent the along-track velocity and yaw angle error asso-

ciated to the corresponding WSS measurements.

A further enhancement is proposed in this chapter to deal with inaccurate yaw angle measure-

ments provided by differential odometry techniques. A 1 axis gyro specially designed for land vehicle

navigation is included in the system. In this way, WSSs will only provide along-track velocity esti-

mations (i.e., estimations of Vt) while the heading information ψt will be totally determined by the

gyro outputs. The filter state vector XGPS/WSS/Yaw
t , where Yaw denotes the yaw gyroscope, is given

by,

Ẋt =
(
δλ̇t, δϕ̇t, δV̇t, δψ̇t, δṘ

rl
t , δṘ

rr
t , ḃg,t, ḃt, ḋt

)T
GPS/WSS/Yaw

∈ R9. (4.26)

where

• (δλt, δϕt) are the positioning errors corresponding to the DR navigation solution (λWSS/Yaw
t , ϕ

WSS/Yaw
t ),

• δVt is the WSS along track velocity error and (δRrlt , δR
rr
t ) are the wheel radius errors,

• δψt is the gyro yaw angle error and bg,t is the gyro bias,

• (ḃt, ḋt) are the receiver clock bias and clock drift.

The state transition matrix and noise matrices are as follows:

F̃
GPS/WSS/Yaw
t =

 F̃
WSS/Y aw
t 0

0 F̃GPSt

 , (4.27)
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F̃
WSS/Yaw
t =



0 0 cos(ψ)
Rλ+h V − sin(ψ)

Rλ+h 0 0 0
V tan(λ)2

Rϕ+h 0 sin(ψ)
(Rϕ+h) cos(λ) V cos(ψ)

Rϕ+h 0 0 0

0 0 0 0 ωrl

2
ωrr

2 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


,

B̃
GPS/WSS/Yaw
t =

 B̃
WSS/Yaw
t 0

0 B̃GPS
t

 , (4.28)

where B̃WSS/Yaw
t differs from the B̃WSS

t matrix given in (2.31) in that the yaw angle noise variance

σ2
ψ is now determined by the gyro bias variance σ2

bg
. The expression for B̃GPS

t was defined in (3.46).

4.7 Details on bound computation

To study the consistency of the proposed strategies, the horizontal position error (3.82) will be

presented together with its respective bound. The horizontal position bound will be obtained from

the updated state covariance matrix Pt of the EKF. Consider the matrix PH,t containing only the

variance and covariance parameters for the horizontal position estimates,

PH,t =

 σ2
λ cov(λ, ϕ)

cov(ϕ, λ) σ2
ϕ

 (4.29)

where cov(a, b) denotes the covariance between a and b. As the horizontal error is described in the

north(n)-east(e) frame, a suitable frame transformation must be applied to PH,t as follows

P̃H,t =

 σ2
λ

1
(Rλ+h)2

cov(λ, ϕ) 1
(Rλ+h)(Rϕ+h) cos(λ)

cov(ϕ, λ) 1
(Rλ+h)(Rϕ+h) cos(λ) σ2

ϕ
1

(Rϕ+h)2 cos(λ)2

 =

 σ2
n cov(n, e)

cov(e, n) σ2
e


(4.30)

where P̃H,t is the covariance error matrix in meters for the horizontal north(n)-east(e) plane and all

the frame transformation parameters were already described in (2.31). Lets consider XH = (δn, δe)T
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the vector containing the n − e position errors (δn, δe) where the time index is not included for

notational simplicity. The general expression of XH pdf is given by:

p(XH) =
1

2π
√

det(P̃H)
e−

1
2
XT
H P̃
−1
H XH (4.31)

where det(A) denotes the determinant of matrix A. The vector XH is a bi-dimensional random

variable, XH ∼ N
(

0, P̃H
)
. As P̃H is a positive definite matrix, it can be diagonalized and its

eigenvalues are all positive. In particular, we can find an orthonormal basis B = (~ν1, ~ν2) composed of

eigenvectors (~ν1, ~ν2) corresponding to the eigenvalues (κ2
1, κ

2
2) of P̃H . Hence, P̃H can be expressed as

P̃H = GDGT (4.32)

where

• D = diag(κ2
1, κ

2
2) is the diagonal matrix whose elements are eigenvalues of P̃H ,

• G is the projection matrix whose columns are the eigenvectors (~ν1, ~ν2). In particular, G is

orthogonal so GT = G−1.

Let X⊥ be the projection of XH in the orthonormal basis B, so X⊥ = GTXH . X⊥ is a 2-dimensional

Gaussian vector with covariance matrix D so that X⊥ ∼ N (0, D). It can be easily observed that as

the off-diagonal terms of D equal zero, the components of X⊥ are mutually independent. Recalling

that the horizontal error is obtained as

HE =
√

(δn)2 + (δe)2 = ‖X⊥‖ , (4.33)

it is of interest to introduce the normalized square magnitude of X⊥ given by ‖X⊥‖2n = XT
⊥D
−1X⊥.

In the general case, ‖X⊥‖2n follows a χ2
2 pdf with 2 degrees of freedom if κ2

1 and κ2
2 are different from

zero.

The density function presented in (4.31) defines a two-dimensional bell-shaped surface. Contours

of constant density are obtained by setting the exponent (XT
H P̃
−1
H XH) to a constant. Indeed, con-

sidering that (XT
H P̃
−1
H XH) = ‖X⊥‖2n, this contour will describe an ellipse whose semi-major axis is
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oriented along ~ν1 and whose semi-minor axis is oriented along ~ν2. The analytical expression of the

ellipse is:
X⊥(1)2

a2κ2
1

+
X⊥(2)2

a2κ2
2

= 1 (4.34)

where X⊥ = (X⊥(1), X⊥(2))T and a ranges over positive values. The parameter a is defined as

p(‖X⊥‖2 ≤ a2) = 1− Pc. (4.35)

where Pc represent the tolerated probability for the real error not to be contained within the elliptical

contour. In the general case, a2 is obtained by evaluating the inverse cumulative distribution of the

χ2
2 pdf for Pc. However, accounting on usual characteristics presented by the navigation error pdf, a

worst case bound is calculated herein. It was shown in [Bre98] and [Van01] that one of the eigenvalues

(κ2
1, κ

2
2) usually dominates over the other. This means that the contour ellipse defined in (4.34) will

be strongly orientated in the direction of the dominant eigenvalue. Just as an example, and without

any loss of generality, lets consider that the dominant eigenvalue is κ2
1, so κ2

1 >> κ2
2. In this case, the

expression in (4.34) becomes
X⊥(1)2

a2κ2
1

= 1 ⇒ X⊥(1)
aκ1

= 1 (4.36)

Recalling that X⊥(1)
κ1
∼ N (0, 1), the value of a is obtained from (4.35) and (4.36) as:

a = Q−1

(
1− Pc

2

)
, (4.37)

where Q−1(·) represents the inverse cumulative distribution function of the Gaussian pdf N (0, 1). In

[Bre98] and [Van01] authors propose to model the contour of constant density associated to (4.31)

as an overbounding circle of radius aκ1 (always considering κ1 the dominant eigenvalue). Fig. 4.4

illustrates the principle. In a general way, the final 2D horizontal error bound B is given by the circle

X⊥(1)2

r2
+
X⊥(2)2

r2
= 1, (4.38)

where the circle radius r is define as

r =
√

max
(
κ2

1, κ
2
2

)
a. (4.39)

and a is obtained from (4.37). This bound is going to be used in the next section to analyze the

consistency of the positioning solution.
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Figure 4.4: Horizontal position error ellipse.

4.8 Results

A deep urban trajectory was chosen to analyze the relevance of the proposed smooth correction

criterion. It is important to notice that this chapter fully focuses on the challenges and impairments

of processing real data. Assumptions made on the behavior of errors affecting the received signals need

to be analyzed as well as pseudorange and Doppler characteristics. Therefore, using simulated data

to obtain theoretical performances would go against the intrinsic “uncertain and random” behavior

proper to urban phenomena. A test field campaign was done in Toulouse centre for a duration of

25 minutes. The total distance traveled was 5.6km. Fig. 4.5 depicts the vehicle trajectory and Fig.

4.6 shows the number of visible satellites as a function of time. The scenario was carefully chosen

to highlight the impact of urban effects. Specifications for the reference position solution and used

GPS receiver were given in section 3.8.2. ABS WSSs are characterized according to noise models

given in section 3.8.2. The 1 axis MLX90609 gyro proposed for the GPS/WSS/Yaw approach is

characterized in section 4.8.1. An analysis on the theoretical robustness of Doppler measurements to

urban phenomena is done in section 4.8.2. Results on navigation performances are given in section

4.8.3.
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Figure 4.5: Vehicle circuit in Toulouse centre.
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Figure 4.6: Number of visible satellites.

