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Résumé

Dans le domaine de la surveillance maritime, les systèmes d’identification et de positionnement

coopératifs tels que le système AIS (Automatic Identification System) sont souvent couplés à des sys-

tèmes permettant l’observation de navires non coopératifs comme les Radars à Synthèse d’Ouverture

(RSO). L’utilisation conjointe des images RSO et des signaux AIS peut permettre d’améliorer la

détection de certains navires dans des environnements denses et d’identifier d’éventuels scénarii de

piraterie. L’approche la plus répandue pour la fusion de données est la « fusion après détection »

où chacun des systèmes traite les données brutes de manière indépendante. Dans le contexte AIS et

Radar, trois niveaux de fusion peuvent être identifiés : 1) la fusion des données brutes, 2) la fusion

des données brutes d’un système avec une carte de détection issue de l’autre système, 3) la fusion des

cartes de détections issues des deux systèmes. Nous nous focaliserons sur les deux premiers contextes,

le dernier étant plus largement traité dans la littérature. Après avoir introduit les systèmes AIS et

Radar destinés à la surveillance maritime, nous détaillons la structure des données AIS et Radar,

ainsi que le traitement du signal utilisé pour décoder les signaux AIS ou former une image radar.

Le deuxième chapitre présente l’apport potentiel de l’utilisation conjointe des données brutes Radar

et AIS pour la détection de navires. Après avoir décrit le modèle des signaux reçus en fonction de

la position inconnue d’un bateau, nous étudions le problème de détection à l’aide d’un test basé sur

le rapport des vraisemblances maximales (test GLRT). Les performances théoriques de ce test sont

évaluées et permettent d’estimer le gain en performance par rapport à un traitement RSO seul. Ces

performances théoriques sont validées par simulations de Monte Carlo via le tracé de Caractéris-

tiques Opérationnelles du Récepteur (Courbes COR). Bien que les résultats soient encourageants,
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la mise en pratique en temps-réel de telles méthodes semble compliquée. Nous nous tournons donc

vers une solution sous-optimale mais réalisable, exploitant les données brutes Radar et une carte

de détections provenant du système AIS. Le troisième chapitre étudie la fusion des données brutes

Radar avec une liste de positions de navires, a priori fournie par le système AIS. Les navires étant

mobiles et les instants de mesures AIS et Radar n’étant pas les mêmes, les positions des bateaux

doivent être extrapolées. Deux cas sont alors traités successivement. Soit les erreurs d’extrapolations

sont inférieures à la résolution du radar et n’ont pas à être intégrées dans le modèle, soit ces erreurs

ne peuvent pas être négligées et doivent être prises en compte dans le modèle. Contrairement au

deuxième chapitre, quatre hypothèses d’intérêt peuvent maintenant être distinguées. En effet, en

plus des cas classiques de détection par les deux systèmes, on peut identifier les cas où seul l’un des

systèmes détecte un objet correspondent aux situations où un navire n’émet pas d’AIS ou un navire

qui biaise volontairement son AIS. Le problème peut se formaliser par deux tests d’hypothèses bi-

naires successifs. Ce processus permet d’une part de fusionner de manière naturelle les informations

AIS et radar, mais permet également d’améliorer la performance en détection du radar. La com-

paraison des performances de ce détecteur disposant de l’information a priori à celle d’une détection

radar classique montre qu’elle est moins sensible à la proximité et à la densité des autres navires. Le

quatrième chapitre présente le fonctionnement du simulateur que nous avons développé dans le cadre

de cette thèse pour tester les algorithmes sur différents scénarii de surveillance, à savoir un scénario

de piraterie sur un navire civil, un transbordement illégal et une navigation dans un environnement

dense.
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Abstract

Cooperative systems used for vessel identification and localization in the context of maritime surveil-

lance, such as the Automatic Identification System (AIS), are often coupled to systems that allow the

observation of uncooperative ships such as the Synthetic Aperture Radar (SAR). The combination