4.8.1 Gyro noise parameters

The Allan variance curve for the MLX90609 Melexis gyro is shown in Fig. 4.7. According to the

principle explained in section 2.3, the resultant sensor noise parameters are given in table 4.1. Con-

sidering the low accuracy of yaw angle measurement obtained from the WSS differential odometry

approach (table 3.8), it is immediate to conclude on the significant contribution the additional gyro

will have to the GPS/WSS/Yaw navigation solution.
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Gyroscope

σg σbg

[◦/s/
√
Hz] [◦/s/

√
Hz]

1.10−3 9.10−4

Table 4.1: MLX90609 gyro noise parameters.
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Figure 4.7: Allan variance for the Melexis gyroscope.

4.8.2 Pseudorange vs. Doppler analysis

In this section, the impact of urban phenomena on pseudorange and Doppler measurement errors is

going to be studied. In particular, special attention is paid to the consistency between the errors and

the measurement noise models. The analysis is going to be done for two different satellites that were

visible during the test field campaign. Fig. 4.8 depicts the satellite constellation. In particular, a

good elevation (satellite 31) and a low elevation (satellite 5) satellite are chosen to illustrate a general

case. The SPAN reference solution is used to estimate the errors affecting the received measurements.

Theoretical pseudorange and Doppler measurements are reconstructed according to their model given

in (3.50) and (4.2) excluding the noise term. The vehicle’s position and velocity are provided by the

reference solution while the clock bias and drift are obtained from the GPS Ublox receiver. In this

way, any difference between the theoretical measurements and the real ones will account for noise and

urban phenomena.

Figs. 4.9 and 4.10 present pseudorange and Doppler measurement errors for satellites 31 and 5
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respectively, as well as their normalized histograms. Top figures illustrate horizontal errors together

with their 3σ bound, where σ corresponds to the measurement noise standard deviation (σ = σρt,i

for ith pseudoranges and σ = σDt,i for ith Doppler measurements). Bottom figures compare the

normalized errors (i.e. errors divided by their noise standard deviation) with the theoretical (N)(0, 1)

pdf given in red.

From the comparison between the pseudorange and Doppler pdfs, it can be observed that Doppler

measurements are generally better bounded by their associated error model. Fig. 4.9(c) presents a

tailed histogram while the histogram in Fig. 4.9(d) is better bounded when compared to the reference

Gaussian pdf. Indeed, for this high elevation satellite the Doppler error model seems to slightly

overestimate the actual errors. Similar observations can be done for satellite 5. Indeed, as satellite

5 has a low elevation angle, it is usually more susceptible to multipath and cross-correlation errors

than satellite 31. Fig. 4.10(c) shows that pseudorange noise parameters highly underestimate the real

error. We recall that noise variances are computed from the signal’s C/N0 and EGNOS corrections

(section 1.2.2). Therefore they don’t take into account the presence of “measurement errors”. If errors

are better bounded for one measurement than for the other one, conclusions can be drawn on the

robustness of the former measurement to urban phenomena. In this way, the overall results validate

the correct bounding of Doppler noise models as well as the assumption on Doppler robustness to

urban phenomena.
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Figure 4.8: Satellite constellation.
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Figure 4.9: Errors for satellite 31. (a-b) pseudorange (PR) and Doppler measurement errors with their

corresponding 3σ noise bound. (c-d) Histograms of normalized errors for pseudorange and Doppler

measurements respectively. The nominal Gaussian PDF is represented in solid red line.
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Figure 4.10: Errors for satellite 5. (a-b) pseudorange (PR) and Doppler measurement errors with their

corresponding 3σ noise bound. (c-d) Histogram of normalized errors for pseudorange and Doppler

measurements respectively.
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4.8.3 Navigation performance

Performances using the smooth correction criterion are first going to be presented for a stand-alone

GPS filter and later for the hybrid GPS/DR approach. Based on results given in the previous chapter,

an EKF is used. For the GPS filter the noise variances modeling the state parameters v̇n,t and v̇e,t

are set to σ2
n = σ2

e = 2m/s. The bound computation described in section 4.7 is done for Pc = 10−5.

Results obtained with the standard EKF, the snapshot RAIM+FDE strategy and the proposed

smooth correction criterion, using only GPS signals for the navigation, are depicted in Figs. 4.11,

4.12(a) and 4.13. The number of measurements replacing nominal pseudoranges for the smooth

correction criterion are depicted in Fig. 4.14. errors highlighted in green correspond to time instants

where the reliability approaches were active. For the snapshot RAIM+FDE strategy this means

that the outlier measurement (i.e. pseudorange) was successfully excluded from the solution. For

the smooth correction criterion it means that at least one satellite pseudorange measurement was

considered not reliable and replaced by an alternative measurement (i.e. smoothed pseudorange or

Doppler). According to all these figures the following observations can be done:

• The standard EKF implemented without the proposed smooth correction criterion presents

significant errors and inconsistent solutions (that are not within the computed bounds).

• The widely applied least square snapshot RAIM+FDE solution presents several limitations.

The system is unavailable during 10% of the time inducing very important errors. For instance,

three main errors may be outlined around the time instants t = 600s, t = 950s and t = 1200s.

In the first case, the RAIM+FDE does not performed satisfactorily because only 4 satellites

are in LOS. For the other two errors, the exclusion function could not be performed because

multiple outliers were present among the received GPS signals. In this case, though a problem

was detected, none of the ny−1 satellite subsets could be considered bias-free, which prevented

the use of the FDE function. Moreover, a bound that largely exceeds the real errors entails an

excessively big confidence interval.

• The navigation filter using the smooth correction criterion in Fig. 4.13 presents highly inter-

esting performances. If compared with Fig. 4.11, it can be seen that most of the inconsistent
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solutions were successfully corrected. This means that the pseudorange outliers were correctly

detected and replaced by suitable smoothed pseudorange or Doppler measurements. The best

performances in terms of mean and bounded error were obtained for this strategy.

• Fig. 4.14 outlines the contribution of the smoothed pseudorange measurement. The 58% of the

times a pseudorange outlier was detected the smoothed pseudorange was used, against the 42%

of the times for the Doppler measurement.
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Figure 4.11: Standard EKF-based navigation filter

0 500 1000 1500
0

100

200

300

400

500

600

700

800

Time [s]

E
rr

o
r 

[m
]

 

 

Horizontal error
Bound

(a) RAIM+FDE strategy
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Figure 4.12: RAIM+FDE strategy. Errors highlighted in green correspond to time instants where

non reliable measurements were excluded while black dots indicate that RAIM+FDE strategy was

not available.
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Figure 4.13: Navigation filter using the smooth correction criterion. Errors highlighted in green

correspond to time instants where alternative measurements were used
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Figure 4.14: Number of alternative measurements used. Top figure: smoothed pseudorange (PR).

Bottom figure: Doppler measurements

A further correction strategy is implemented to put in evidence the contribution of the innovative

smoothed pseudorange. Consider that the correction criterion is no longer described by a two threshold

approach, but by a sole cut-off threshold. In this way, either the pseudorange is reliable, either it

must be replaced by its corresponding Doppler measurement. No gradual transition, represented by
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the smoothed pseudorange, is possible. This new threshold is set to ζ = 3, remembering that for Fig.

4.13 ζ1 = 2 and ζ2 = 4 were considered. Results for this binary correction criterion are presented in

Fig. 4.15. It can be observed that when a binary correction criterion is used navigation performances

are degraded if compared with Fig. 4.13. The peak presented in Fig. 4.15(a) around t = 750s can

be explained by the incorrect inclusion of Doppler measurements. Indeed, though more robust than

pseudoranges to urban phenomena, Doppler measurements still experience some interferences effects.

Hence, the non corrected peaks in Fig. 4.13. Therefore, if Doppler measurements are not correctly

exploited, they can produce biased solutions. Consider this situation takes place at time instant t.In

the following time instant t+1 a false outlier detection will be declared preventing pseudoranges from

compensating the position error. Even if in t+ 1 the Doppler measurement is no longer erroneous, it

will only provide velocity information to propagate the previous biased position estimation. Hence,

the contribution introduced by the smooth correction criterion where an extra degree of freedom is

introduced to relax the fault detection threshold computation.
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(a) Errors highlighted in green correspond to time in-

stants where Doppler measurements were used.
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Figure 4.15: Results for reliability test using a binary correction criterion. In this case only Doppler

measurements are exploited as an alternative to pseudoranges.

Table 4.2 summarizes the performances for the EKF-based correction criteria. The Bound error

parameter is aimed at providing information on the percentage of horizontal position errors that are
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correctly described (i.e. contained) by the computed bound.

GPS filter

Mean 50% bound 95% bound Bounded error

Standard GPS filter 8.77 6.97 19.88 90%

Smooth correction criterion 7.82 6.38 19.55 96%

Binary correction criterion 8.62 7.67 17.7 63%

Table 4.2: Horizontal error statistics in meters and percentage of correct bounded error for GPS filter.

Error values highlighted in green represent the best performances.

The smooth correction criterion is now applied to a hybrid GPS/DR-sensors approach to provide

a complete navigation system especially adapted to urban scenarios. Based on the good performances

observed in the previous chapter, wheel speed sensors (WSSs) are used. An additional 1 axis gyro

specially adapted to vehicle navigation is tested to enhance the DR navigation performance. Fig.

4.16 illustrates the stand-alone DR positioning solution for the WSSs and WSS/Yaw strategies. The

accurate gyro clearly helps to overcome WSSs limitation in the heading angle computation.

Figure 4.16: Vehicle circuit for different navigation systems in Toulouse centre.

Figs. 4.17 and 4.18 present the advantages of implementing the smooth correction criterion. While
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the use of DR sensors already helps to filter the presence of “measurement errors” (Figs. 4.17(a)

and 4.18(a)), the inclusion of the smooth correction criterion enables very good performances to be

obtained (Figs. 4.17(b) and 4.18(b)). Results for the GPS/WSS and GPS/WSS/Yaw approach are

summarized in table 4.3.
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Figure 4.17: Position errors (in blue) and bounds (in red) with GPS/WSS filter. (b) errors highlighted

in green correspond to time instants where alternative measurements were used.
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(a) Standard GPS/WSS/Yaw filter.
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Figure 4.18: Position errors (in blue) and bounds (in red) with GPS/WSS/Yaw filter. (b) errors

highlighted in green correspond to time instants where alternative measurements were used.
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Mean 50% bound 95% bound Bounded error

GPS/WSS
Standard 8.35 6.59 20.21 90%

Smooth correction criterion 7.78 6.04 19.28 93%

GPS/WSS/Yaw
Standard 7.73 6.29 18.52 91%

Smooth correction criterion 6.97 5.72 16.45 96%

Table 4.3: Horizontal error statistics in meters and percentage of correct bounded error for GPS/DR

filter. Error values highlighted in green represent the best performances.

4.9 Conclusions

This chapter presented an innovative technique to work on the reliability and integrity of GPS mea-

surements in urban scenarios. The proposed smooth correction criterion was aimed at providing

an intelligent strategy to exploit the positive aspects of the pseudorange and Doppler measure-

ments. In particular, “relative ” Doppler measurements were proposed as an alternative/complement

to “absolute” pseudorange measurements. Performances were contrasted with the commonly used

RAIM+FDE integrity strategy. As the reliability analysis is individually performed on each measure-

ment for the smooth correction criterion , no satellite visibility constraints need to be met. In this

way, the proposed integrity strategy did not only overcome the RAIM availability problem but it also

enabled a low error, accurate bounded solution. The GPS/WSS/Yaw hybrid system using the smooth

correction criterion appeared as an excellent choice when accurate and reliable position estimations

need to be guaranteed under challenging scenarios.



146 CHAPTER 4. DOPPLER SMOOTHING



Chapter 5

Multipath mitigation by error

identification
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This chapter investigates the impact of the usually leading source of error in urban phenomena:

multipath. Contrary to the previous chapter, the compensation of erroneous pseudoranges will not
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rely on the robustness of alternative GPS measurements (hypothesis that presented some flaws in the

previous chapter). Herein, only pseudorange measurements will be exploited. Indeed, in the presence

of outliers an innovative algorithm will be deployed to compensate the error presence.

The navigation system is complemented by a two-step detection procedure that aims at classifying

outliers according to their associated source of error. Two different situations will be considered in

the presence of multipath. These situations correspond to the presence or absence of line of sight

signal for the different GPS satellites. Therefore, two kinds of errors are potentially “corrupting”

the pseudoranges, modeled as variance changes or mean value jumps in noise measurements. An

original multiple model approach is proposed to detect, identify and correct these errors and provide

a final consistent solution. The GPS/WSS/Yaw hybrid system which showed interesting navigation

performance in the previous chapter will be also tested with the proposed multipath mitigation

strategy. Indeed, we are going to present an approach where we will benefit from dead-reckoning

sensor multipath immunity to enhance the outlier detection.

5.1 Overview on existing multipath mitigation techniques

Several methods can be found in the literature concerning multipath mitigation. Different configura-

tions of antenna arrays are among the hardware solutions [Cou99], [WDR01]. Working on the receiver

correlator output to mitigate the impact of multipath during tracking is another well known approach

[DFF92], [MJC01]. However, all these strategies are characterized by their high complexity. In order

to avoid these difficulties (and be hardware-independent), multipath mitigation can be performed on

the data processing stage. Each “defective” pseudorange is considered to be affected by an error that

represents the total contribution of all the multipath signals to the measurement computation.

Multipath detection and correction has already received some attention in the literature. Giremus

et al. [GT05] studied a Rao Blackwellized particle filter based on a jump Markov system. The pro-

posed algorithm modeled the multipath NLOS situation by a mean value jump whose magnitude was

jointly estimated with the vehicle position and velocity. Another two-hypothesis Bayesian approach

was considered in [VNMD08]. The interfered signals were characterized by error models based on
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Gaussian mixtures and the tracking was performed using particle filtering. However, the existing

algorithms described above require to define a priori distributions for the NLOS error. This a priori

knowledge is not easy to obtain in real urban scenarios. Moreover, the high computational cost of

particle filters is a problem for land vehicle applications.

5.2 Multipath interference

As already explained in section 1.2.3, in the presence of multipath pseudoranges are affected by errors.

The most important errors occur when the multipath is in phase with the direct signal (i.e. φ̃1 = 0◦)

or in phase opposition (i.e. φ̃1 = 180◦). It is important to note that the error magnitude depends on

the correlation function shape and on the type of discriminator used. The error envelope presented

in Fig.5.1 shows the maximum errors attained in the GPS pseudorange calculation as a function of

the multipath delay interfering the direct signal for a given receiver configuration. Any error between

these two bounds, depicted by the shaded area, corresponds to −180◦ < φ̃1 < 180◦. A coherent dot

product delay lock loop (DLL) was used for the code tracking with 1/2-chip spacing between each

correlator. The multipath was assumed to be attenuated by 3 dB after reflections (i.e. Ã1 = 0.5).

For a deeper insight on the GPS signal tracking process the reader is invited to consult [WBH06a].
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Figure 5.1: Error envelope

In order to detect the presence of an anomaly in the GPS signal, the actual error distribution

will be studied and contrasted to the nominal error distribution due to the sole presence of noise.
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Therefore, several pseudorange samples will be needed. Though instantaneously a pseudorange might

seem affected by a bias, within an observation window, this error can remain constant or vary over

time. This phenomenon will depend on the characteristics of the received reflected signal at each

time instant, that themselves depend on the navigation scenario and vehicle dynamics. This chapter

proposes to study two kinds of errors: either the error remains approximately constant over the

observation window and is modeled as a mean value jump [GTC07; HV06], either the error varies

over time and it is modeled as a noise variance jump (in [MHG+05] this phenomenon is studied

for aerial navigation). To validate these two hypotheses Fig. 5.2 presents results for the test field

campaign described in section 4.8. Similarly to section 4.8.2, the pseudorange errors for two different

satellites are shown in the top figures. The histograms of the normalized errors (i.e. errors divided

by their corresponding noise standard deviation) are displayed in the bottom figures. In open sky

scenarios the normalized pseudorange errors follow a Gaussian probability density function (pdf)

[Lei04]. Conversely, the bottom figures show that the Gaussian pdf assumption is not valid for the

considered satellites. In Fig. 5.2(c) the noise variance seems to be underestimated by the fitted

Gaussian pdf, whereas Fig. 5.2(d) shows a mean shifted error histogram. Note that the pseudorange

errors presented similar characteristics in [VNMD08] and [DH08] under different conditions.

Hereafter, the presence of multipath introducing a mean value jump will be referred to as NLOS

interference, while the noise variance jump will correspond to the LOS interference. In NLOS situa-

tions, only a reflected signal due to multipath is received and tracked (a constant bias is present in the

pseudorange measurement). In the LOS situation, the measurement is composed by the direct signal

plus delayed reflections. Considering that the relative parameters (i.e. Ã, φ̃, τ̃) vary over time, the

value and sign of the introduced errors will be constantly changing and this situation will be modeled

by a noise variance jump. Indeed, the actual mean value jump does not only represent a NLOS

situation but also an LOS situation where the vehicle is not moving (i.e. the multipath amplitude,

delay and phase are constant, so its final contribution to the direct received signal is also a mean

value jump). However, as this error is finally considered under the hypothesis H1, the approach is

still valid without loss of generality. The following section makes explicit the relation between these

two types of errors and the received measurement model.
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Figure 5.2: Pseudorange errors in urban scenarios. (a-b) actual pseudorange errors for two different

satellites. (c-d) normalized pseudorange error histogram (blue dotted line) and nominal Gaussian

pdfs (solid red line).