of information coming from the SAR image and AIS signals can improve the detection of some ships

in dense environments, but also allows possible piracy scenarios to be identified. The most common

approach for data fusion is the “fusion after detection”, where each system processes the raw data

independently. In the context of AIS and Radar, three levels of fusion can be identified: 1) fusion of

the raw data, 2) fusion of raw data from a system with the processed data (list of detection) from

the other system, 3) fusion of the detection lists formed by the two systems. We will focus on the

first two cases, since the last case has been more widely covered in the literature. After introducing

the AIS and Radar systems for maritime surveillance, we present structure of AIS data and radar

signals, as well as the signal processing used to decode these AIS signals or to produce a radar image.

The second chapter presents the potential benefits of the joint use of raw data from both radar and

AIS for ship detection. After having described the signal models associated with the unknown ship

position, we investigate the detection problem using a Generalized Likelihood Ratio Test (GLRT).

The theoretical performances of this test are evaluated and allow us to estimate the performance

gain in comparison to a single RSO processing. These theoretical results are validated by Monte

Carlo simulations using Receiver Operational Characteristics (ROC). The detection results obtained

using the GLRT are encouraging. However, the time implementation of these methods for practical

applications is complicated. We therefore proceed to a sub-optimal detector using raw data from the
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radar and a list of detections from the AIS system, leading to a more simple detection strategy. The

third chapter studies the fusion of raw radar data with a list of ship positions, formerly provided by

the AIS system. Since the ships are moving and the AIS and Radar measurements are not are not

acquired at the same time instants, the ship positions have to be extrapolated. Two extrapolation

cases are considered in this work: 1) extrapolation errors are lower than the radar resolution and

do not have to be integrated in the model, 2) extrapolation errors are not negligible and have to

be taken into account in the model. Contrary to the second chapter, four hypotheses can now be

considered. Indeed, in addition to the classical detection scenarios by both systems, we can identify

the cases where only one of the systems detects a ship, which corresponds to the situations where

a ship does not transmit its AIS position or where a ship intentionally false its AIS position. The

problem can then be formalized with two successive binary hypothesis tests. This process allows the

information coming from AIS and radar data to be fused naturally, aleading to improved radar de-

tection performance. A performance comparison of this detector that uses a priori information with

conventional radar detection shows that it is less sensitive to the proximity to other ships and to the

ship density of the considered scenario. The fourth chapter presents the signal simulator considered

in this thesis to test the detection algorithms in different surveillance scenarios, i.e., a piracy ship

hijacking scenario, an illegal cargo transshipment and a navigation in a dense environment.
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Introduction

Context and thesis challenges

Maritime surveillance can rely on cooperative transmitting technologies used for vessel identification

and localization, such as the Automatic Identification System (AIS). The AIS is a shipborne VHF

radio system that is used for maritime communication worldwide, designed to cooperatively broadcast

AIS messages containing positioning and voyage information such as ship identification, size, position,

heading, speed and others. However, cooperative systems alone are not fully appropriate because

of the diversity of surveillance scenarios and the presence of uncooperative ships. In those cases,

data can be counterfeit, masked or even not transmitted at all. Also, some ships are not enforced

by maritime regulations (small boats for example) and the carriage of AIS equipment is optional.

On the other hand, there are other systems that allow the observation of uncooperative ships, such

as the Synthetic Aperture Radar (SAR). The use of different information sources is a natural choice

to overcome the individual sensor limitations and manage both cooperative and non-cooperative

systems such as the AIS and radar systems.

The objective of this thesis is to study and evaluate a dedicated data fusion scheme for AIS

and radar data in order to improve maritime surveillance performance. Concerning this study, the

combination of information coming from the SAR image and AIS signals can improve ship detection

in dense environments with cooperative ships, but also allows some surveillance scenarios to be

identified.

This thesis has as been conducted at the TéSA laboratory in Toulouse and in collaboration with

1
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Signal, Communication, Antennes, Navigation (SCAN) research unit from the Institut supérieur

de l’aéronautique et de l’espace (ISAE) and the institute of research in computer science (IRIT

laboratory) of Toulouse. This research was funded by Thales Alenia Space - Toulouse and by Thales

International Brazil.

Manuscript organization

The first chapter introduces the general operation of the AIS system followed by the radar system.

It describes the AIS signal structure as well as the binary representation of the AIS message and the

signal processing used to reproduce and decode those signals. Similarly, we present the structure of

spatial Synthetic Aperture Radar, defining the models necessary to simulate the SAR signals that

will be used to provide representative data for the simulations in the next chapters.

The second chapter presents the potential benefits of the joint use of raw data from both radar and

AIS for ship detection. After having described the signal models associated with the unknown ship

position, we investigate the detection problem using a Generalized Likelihood Ratio Test (GLRT).

The theoretical performances of this test are evaluated and allow us to estimate the performance

gain in comparison with a single SAR processing. These theoretical results are validated by Monte

Carlo simulations using Receiver Operational Characteristics (ROC). The detection results obtained

using the GLRT are encouraging. However, the time implementation of these methods for practical

applications is complicated. We therefore proceed to a sub-optimal detector using raw data from the

radar and a list of detections from the AIS system, leading to a more simple detection strategy.

The third chapter studies the fusion of raw radar data with a list of ship positions, formerly

provided by the AIS system. Since the ships are moving and the AIS and Radar measurements are

not acquired at the same time instants, the ship positions have to be extrapolated. Two extrapolation

cases are considered in this work: 1) extrapolation errors are lower than the radar resolution and

do not have to be integrated in the model, 2) extrapolation errors are not negligible and have to

be taken into account in the model. Contrary to the second chapter, four hypotheses can now be

considered. Indeed, in addition to the classical detection scenarios by both systems, we can identify
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the cases where only one of the systems detects a ship, which corresponds to the situations where

a ship does not transmit its AIS position or where a ship intentionally false its AIS position. The

problem can then be formalized with two successive binary hypothesis tests. This process allows

the information coming from AIS and radar data to be fused naturally, leading to improved radar

detection performance. A performance comparison of this detector that uses a priori information

with conventional radar detection shows that it is less sensitive to the proximity to other ships and

to the ship density of the considered scenario.

The fourth chapter presents the signal simulator considered in this thesis to test the detection

algorithms in different surveillance scenarios, i.e., a piracy ship hijacking scenario, an illegal cargo

transshipment and a navigation in a dense environment.

Main contributions

The main contributions of this thesis are presented below.

Chapter 1. This chapter details the AIS and SAR systems considered in this thesis. These systems are

well known and thus there is no new contribution in this chapter.

Chapter 2. We present a ship detection method based on Generalized Likelihood Ratio Test (GLRT) that

integrates both AIS and radar raw data. The detector performance is evaluated and shows an

important gain when compared to a single SAR processing. This new detector was published

in the conference paper [VVT+16].

Chapter 3. We propose to use the knowledge of cooperative ship positions obtained from the AIS system

with raw radar data to detect ships. We formalize the GLRT detection problem with two

successive binary hypothesis tests that can identify the cases where a ship does not transmit

its AIS position or where a ship intentionally false its AIS position. Besides, it can lead to

improved radar detection performance in some scenarios with cooperative ships. This new

fusion rule was published in the conference paper [VVT+17].
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Chapter 4. We present the signal simulator considered in this thesis and use it to test the detection algo-

rithms in different surveillance scenarios, i.e., a piracy ship hijacking scenario, an illegal cargo

transshipment and a navigation in a dense environment. We demonstrate the advantage of

using the proposed detector to identify some surveillance scenarios and also to improve ship

detection in some specific situations in the presence of cooperative ships.
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1.1 Introduction (in French)

Représentant 3/4 de la surface de la terre, les océans et mers jouent en rôle prépondérant entre

autres pour le transport, la pêche, les loisirs, les aspects militaires et stratégiques. Ils représentent

aussi une zone de danger sur notre planète. L’International Maritime Organization (IMO) a requis

l’utilisation de moyens de sécurité en mer comme l’Automatic Identification System (AIS), qui est un

système radio VHF diffusant la position, vitesse, identité et statut des navires dont la jauge dépasse

une valeur minimale. On qualifie l’AIS de système coopératif.