5.3 State-space models

5.3.1 State model

The state model described in section 4.5 is used herein. We recall that the state vector is given by:

Ẋt =
(
λ̇t, ϕ̇t, v̇n,t, v̇e,t, ḃt, ḋt

)T
GPS
∈ R6, (5.1)

For further details on the state transition and noise matrix please refer to section 4.5.
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5.3.2 Measurement model

The pseudorange measurements associated to the ith satellite can be written as

Yt,i =
∥∥pst,i − pt∥∥+ bt +mt,i +

√
(σ2
t,i + r2

t,i)wt,i, (5.2)

where

• Yt,i is the ith pseudorange measurement associated to the ith visible GPS satellite for i = 1, ..., ny

(ny being the number of visible satellites),

• pst,i = (xst,i, y
s
t,i, z

s
t,i) is the ith GPS satellite position expressed in ECEF rectangular coordinates,

• pt is the vehicle position expressed in ECEF rectangular coordinates. It is obtained from the

state variables (λt, φt, ht, considering ht known) with an appropriate frame transformation (for

more details see [FB99, ch. 2]),

• bt is the receiver clock bias,

• mt,i represents a possible mean value jump for the ith satellite,

• σ2
t,i is the measurement noise variance in nominal conditions for the ith satellite,

• r2
t,i represents a possible noise variance jump for the ith satellite,

• wt,i is a zero mean Gaussian variable such that wt,i ∼ N (0, 1).

The ny measurements are usually concatenated according to

Yt = h(Xt) +Mt +R
1/2
t wt (5.3)

where

• Yt = (Yt,1, ..., Yt,ny)T is the pseudorange measurement vector,

• h(Xt) = ‖pst − pt‖ + bt represents the measurement function including a frame transformation

from the geodetic state coordinates to the rectangular coordinates as described in (3.51),
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• Mt = (mt,1, ...,mt,ny)T where mt,i 6= 0 if the ith satellite is affected by a mean jump and

mt,i = 0 otherwise.

Assuming the pseudoranges are independent, the measurement noise covariance matrix Rt is expressed

as

Rt =


σ2
t,1 + r2

t,1 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 σ2
t,ny + r2

t,ny

 . (5.4)

where rt,i 6= 0 if the ith satellite is affected by a noise variance jump and rt,i = 0 otherwise.

5.4 Multipath mitigation approach

5.4.1 Multi-hypothesis approach

Usual multipath mitigation schemes based on pseudorange measurements consider a binary system

where the received signals are either bias-free or they are subjected to a multipath interference. In this

chapter we propose to further develop the interference processing by introducing two different models

for LOS and NLOS interferences. The assumption considering an error introduced by the presence of

multipath is decomposed in order to identify the specific source of this error. Although a change in

the noise variance (i.e. NLOS case) does not have such a strong impact on the positioning accuracy

when compared to a mean value jump, it reveals to be a crucial factor when a precise bounding must

be given for the final position solution. As a consequence, we propose a three hypothesis model to

detect, identify and correct measurement errors due to multipath:

• H0: absence of error (only the direct signal is tracked and nominal σ2
t,i is considered to correctly

model the pseudorange zero-mean measurement noise),

mt,i = 0, r2
t,i = 0. (5.5)
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• H1: the received measurement is in NLOS situation and affected by a mean value jump,

mt,i 6= 0, r2
t,i = 0. (5.6)

• H2: the received measurement is in LOS situation and is affected by a variance change in the

additive noise,

mi,t = 0, r2
i,t 6= 0. (5.7)

Under hypothesis H0, the model error (i.e., the additive noise) has a Gaussian distribution. However,

under hypotheses H1 and H2, the nominal Gaussian distribution is no longer valid because of mul-

tipath presence. The errors associated to the two hypotheses H1 and H2 were modeled as Gaussian

mixtures in [VNMD08]. However, when analyzed more in detail, these mixture models (obtained

from a real navigation scenario) can also be decomposed into a mean-shifted or a variance-increased

Gaussian distribution (see Fig. 4 of [VNMD08]). This decomposition considerably facilitates the anal-

ysis when compared to a Gaussian mixture model. Indeed, determining the number of components

participating in a Gaussian mixture is fairly complicated.

5.4.2 System outline

Similarly to section 4.4.2 (eqs. (4.12)-(4.14)), the EKF innovations will be used to detect the presence

of anomalies in the pseudorange measurements. A hierarchical method is proposed for error detection

and later for error identification and correction. The idea is that this multi-stage approach enables

an urban-adapted navigation filter without entailing heavy computations in clear sky scenarios. The

mitigation scheme is described as follows:

1. Error detection:

The presence of an error is detected by performing a statistical test on the innovations

It(H0) = Yt − Y (X̂t|t−1), (5.8)

where It = (It,1, . . . , It,ny) and It,i(H0) ∼ N (0, s2
t,i) where st,i is the ith diagonal element of the

covariance matrix St define in eq. (4.13) with r2
t,i = 0.
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2. Error identification:

In case an error has been detected, a parallel processing is achieved for classifying the two

possible sources of error. Two “time of occurrence” tests are performed simultaneously for the

detected outliers. These outliers can be affected by a mean value jump or by a variance change in

the additive noise. The most likely hypothesis (H1 orH2) is then considered for error correction.

3. Error correction:

The innovation model is updated by correcting either the noise mean value or the noise variance,

depending on the hypothesis that has been detected in the identification step. The corrected

model is then fed back to the main system (composed by the EKF) that computes the final

position.

Fig. 5.3 illustrates the above mentioned approach. Details about the detection, estimation and

correction of errors are provided in the following sections.

Figure 5.3: Proposed strategy for the detection, identification and correction of outliers.
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5.5 Error detection

The first step of the algorithm detects the presence of corrupted signals referred to as outliers. The

type of error affecting the signal is not specified at this point. This hierarchical approach, where

the outliers are first detected and their source of error is later identified, is preferred to a strategy

where the three hypothesis are simultaneously studied for every received signal because of its lower

computational cost (considering that usually the number of received signals largely exceeds the number

of outliers). A binary hypothesis test is performed to determine the absence (hypothesis H0) or

presence (hypotheses H1 and H2) of an error in the measurements. The test is achieved for each of

the ny received signals through their respective innovations. A test based on the knowledge of the

C/N0 ratio was presented in [VNMD08] to decide whether the received signal is error corrupted or

not. However, if the multipath is in phase with the LOS signal, this test may no longer be valid. This

chapter considers a sliding window of N samples as observation window and assumes that the error

(when it exists) is constant during this period of time. The normalized energy of the innovations for

each of the ny observation windows containing N samples is computed. The detection of errors is

then achieved as follows:

Tt,i =
t∑

j=t−N+1

I2
j,i

s2
j,i

H0

≶
H1 or H2

α ∀i = 1, . . . , ny (5.9)

where α is the detection threshold related to the probability of false alarm (PFA) of the test, and

Ij,i and s2
j,i are obtained as explained in the previous section. The test statistics Tt,i is distributed

according to a central chi2 distribution with N degrees of freedom (denoted as χ2
N ), under hypothesis

H0. An accurate estimation of each innovation error distribution underH0 (i.e. N (0, s2
j,i)) is supposed

to be available. The critical factor to obtain a precise value of s2
j,i is to be able to correctly determine

the nominal measurement noise variance σ2
t,i associated to each ith measurement. Further details on

the way this variance is calculated in practice are given in section 5.8.

If the test statistics Tt,i exceeds the threshold αt,i, the presence of an error is declared for the ith

measurement and the error estimation procedure is used to determine the kind of error affecting the

received measurement. Fig. 5.4 shows hypothetic innovation error distributions under the hypotheses

H0, H1 and H2. It can be seen that the presence of error in the measurements (hypotheses H1 and
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H2) yields innovations with larger energy than under hypothesis H0. It is important to note that the

threshold determination does not depend on the innovation distributions associated to H1 and H2.

Moreover, no knowledge about the mean value jumps and the variance changes in the additive noise

has to be known to compute the test statistics.

0 
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j )

r m

Figure 5.4: Innovation pdf p(It,i|Hj) (solid line for j = 0, dashed line for j = 1 and dashed-dotted

line for j = 2).

The detected outliers are isolated from the solution in standard reliability tests. Such an approach

is valid in clear sky scenarios where there is a large number of received measurements. However, in

urban environments, visibility over the GPS constellation is scarce and measurement exclusion may

lead to an undetermined system. Therefore the maximum number of received measurements is needed

to compute the position solution. Thus the detection step must be followed by the estimation and

correction of the anomaly. This is the objective of the following sections.