Dans le domaine de la surveillance maritime, de par l’existence de bateaux non coopératifs

(dysfonctionnement, extinction intentionnelle de l’AIS, bateaux de petite taille, etc.), les systèmes

coopératifs sont souvent couplés à des systèmes externes, non coopératifs, comme par exemple

5
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le Radar qui permet, au moyen d’ondes électromagnétiques, de localiser voire suivre des objets en

mouvement ou non, de jour comme de nuit. On peut distinguer notamment les Radars qui ont pour

objectif une localisation de points « cibles » dans un espace en 2 ou 3 dimensions, c’est le cas par

exemple des Radars côtiers, des Radars qui ont pour objectif de créer une image en deux dimensions

dans lesquelles se trouve la réponse, en terme de rétrodiffusion, des cibles se trouvant sur la zone

géographique délimitée par l’image : c’est le cas des Radars à Ouverture Synthétique (ROS, ou SAR

Synthetic Aperture Radar) que l’on trouve à bord de satellites en orbite défilante.

L’utilisation conjointe fusionnant Radars SAR (non coopératifs) et AIS (coopératifs) fournit de

l’information de première importance pour la surveillance maritime: détection, localisation, voire

reconnaissance et identification de bateaux.

L’approche la plus répandue pour la fusion est la « fusion after detection » où chaque système

calcule une détection de cibles indépendamment des autres et la fusion consiste alors à combiner

les détections des différents systèmes. D’autres approches sont possibles comme la « fusion before

detection » où l’on cherche à combiner les données « signal » de chaque système au plus tôt (on

parle alors généralement de « données brutes », raw data) c’est-à-dire avant même de chercher à

détecter des cibles pour chaque système. Il existe aussi des compromis où l’on va utiliser les données

brutes d’un système, le SAR par exemple, avec les données de détection d’un autre système, l’AIS

dans l’exemple. Pour terminer, l’aspect intégration temporelle peut aussi être pris en compte dans

la fusion, où l’on cherche à utiliser la cohérence du mouvement des cibles dans le temps.

Dans la thèse on a résumé les différentes fusions AIS-SAR en 4 niveaux :

• Fusion de niveau 1: Données brutes AIS et Radar.

• Fusion de niveau 2: Données brutes Radar et données traitées AIS (traitées = détection AIS),

ou données traitées Radar (traitées = détection radar) et données brutes AIS.

• Fusion de niveau 3: Données traitées AIS et Radar. Il s’agit de la fusion la plus répandue sur

le sujet à l’heure actuelle.

• Fusion de niveau 4: Données temporelles traitées AIS et Radar, exploitant notamment la

revisite des satellites en orbite défilante.
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On va présenter dans la suite de ce résumé les signaux AIS et Radar SAR imageur par satellite.

AIS

Concernant les systèmes AIS1 et AIS2 dont les spécifications sont données dans la recommandation

UIT-R M.1371-2, édition 2006, les caractéristiques principales des signaux émis sont les suivantes :

• Organisation fréquentielle :

– Transmissions alternatives sur deux canaux: à 161.975 MHz (canal 87) et à 162.025 MHz

(canal 88)

– Bande de 25 kHz (bande large) ou de 12,5 kHz (bande étroite)

• Modulation et codage :

– Codage NRZI avec un changement de niveau sur l’élément zéro et le bit stuffing

– Modulation GMSK adaptée en bande de fréquences (GMSK/FM) de produit BT = 0,3

(bande étroite) ou 0,4 (bande large) et indice de modulation de 0,25 (bande étroite) ou

0,5 (bande large)

– Débit de transmission : 9600 bits/s

• Puissance : 12.5 Watts (classe A) et 2 Watts (classe B).