5.6 Error identification and correction

Once an outlier has been detected, its source of error has to be identified and corrected. Estimates

of m and r are simultaneous computed and just the most likely type of error is used to determine the

final navigation solution. Due to the recursive nature of the EKF, not only the error magnitude must

be estimated but also its time of occurrence. Note that the error magnitude is generally smoothed

within the observation window in (5.9), so that the effective time of detection of the error does not
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match its real time of occurrence k. In case of miss detection, the error gets propagated through

the state vector, and the estimated error magnitude can differ significantly from the real value. As a

consequence, both hypotheses H1 and H2 depend not only on the error parameter m or r (that are

supposed to be constant inside the observation window) but also on the time of occurrence k (where

k can take any value within the observation window containing samples from time instant t−N + 1

to time t) that should be estimated carefully. Change detection techniques such as the Neyman

Pearson test [VT01, page 33] need to know the model parameters conditionally to each hypothesis

in order to provide an optimal solution. Unfortunately, this is not the case in practical applications

where neither the time of occurrence of the change nor its magnitude are known. A test for error

identification conveniently adapted to such situations is derived.

5.6.1 Time of occurrence estimation

The time of occurrence estimation can be achieved by using the marginalized likelihood ratio (MLR)

proposed by Gustafsson [Gus00]. However, this test requires an a priori knowledge about the proba-

bility distributions of the parameters to be estimated (mean value jumps or variance changes in our

case). An alternative is the generalized likelihood ratio (GLR) [WJ76] which considers the jump as

an unknown constant (as opposed to a random variable). The GLR proceeds for each qth detected

outlier (where q ∈ [1, ..., ny]) to a double maximization over the variable of interest (m or r) and the

time of occurrence k. However, implementing the GLR in our system presents two main drawbacks.

On one hand, a bank of Nno recursive least square filters (where no denotes the number of detected

outliers) must be deployed for each hypothesis (considering that the ensemble of outliers follows ei-

ther H1 or H2), which presents a heavy computational cost for systems where the estimation delay

must be extremely short. On the other hand, the GLR proposed in [WJ76] is based on the idea

that the relation between the error affecting the measurement and the EKF innovations can be made

explicit and represented as a linear regression. However, even if a linear and recursive model can be

easily stated for a mean value jump, this is not the case for noise variance changes. Hence, a time

of occurrence test adapted to land navigation phenomena is proposed hereafter where just one filter

is deployed for hypothesis. For the sake of simplicity, the estimation scheme will be developed under
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the assumption that the whole ensemble of no outliers follows either H1 or H2. It will be discussed

later in this section the performance of the strategy in a more general situation where each outlier is

independently affected by H1 or H2.

A first estimation of the possible jump magnitudes (m̂(k) or r̂(k), ∀k = t−N+1, . . . , t) is followed

by the detection of the time of occurrence k̂. More precisely, the most likely time of occurrence k̂t,q

for hypothesis H1 is defined as:

k̂t,q(H1) = arg min
k
{k|lt [k, m̂t,q(k)] > γ1} , (5.10)

(5.11)

where lt [k, m̂t,q(k)] is the log-likelihood ratio for the qth outlier under hypothesis H1 at time instant

k, and γ1 is the test threshold that is fixed according to given prior probabilities for hypotheses H1

and H0. Indeed, once the likelihood function overpasses the given threshold, k is chosen as the time

of occurrence of the error (i.e. k̂t,q = k) and the associated mean value jump m̂t,q(k) is considered

to remain constant for the rest of the observation window. The estimation of the mean value jump

corresponding to the qth detected outlier and associated to a time of occurrence k is obtained as the

mean value of the (t− k)th previous EKF innovation samples

m̂t,q(k) =
1

t− k + 1

t∑
j=k

Ij,q, ∀k = t−N + 1, ..., t. (5.12)

where Ij,q denotes the nominal qth innovation computed under hypothesis H0 (i.e., Ij,q = Ij,q(H0)).

It should be noted that eq. (5.12) is valid under the assumption that a suitable observation window

length has been chosen (i.e., the window is long enough to filter the noise contribution and short

enough so that the state estimates have not significantly responded to the error). The log-likelihood

ratio lt [k, m̂t,q(k)] for every possible time of occurrence k is calculated using the innovation samples

at time instant k as follows

lt[k, m̂t,q(k)] = log
[
p (Ik,q|H1)
p (Ik,q|H0)

]
, (5.13)

with

p (Ik,q|H1) = p[Ik,q(H1)], (5.14)
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where p(Ik,q|H1) represents the pdf associated to an error m̂t,q(k) at time instant k for Ik,q, and where

the EKF innovation Ik,q(H1) calculated under hypothesis H1 is obtained from

Ik(H1) = Yk − Y [X̂k|k−1(H1)]− M̂k, (5.15)

where Ik(H1) is the innovation vector, Ik,q(H1) is its qth element, X̂k|k−1(H1) is the propagated state

vector under hypothesis H1 and M̂k is the mean value jump vector of dimension ny × 1. Each of the

i elements of vector M̂k is defined as

• M̂k(i) = 0, if i 6= q (non corrupted measurement),

• M̂k(i) = m̂t,q(k), if i = q and the time of occurrence has not yet been detected for the qth

outlier,

• M̂k(i) = m̂t,q(k̂t,q(H1)), if i = q and the time of occurrence has already been detected for the

qth outlier (i.e k > k̂t,q(H1)).

According to (5.15), each Ik,q(H1) follows a Gaussian distribution N (0, s2
k,q), where s

2
k,q is calculated

under hypothesis H0 as in (4.13). The propagated state vector X̂k|k−1(H1) in (5.15) is computed as

X̂k|k−1(H1) = F X̂k−1(H1), where X̂k−1(H1) is the corrected state vector under hypothesis H1 at

time k−1. If no outlier has been detected at k−1 then X̂k−1(H1) = X̂k−1(H0). Hence, the corrected

state vector at time k which depends on Ik(H1) and will be used at time k + 1 for the computation

of X̂k+1|k(H1), is defined as

X̂k(H1) = X̂k|k−1(H1) +KkIk(H1), (5.16)

where Kk is the EKF gain matrix under nominal conditions (hypothesis H0) and Ik(H1) is obtained

from (5.15). Eqs. (5.15) and (5.16) highlight the straight relation between a correct innovation model

and an unbiased position estimation
(
contained in X̂k(H1)

)
and viceversa.

Similarly to the “time of occurrence estimation” for hypothesis H1 presented in Eqs. (5.10) to

(5.14), the most likely time of occurrence under hypothesis H2 is

k̂t,q(H2) = arg min
k

{
k|lt

[
k, r̂2

t,q(k)
]
> γ2

}
, (5.17)

(5.18)
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where γ2 is the test threshold that is fixed according to given prior probabilities for hypotheses H2

and H0. The noise variance jump estimation r̂2
t,q(k) for each possible time of occurrence k is defined

as

r̂2
t,q(k) =

1
t− k + 1

t∑
j=k

[
I2
j,q − s2

j,q

]
. (5.19)

The nominal innovation variance s2
j,q (estimated under hypothesis H0 and obtained from (4.13))

is subtracted from the calculated innovation variance in order to obtain the noise variance jump

associated to the measurement. The likelihood function for H2 is defined as

lt[k, r̂2
t,q(k)] = log

[
p (Ik,q|H2)
p (Ik,q|H0)

]
, (5.20)

for

p (Ik,q|H2) = p[Ik,q(H2)], (5.21)

where p(Ik,q|H2) represents the pdf associated to an error r̂2
t,q(k) at time instant k for Ik,q, and

where the EKF innovation Ik,q(H2) calculated under hypothesis H2 follows a Gaussian distribution

N (0, s2
k,q(H2)) according to

Rk(H2) = diag(Θ̂k), (5.22)

Sk(H2) = HkPk|k−1H
T
k +Rk(H2), (5.23)

where s2
k,q(H2) corresponds to the qth element from the diagonal of Sk(H2) and Θ̂k is the measurement

noise variance vector where each of its i elements is defined as

• Θ̂k(i) = σ2
k,i, if i 6= q (non corrupted measurement),

• Θ̂k(i) = σ2
k,i + r̂2

t,q(k), if i = q and the time of occurrence has not yet been detected for the qth

outlier,

• Θ̂k(i) = σ2
k,i + r̂2

t,q(k̂t,q(H2)), if i = q and the time of occurrence has already been detected for

the qth outlier (i.e k > k̂t,q(H2)).
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The corrected state vector under hypothesis H2 is then calculated as

X̂k(H2) = X̂k|k−1(H2) +Kk(H2)Ik(H2), (5.24)

where the EKF gain matrix Kk(H2) under hypothesis H2 is computed using (5.23) according to

Kk(H2) = PkH
T
k (Sk(H2))−1 , (5.25)

and the innovation vector Ik(H2) (where Ik,q(H2) is its qth element) is described as follows

Ik(H2) = Yk − Y [X̂k|k−1(H2)]. (5.26)

In this way, Eqs. (5.22) to (5.26) highlight the dependence among the estimated noise variance

parameter r̂2
t,q, the final position solution contained in X̂k(H2) and the innovations Ik,q(H2) to be

used for the “time of occurrence test” in (5.20).

Some pertinent remarks are made on the “time of occurrence test” algorithm related to both

hypothesis H1 and H2 to facilitate the comprehension of the proposed approach:

1. For the computation of X̂k(·) all the available ny innovations are used.

2. Only the innovations associated to the detected no outliers are corrected.

3. The innovation vector Ik(·) contains (ny − no) non corrected innovations.

The proposed strategy was presented under the assumption that the whole ensemble of detected

outliers was affected by the same type of error. For a more general case, where no correlation among

the errors of the measurements is assumed, the straightforward strategy would be to build a bank of

2no filters, each of them considering a possible combination of sources of error (mean value or noise

variance jump) for the no detected outliers. In urban areas where many simultaneous outliers can

be present, this solution presents a high computational cost. However, we will now explain why the

above developed strategy is also well suited to independent error measurements. Consider the general

case where two measurements are simultaneously corrupted at time instant (t − d) (where d < N)

and that the error detection (5.9) is achieved at time instant t. Assume for instance that the first
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measurement Y1 is affected by a mean value jump and the second measurement Y2 is affected by a

noise variance jump. At the output of each of the two filters considering exclusively H1 or H2 we will

obtain:

• For the H1 filter: once theH1 test (5.10) is performed for the innovation samples corresponding

to the (t − d) instant, the presence of an error will be detected in both measurements. For Y1

a mean jump value will correctly compensate the innovation model. For the Y2 innovations a

mean jump compensation will also be achieved (because we are working under the H1 filter).

However, according to (5.12), this estimated bias will approximately equal zero ( because Y2

was just affected by a noise variance jump). As previously stated in the chapter, a non corrected

noise variance jump affects mainly the covariance matrix of the state vector, not its mean value.

Therefore the Y1 corrected innovations (5.15) won’t be significantly affected by the non detected

noise variance jump in Y2. This result is important for the next section, where the identification

of the error is achieved through a likelihood test using all the compensated innovations of the

observation window.

• For the H2 filter: at (t− d) the H2 test (5.17) will detect an error in the two measurements.

The innovation model corresponding to Y2 will be correctly compensated by a jump in the noise

variance. The Y1 innovation model will be compensated by a fictitious noise variance jump.

The value of this variance jump will be proportional to the actual mean value jump affecting

Y1 (5.19). In theory, any non detected mean jump entails important biases in the state vector

parameters (which will later condition the innovation calculation). However, the contribution

of Y1 to the state vector estimation is inversely proportional to its associated noise variance

(i.e. if the noise variance is high, the EKF gain (5.25) for the measurement innovation will

be low). Therefore, potentially high mean value jumps will be deweighted during the filtering.

In this way, the corrected Y2 innovation model (5.26) won’t be significantly affected by the

non-compensated bias in Y1.

It is important to note that this discussion is valid even if the times of occurrence of the errors are

not the same.
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5.6.2 Error identification

After the time of occurrence detection was performed in parallel for H1 and H2, a decision must

be taken on the actual source of error affecting each outlier (i.e. either H1 or H2). Two different

situations have to be considered at the output of the time of occurrence test:

1. An estimation of the error parameters corresponding to each outlier has been obtained under

H1 (with k̂t,q(H1), m̂t,q) and H2 (with k̂t,q(H2), r̂2
t,q)

2. The presence of an error has been detected for only one hypothesis (i.e. for only one of the

likelihood tests (5.10) or (5.17)).

In the second situation, no further test is required to decide on the measurement error source: the

sole hypothesis under which the error was detected is considered as the actual source of error (mean

value jump for H1 or noise variance jump for H2). However, if an error has been detected under

both hypotheses, a final solution must be taken regarding the real origin of this error (remember that

the measurement is exclusively affected by H1 or H2). Assuming both H1 and H2 have the same

probabilities, the test for deciding between H1 and H2 (i.e. the measurements are affected by NLOS

or LOS interference) is defined by

p
[
It−N+1:t,q|k̂t,q(H1)

] H1

≷
H2

p
[
It−N+1:t,q|k̂t,q(H2)

]
(5.27)

with

p
[
It−N+1:t,q|k̂t,q(H1)

]
=

t∏
j=t−N+1

p [Ij,q(H1)] , (5.28)

p
[
It−N+1:t,q|k̂t,q(H2)

]
=

t∏
j=t−N+1

p [Ij,q(H2)] , (5.29)

where It−N+1:t,q = (It−N+1,q, ..., It,q).

5.6.3 Error correction

Once a decision has been taken regarding the source of error affecting each outlier, their associated

innovation model has to be corrected and fedback to the update stage of the EKF algorithm. More
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precisely, if the qth outlier is affected by NLOS errors (H1) the associated innovation is corrected

according to

Ĩt,q = It,q − m̂t,q

[
k̂t,q(H1)

]
, (5.30)

whereas if it is affected by LOS errors (H2) the measurement variance is corrected as

σ̃2
t,q = σ2

t,q + r̂2
t,q

[
k̂t,q(H2)

]
, (5.31)

where σ̃2
t,q and Ĩt,q denote the corrected parameters to be reinjected in the EKF algorithm. In the last

case, the corrected measurement variance is used for the new computation of the measurement noise

covariance matrix Rt. In this way, a final unbiased navigation solution is calculated. It is important

to observe that for the future error detection test in t + 1 (5.9), the Ĩt,q term will not replace the

original innovation parameter It,q calculated for H0. The observation window always contains the

non corrected innovations to enable the detection of an error during its whole duration.

The final algorithm for the detection/identification/correction strategy is summarized in Table

5.1.
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Initialization

• PFA (used for the calculation of αt,i and γ), window length N and state matrices X̂0 and P0.

For t = 1, . . . , end:

• EKF prediction step: compute

{
X̂t|t−1 = FtX̂t−1,

Pt|t−1 = FtPt−1F
T
t +Qt.

• Nominal EKF innovation (under hypothesis H0) so p(It|H0) ∼ N (0, St):

compute

{
It(H0) = Yt − Y (X̂t|t−1),

St(H0) = HtPt|t−1H
T
t +Rt.

• Initialize: Ĩt,i = I, it and σ̃2
t,i = σ2

t,i, ∀i = 1, . . . , ny.

• If t > N (enough samples in the observation window):

◦ Detection: error detection test according to (5.9)

◦ If T̃t,q == 1 ∀q ∈ [1, . . . , ny], the qth measurement is an outlier,

compute

{
m̂t,q(k),

r̂t,q(k),
∀q and ∀k = t−N + 1, . . . , t

I Implementation of an EKF considering hypothesis H1 for k = t−N + 1, . . . , t .

� Computation, for each outlier, of the likelihood ratios in (5.13) using m̂t,q(k) until the
time of occurrences k̂t,q(H1) are detected according to (5.10).

� Computation of the innovations Ik(H1).

I Implementation of an EKF considering hypothesis H2 for k = t−N + 1, . . . , t.

� Computation, for each outlier, of the likelihood ratios in (5.20) using r̂2t,q(k) until the
time of occurrences k̂t,q(H2) are detected according to (5.17).

� Computation of innovations Ik(H2) and their associated variances s2t,q(H2).

I Identification: compute likelihood tests in (5.27) to identify H1 or H2.

I Correction: the innovation model parameters for each outlier are corrected according to
their identified source of error,

replace

 Ĩt,q = It,q − m̂t,q

[
k̂t,q(H1)

]
if qth outlier ∈ H1,

σ̃2
t,q = σ2

t,q + r̂2t,q

[
k̂t,q(H2)

]
if qth outlier ∈ H2,

compute


R̃t = diag(σ̃2

t,i) ∀i = 1, . . . , ny,

S̃t = HtPt|t−1H
T
t + R̃t,

K̃t =
(
Pt|t−1H

T
t

)
/S̃t.

, and

{
X̂t = X̂t|t−1 +KtĨt,

Pt = Pt|t−1 − K̃tHtPt|t−1.