Au niveau de l’organisation temporelle, le système AIS est auto-organisé (selon le protocole SO-

TDMA : Self-Organized Time Division Multiple Access) sur de petites cellules d’un diamètre de 50

milles nautiques environ. Les trames d’une minute, sont divisées en 2250 intervalles de temps : 1

slot dure 26.67 ms. Le début et la fin de la trame coïncident avec la minute UTC.

Au démarrage du système, les bateaux « écoutent » pendant une minute les messages émis par

les bateaux du voisinage pour choisir un time slot libre et s’insérer dans celui-ci. Ainsi, 2 bateaux

qui ne sont pas à portée directe l’un de l’autre peuvent choisir le même time slot.

Pour cette raison, à plus grande échelle, il n’y a plus d’organisation et le champ de vue depuis un

satellite (même en orbite basse à une altitude de l’ordre de quelques centaines de kilomètres) étant

beaucoup plus large que celui d’un bateau, des collisions de signaux vont donc se produire.
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Il existe plusieurs types de messages. Les messages de type 1, 2 et 3 contiennent des informations «

dynamiques » (position, cap, . . . ) et sont émis fréquemment. C’est à ces derniers que l’on s’intéressera

dans cette thèse. La période de répétition de ces messages dépend de la classe du navire, du type

d’information, de la vitesse du navire et des changements de route. Par exemple un navire de classe

A à 20 noeuds transmettra les messages de type 1 toutes les 6 secondes.

Les problèmes essentiels de la capture des signaux AIS depuis l’espace sont :

• Un faible rapport signal à bruit à cause de la distance séparant le bateau du satellite

• La faisabilité de séparation des messages lorsqu’ils entrent en collision, en vue du décodage.

• La faible fréquence de répétition des messages qui fait qu’il est difficile d’utiliser ces répétitions

pour améliorer le taux de décodage des messages.

Radar à Synthèse d’Ouverture

Comme déjà indiqué dans le début de ce résumé, on peut distinguer différents types de Radars.

On présente ici les principes généraux du Radar à Synthèse d’Ouverture (RSO, ou SAR Synthetic

Aperture Radar) que l’on trouve à bord de satellites en orbite défilante ou d’avions qui ont pour

objectif de créer une image en deux dimensions dans laquelle se trouve la réponse, en terme de

rétrodiffusion, des cibles se trouvant sur la zone géographique délimitée par l’image.

L’objectif d’un SAR est donc de fournir une image où chaque pixel représente l’amplitude et la

phase du signal rétrodiffusé par la cible se trouvant dans le pixel vers le satellite en réponse à une

émission électromagnétique effectuée par celui-ci.

Chaque cellule de résolution est caractérisée par une résolution distance (axe perpendiculaire au

mouvement du satellite) et une résolution azimut (axe parallèle au mouvement du satellite). La

résolution distance est obtenue « électroniquement » par émission de chirps suivant l’axe distance,

tandis que la résolution azimut est obtenue par l’utilisation de l’effet Doppler crée par le mouve-

ment du satellite au-dessus de la cible pendant un certain temps d’observation. On parle d’antenne

synthétique car le mouvement du satellite peut être vu comme une antenne virtuelle très longue, de

l’ordre de plusieurs kilomètres.
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Dans le cadre de la thèse il est important de comprendre la notion de données brutes (raw data):

les SAR émettent des impulsions tout au long du temps d’observation de la cible, les impulsions

sont synchronisées et ont une phase connue, on parle de système cohérent. Le signal reçu au cours

du temps est une suite de signaux temporels relatifs au passage du lobe d’antenne Radar sur la

scène observée. A ce stade on a des signaux « bruts » représentant des mélanges de réponses de

cibles à divers endroits de la scène éclairée par le lobe d’antenne. Pour ramener l’énergie et la phase

spécifiques à chaque cellule de résolution au sol on réalise en azimut une synthèse d’ouverture et

une compression distance sur l’autre axe. On montre qu’il s’agit, projeté sur la surface de la Terre,

de l’intersection de courbes iso-distances (des cercles) et de courbes iso-doppler (des hyperboles)

et que pour lever des ambigüités (plusieurs solutions possibles après intersection) on décale le lobe

d’antenne par rapport à la verticale d’un angle d’incidence non nul afin de pointer à un endroit où

les ambiguïtés sont levées dans une certaine mesure. En résumé on sépare donc les données brutes

(signal brut reçu par le passage du lobe d’antenne) de l’image amplitude/phase pour chaque cellule

de résolution obtenue après synthèse d’ouverture et compression d’impulsions.

Une fois l’opération de synthèse réalisée, on dispose au sol de l’énergie et phase spécifique à chaque

cellule de résolution. Il y a en général des opérations qui suivent (interpolation, etc.) pour ramener

l’énergie sur des pixels sur une grille qui est souvent régulière, par exemple 5 mètres × 5 mètres. Il

ne faut pas confondre la notion de résolution physique du capteur, qui est la capacité physique du

capteur à séparer deux cibles écartées d’une valeur égale à cette résolution, de la notion de taille de

pixels qui peut-être virtuellement plus grande ou plus petite. Une fois l’image disponible on peut

effectuer par exemple une détection de cibles souvent basée sur l’amplitude (énergie) contenue dans

chaque pixel. Dans la thèse cette opération est souvent résumée par le terme « données traitées ».

Pour terminer, un SAR a plusieurs modes de mesures. Ainsi la résolution azimut d’une cellule de

résolution dépend du temps d’observation de celle-ci par le lobe d’antenne. On a alors un compromis

entre la taille de la zone observée et la résolution. On distingue classiquement les modes ScanSAR

(grande zone, faible résolution), Spotlight (petite zone, très bonne résolution) et Stripmap (zone

moyenne, moyenne résolution). Les hypothèses de travail sous-jacentes à la thèse sont basées sur le

mode Stripmap.
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1.2 Introduction

The sea covers 3/4 of the Earth’s surface, with the oceans representing an area of 361 million square

kilometers. About 80% of world transportation is done using maritime routes [Fou12] with more

than 90% of the world’s trade being transported in containerized cargo over the seas [UNC08]. On

top of that, the number of ships is continuously increasing. In 2016, the global merchant fleet was

around 92 thousands vessels, representing an increase of 10% in a period of five years [Uni17], not

including other type of sea activities, for example people transporting, fishing, military, recreational

applications, among others.

The continuous growth of maritime transport raises some challenges. Indeed, oceans remain the

most dangerous places in the planet. For reference, commercial seafaring is considered the second-

most dangerous occupation just after deep-sea fishing [All15]. Particularly, the navigation in crowded

ocean areas near ports and sea channels, the occurrence of illicit activities like cargo transshipment,

smuggling, illegal fishing, and even the emergence of sea piracy in the modern days are examples of

important scenarios that impacts sea safety and security.

A transshipment refers to the action of moving a cargo load from one vessel to another. Sea

transshipment is not fundamentally an illegal operation and many carriers use this mode of cargo

loading and unloading for his greater logistical flexibility. On the one hand, it also difficult the

control and tracking of illegal cargo loading operations by the maritime authorities. Some examples

of illicit transshipment includes the shipment of drugs, illegal goods and weapons between smugglers

from organized crime networks. In fishing, illegal transshipment is a far widespread operation. It

is frequently used to import and export stocks of fish from illegal fisheries. A common procedure

includes a fishing vessel sending its stock on a cargo ship, which exports the cargo directly without

returning to its home port. Thus, no control can be carried out neither tax are paid. To understand

the significance of the phenomenon, here are some numbers : the global income losses of states in

the world due to illegal unreported and unregulated fishing are estimated to be between 10 and 23.5

billion dollars per year, i.e., at least 6.5 times the total GDP of the African continent produced in

2008. Fisheries can sometimes reach 37% of the total fish catch in the region at East Africa [APP+09].
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The economic stakes are therefore considerable, since these fisheries do not generate benefits for the

local inhabitants and threaten food security and marine biodiversity.