Table 5.1: Detection/identification/correction strategy to mitigate multipath interference.
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5.7 Land navigation system with GPS/WSS/Yaw hybrid approach

State-space models for the GPS/WSS/Yaw approach were presented in section 4.6 (where just the

pseudorange measurement model is considered herein). Though the reliability test principle (as al-

ready detailed in sections 5.5 and 5.6) does not change for the augmented system, a slight modification

is introduced in the computation of the observation window innovations Ij,i used in (5.9), (5.12) and

(5.19). The idea is to exploit the immunity of the DR (i.e. WSS/Yaw) navigation system against

multipath effects to compute these innovations. The N innovation samples corresponding to the

observation window are not taken from the already calculated innovations in (5.8), where the state

vector was used to predict the received measurements. Instead, they are recalculated using only the

DR measurements as follows

IDRj,i = Yj,i − Ỹj,i, (5.32)

where

Ỹj,i =
∥∥psj,i − p̃j∥∥+ bt−N +

j∑
u=t−N+1

dt−N∆t, (5.33)

p̃j =

(
at−N +

j∑
u=t−N+1

∆aDRu ∆t

)
llh2rec

, (5.34)

for j = t − N + 1, ..., t and i = 1, ..., ny. In these expressions, at−N = (λWSS/Yaw
t−N , φ

WSS/Yaw
t−N )T is

the DR vehicle position in the geodetic frame compensated by errors (δλt−N , δφt−N ) (estimated in

Xt−N ), bt−N and dt−N are respectively the clock bias and drift at time t−N , and ∆aDRu is expressed

as

∆aDRu =

 ∆λ̇u
(
Ṽu, ψ̃u

)
∆φ̇u

(
Ṽu, ψ̃u

)
,

with

Ṽu = Vu + δVt−N , (5.35)

ψ̃u = ψt−N + δψt−N +
u∑

e=t−N+1

(
ψ̇e + bg,t−N

)
∆t. (5.36)
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where Vt is the along-track velocity computed from the WSS outputs, ψt is the yaw angle obtained

by integrating the gyro outputs ψ̇t, and bg,t is the gyro bias. Note that ∆aDRu contains the vehicle

relative motion (∆λ̇u,∆φ̇u) at time u according to (2.12) and (2.29) (calculated from the corrected

DR measurements in Eqs. (5.35) and (5.36)). Indeed, DR measurements are corrected by errors

(δVt−N , δψt−N , δψ̇t−N ) estimated at time t − N . In this way, potentially biased state parameters

resulting from a non detected multipath error within the observation window do not affect (5.35)

or (5.36). Fig. 5.5 depicts the principle for computing the new estimated pseudoranges Ỹj,i. The

expression (·)llh2rec in (5.34) stands for a frame transformation into the rectangular coordinates. The

new covariance matrix SDRj associated to innovations in (5.32) does no longer correspond to (4.13)

obtained under H0, but is iteratively obtained as,

SDRj = HjβjH
T
j +Rj (5.37)

with

βu = Fuβu−1F
T
u +Qu, ∀u = t−N + 1, ..., j (5.38)

where β is initialized as βt−N = Pt−N , Pt−N being the updated state covariance matrix of the EKF

at time instant t−N . The estimated pseudorange measurements Ỹj,i are obtained according to (5.33)

by propagating an initial position estimation at−N with ∆aDRu . Therefore, a faster and more accurate

error detection is achieved. However, it must be observed that this DR position propagation strategy

is independent of the EKF implementation, i.e., the new IDRj,i does not replace the standard EKF

innovations (5.8) at time j and is only used for (5.9), (5.12) and (5.19).

This approach presents the advantage of including a second navigation system, not affected by

multipath, that enables a more efficient detection/identification/correction strategy. In the following

section, the performance of the augmented DR system is tested with real navigation signals and

compared to the stand alone GPS approach.
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Figure 5.5: Estimated pseudoranges obtained from the propagation of DR measurements.

5.8 Results

5.8.1 Simulated Data

This section validates the proposed detection/estimation algorithm using simulated data. A land

vehicle trajectory has been generated according to the state model (3.13) with acceleration standard

deviations (stds) σn = σe = 2m/s and σd = 0.2m/s (i.e. these acceleration stds apply to both the

trajectory generator and the EKF’s Q matrix). The received pseudorange measurements correspond

to a simulated GPS constellation with nominal noise std σ = 12m. The number of visible satellites

ny is constant and ny = 7. There are no changes in the constellation during the simulation period.

The satellite constellation is generated from online available GPS almanac data, with a 5◦ visibility

mask. The pseudoranges are supposed to be compensated by any type of atmospheric error. The

errors introduced in the measurements have been generated according to the model (5.2) as follows

• a mean value jump of 40m is introduced in the satellite number 1 between t = 30s and t = 60s,

• a noise std jump of 40m affects the same satellite for a time interval of 40 seconds between

t = 100s and t = 140s,

• a second satellite (satellite number 2) experiences a mean value jump of 40m between t = 110s

and t = 150s.
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The simulated errors were introduced to highlight the performance of the proposed navigation filter.

The first isolated mean value jump on satellite 1 (corresponding to hypothesis H1) is the type of

error that more visibly affects the positioning accuracy. The correct functioning of the filter is

tested for this critical situation. A simultaneous appearance of different errors is then studied. Two

satellites are corrupted by different types of errors during overlapped time intervals. In this way, the

algorithm is tested for its capacity to identify several defective measurements and their corresponding

source of error. The threshold for the error detection in (5.9) has been adjusted in order to obtain

PFA = 10−5. Based on several tests done using real data, a suitable observation window length

of N = 5 was used. This choice was motivated by the need to detect fast changing errors and to

achieve fast detection times, with no important losses in sensitivity. The data sampling period equals

1Hz. The estimation of the time of occurrence in (5.10) or (5.17) has been achieved with a threshold

γ1 = γ2 = 1 (considering no a priori knowledge on the error time of occurrence, so both H0 and H1

or H2 are given the same probability within the observation window).

The error detection/identification results for the interfered satellites are presented in Fig. 5.6.

The top figure shows results for satellite 1 and the bottom figure for satellite 2. The strategy reveals

a very good performance where the correct error hypothesis (H0, H1 or H2) is almost always detected.

Figs. 5.7 and 5.8 show the innovation pdfs corresponding to the two corrupted satellites. The nominal

Gaussian pdf is depicted in red while the actual normalized pdf for the EKF innovations is shown in

blue. The pdfs are obtained from all the available samples of the simulated satellites. Top figures (a)

present results for a standard EKF while bottom figures (b) correspond to the enhanced algorithm

proposed in this paper. The innovations do not have a Gaussian distribution in the first case because

the corrupted measurements are not compensated by the filter. Conversely, when errors are corrected

with the proposed algorithm, the histograms of the corrected innovations are close to the adjusted

Gaussian pdf.
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Figure 5.6: Error identification for the two interfered satellites. Dashed lines contain time intervals

where errors are present.
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Figure 5.7: Innovation distributions for satellite 1.

The results for the final estimated position are presented in Fig. 5.9. The horizontal position

errors (in 2D) are shown in blue and compared with their corresponding bounds illustrated in red.

The bounds are calculated as explained in section 4.7, for Pc = 10−5. Result for a standard EKF (i.e.
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Figure 5.8: Innovation distributions for satellite 2.

without any error control) are depicted in Fig. 5.9(a), whereas Fig. 5.9(b) shows results obtained

with the proposed detection/identification/correction filter. In the first case (Fig. 5.9(a)), the final

solution is either biased or not bounded during the intervals where errors are present. However, in

the second case (Fig. 5.9(b)) the corrected position estimates are in good agreement with the bound

thanks to the enhanced scheme.
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Figure 5.9: Final position errors (in blue) and bounds (in red).
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5.8.2 Experimental data

The previous subsection proved the relevance of the proposed algorithm under totally known con-

ditions (i.e. the exact vehicle position and the magnitude/time of occurrence of interferences were

known). This subsection studies the reliability strategy on real experimental data. Its performances

in terms of position error and correct bounding will be analyzed. Moreover, dead reckoning data

resulting from the WSSs and a gyroscope will be used to show the performance gain obtained when

the system is augmented with a second navigation reference. The experimental data was obtained

from the same test field campaign described in chapter 4, section 4.8. Indeed, this will enable a

performance comparison between the smooth correction criterion proposed in chapter 4 and the de-

tection/identification/correction strategy (also referred as DIC) proposed in this chapter. The bound

values correspond to Pc = 10−5. The velocity stds used for the computation of the state noise co-

variance matrix Q̃t (4.19) are σn = σe = 2m/s. Results obtained with the standard EKF (as in

Fig. 4.11) and the proposed error control algorithm, using only GPS signals for the navigation, are

depicted in Figs. 5.10(a) and 5.10(b). The error values and time instants where anomalies were

detected and successfully corrected are highlighted in green. Performances for the GPS/WSS/Yaw

approach are given in Figs. 5.11(a)-5.11(b). The stand-alone EKF (Fig. 5.11(a)) is compared to the

enhanced EKF+error control strategy (Fig. 5.11(b)). Table 5.2 summarizes the performances for all

these cases. Analyzing results we can observe that:

• The proposed enhanced EKF/DIC strategy clearly outperforms the standard solution by elim-

inating aberrant errors and providing an appropriated bounded solution. In this way, the DIC

strategy proves to be well-suitable to fight against real urban phenomena.

• As expected, the combination of DR data with the DIC approach provides excellent results. It

successfully compensates most of the inconsistent errors in Fig. 5.11(a) and provides bounded

solutions. Moreover, when the error correction function is active (see green bars in Fig. 5.11(a)),

the position error is reduced. The slight difference between the bounding performance of the

GPS and GPS/WSS/Yaw approach might be due to an actual underestimation of the noise

values associated to the sensors.
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• From the comparison between error tables 4.2-4.3 and 5.2 we can conclude that though both

the smooth correction criterion and the DIC strategy are interesting solutions to urban navi-

gation challenges, the last one provides better results. Contrasting performances for the robust

GPS/WSS/Yaw hybrid system, the percentage of bounded errors is the same for both strategies

but the final mean positioning error is reduced but almost one meter when using the DIC (6.18m

vs 6.91m). Nevertheless, it must be noticed that the trade-off for this enhancement in accuracy

is a higher computational cost (the smooth correction criterion is easier to implement than the

DIC strategy).
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Figure 5.10: Position errors (in blue) and bounds (in red) with GPS measurements. For the error

control strategies (b-c) and (d), the instants where a correction took place are shown in green.
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Figure 5.11: Position errors (in blue) and bounds (in red) with GPS+DR measurements. For the

error control strategy (b), the instants where a correction took place are shown in green.

Mean 50% bound 95% bound Bounded error

GPS
Standard 8.77 6.97 19.98 90%

DIC approach 7.51 5.82 18.01 98%

GPS/WSS/Yaw
Standard 7.73 6.29 18.52 91%

DIC approach 6.18 5.53 12.77 96%

Table 5.2: Horizontal error statistics in meters and percentage of correct bounded error. Error values

highlighted in green represent the best performances.

5.9 Conclusions

This chapter presented an enhanced navigation system adapted to urban canyon scenarios. The

originality of the proposed approach relies on the way the received signals are processed: a two step

procedure is used to detect multiple outliers and to classify these outliers according to the different

types of errors affecting the navigation signal. A hierarchical three-hypothesis test was implemented.

Two different situations were considered in the presence of multipath. These situations correspond to
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the presence or absence of line of sight (referred to as LOS and NLOS situations) over the multiple

GPS satellites. Therefore two kinds of errors were potentially “corrupting” the pseudoranges, modeled

as noise variance or mean value jumps. The time of occurrence and magnitude of these errors were

estimated. In this way, realistic measurement models could be obtained. A multiple model EKF

was considered as the best adapted solution for this fast-decision/on-line application. Furthermore,

the reliability strategy was adapted to exploit the “urban phenomena immunity” of dead reckoning

sensors. Simulated and real data validated the relevance of the proposed algorithm showing promising

results.
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The objective of this thesis is to present a reliable 2D GPS-based navigation system particularly

adapted to urban environments. The degraded quality of the received signal presents a main chal-

lenge when accurate and reliable positioning solutions are demanded. In urban canyon scenarios two

main problems are to be considered: a partial or total outage in the satellite visibility, and the lack

of integrity in the received pseudo-range measurement. The first problem is addressed by comple-

menting the satellite based navigation system with a dead-reckoning approach. The principle is to

use advantageously the redundancy of measurements. The second and most challenging problem is

caused by the presence of multipath . Two different approaches are studied with this purpose: firstly

by exploiting different types of GPS measurements (such as pseudorange and Doppler measurements)

according to their robustness to urban phenomena, secondly by studying and modeling the source

of error affecting the commonly used pseudorange signal, so that a consistent noise model can be

computed.

Three different hybrid navigation systems have been studied in this thesis. Focusing on land

vehicle navigation, GPS augmentations were achieved by the incorporation of inertial sensors (i.e.

accelerometers and gyros) and/or odometric data. In particular, on-board wheel speed sensors are of

particular interest because they are components of the Antilock Braking System (ABS), and they can

be exploited in new generation vehicles at no additional cost. Moreover, as velocity information is

obtained for the four vehicle wheels, a self-contained navigation system (based on differential odome-

try) is possible. A high level integration strategy was proposed to couple GPS, an inertial navigation

system (INS) and differential odometric data (referred as WSS). Though the GPS/INS/WSS system
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appeared as an interesting solution, due to the low quality of the exploited MEMS inertial sensors, re-

sults presented real weak performances. Differential odometry techniques are usually underestimated

because their limitation to correctly compute the vehicle heading angle. However, results obtained

within this thesis presented promising results for the GPS/WSS approach. A further strategy was

tested using WSS and a 1-axis gyro especially developed for vehicle navigation. Though this gyro also

belongs to the low-cost MEMS technology domain, its performances clearly outperformed those of the

previous exploited inertial measurement unit. In this way, a final hybrid approach specially adapter

to vehicle navigation could be proposed. Indeed, it is important to note that though an external gyro

was used herein, most modern vehicles already contain an on-board gyro. Hence the WSS/Yaw-gyro

DR strategy can be easily implemented at no additional cost. It must be also pointed out that the

1-axis gyro was not available at the beginning of the PhD, that is why its performances were only

evaluated during the second stage of this work.

An alternative to the standard Extended Kalman Filter (EKF) used for navigation was studied.

The Unscented Kalman Filter(UKF) recently start gaining an increasing attention within the satellite

navigation community. Its main advantage over the EKF is that no linearization must be applied

to the non linear pseudorange measurement equation. However, in the particular context of urban

land vehicle navigation using hybrid GPS/DR approaches the UKF didn’t present any significant

improvement over the standard EKF. This conclusion is in accordance with results presented in

[GPC06].

The presence of non-modeled measurement errors must be detected to avoid biased and inconsis-

tent solutions. Typical errors affecting GPS measurement reliability are introduced by urban canyon

phenomena in the form of multipath or cross correlation effects. Two different techniques were pro-

posed with this purpose. High sensitivity strategies were applied in both cases to enable the tracking

of typical low power urban signals.

GPS-based Doppler measurements are usually considered to be more robust to urban phenomena

than pseudoranges. This is explained by the different techniques employed by the receiver to compute

each of these measurements. Doppler measurements do not provide absolute position but only velocity

estimations, and so they are not suitable for a stand-alone navigation solution. Consequently, a
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dedicated management of the measurements used to compute the solution, that considers the quality

of the received GPS signal, was studied in this thesis. Under good reception conditions pseudorange

measurements are used. If this is no the case, Doppler measurement are incorporated to the filtering

solution in an innovative way. In particular, a weighted Doppler smoothing was proposed so the

absolute pseudorange measurements could be merged with the robust Doppler measurements. This

approach, referred as smooth correction criterion, presented very good performances when tested with

real data. Indeed, it enabled inconsistent navigation solutions to be eliminated and enhancements

over the total horizontal position error to be obtained.

The final approach proposed in this thesis doesn’t look for an alternative to erroneous pseudorange

measurements but it aims at detecting, identificating and correcting the source of error itself. The

specific case of multipath interference was considered. Multipath signals can arrive to the receiver

either in a line-of-sight (LOS) situation where the direct path is present (i.e. direct visibility over

the corresponding satellite), either in a non-line-of-sight (NLOS) situation where the received signal

contains reflected components only. We proposed to model the first case by a noise variance jump

while the second case was considered to introduce a mean value jump in the noise model. A three

hypothesis hierarchical technique was implemented. A first detection of an anomaly presence is

followed by the error identification and evaluation. The relevance of the algorithm was validated using

real and simulated data. Very promising results in terms of accuracy and correct error bounding were

obtained.

Several perspectives can be imagined for this work. In particular the following ones present a

special interest:

• Study the benefit brought by additional on-board sensors that can be find in new generation

vehicles. In particular, wheel pressure sensors should allow more precise WSS-based velocity

measurements while steering sensors should help to determine the heading angle.

• A formalization of the linear merging model between the pseudo-range and Doppler measure-

ments applied in the smooth correction criterion should be investigated. With this purpose,

several test field campaign should be done to enable an exhaustive study of the impact urban
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canyon phenomena present both on pseudorange and Doppler measurements.

• The choice of the confidence probability associated to the horizontal position bound compu-

tation should be standardized to account for any kind of urban phenomena. In this way, its

implementation to safety of life applications in urban environments could be possible.

• It should be considered the application of the proposed multipath mitigation technique in chap-

ter 5 to different areas where similar problems may be encountered. For example, similar errors

were considered to affect the mobile communication signals [HV06].

• The strategy proposed in chapter 5 could benefit from the use of Doppler measurements. We

imagine an approach where Doppler information could be exploited to enhance the performance

of the detection, identification and correction of erroneous pseudorange measurements. It will

be also interesting to speculate about a fourth signal reception hypothesis where both a mean

value and noise variance jump are considered.
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