About piracy, pirates may be defined as those who resort to unauthorized violence against a ship

outside the jurisdiction of a state, on the high seas [Det13]. Due to economizing strategies, there are

more merchant vessels transporting valuable cargo manned by reduced crews. Those became easy

targets for the gangs of armed criminals, named pirates [Mar11]. One typical piracy approach is to

board a victim ship with a small boat with heavy armed pirates, take control of the ship, then steal

its cargo or kidnap the crew for a ransom. Under few exceptions, piracy was nearly extinct until

1992 when the Nagasaki Spirit tanker collided with the Ocean Blessing container in the Malacca

Straits after being seized by pirates and left unmanned. The resulting collision caused the spilling

of 12, 000 tonnes of crude oil into the sea that caused fire, destroying both ships and killing all but

two crew members [Bur03; Ong06]. This incident marked the beginning of modern piracy era. It

represents the most challenging threat to international maritime security [Gov11] and is considered

a worldwide problem, despite being more concentrated in the East Africa near Somalia and Yemen,

in the West Africa near Nigeria, and the South East Asia. According to reports from Oceans Beyond

Piracy (OBP), the economic cost of Somalia piracy was estimated to be near 6.6 billion dollars in

2011, declining to 1.7 billion dollars in 2016 mainly due to counter-piracy efforts in the recent years.

Globally, the economic cost of piracy in 2016 was estimated in 2.5 billion dollars [Oce17]. Despite the

lower numbers over the last years, pirates have continued their involvement in other illicit maritime

activities, such as arm smuggling and human trafficking. The number of registered incidents in 2016

was 278 cases of piracy and armed robbery in sea.

The piracy, sea transshipment and navigation in areas of dense ship traffic represents examples

of maritime scenarios that represent important challenges in maritime surveillance applications to

properly ensure the safety, security and to monitor ship traffic.
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1.2.1 Maritime surveillance

Maritime surveillance has been a subject of growing interest during the recent years [HLP15; MVS15].

It can be performed with information from vessel monitoring systems based on cooperative trans-

mitting technologies or from detection sensors.

Cooperative sources are equipped with electronic navigation sensors in order to estimate the

position of a ship, usually a global navigation satellite system (GNSS) or an inertial sensor, and with

radio equipment for communication purposes. One example of cooperative system is the automatic

identification system (AIS), a shipborne VHF radio system that is used for maritime communication

worldwide. It was conceived to enhance safety of life in the sea, to protect the maritime environment

and to improve security and navigation efficiency.

Despite providing useful information, cooperative systems alone are not fully appropriate for

maritime surveillance because of the diversity of surveillance scenarios and the presence of non-

cooperative targets. Just as an example, in scenarios considering illicit activities, cooperative data

can be counterfeit, masked or even not transmitted at all. It can also be mentioned that some

ships are not enforced by maritime regulations (small boats for example) and the carriage of AIS

equipment is optional. For those reasons, maritime surveillance using only cooperative information

is a real challenge. For this reason, to resolve the non-cooperative scenarios one usually relies on

remote sensing equipment such as radars or image sensors. These can be deployed in coastal stations,

ships, aircrafts and satellites.

As a matter of comparison, non-cooperative systems are less sensitive to deception when consid-

ering non-military situations (targets without furtiveness or radar countermeasures). Radar sensors

have proved useful when dealing with specific maritime surveillance scenarios [BLF+11]. Still, there

are lots of remaining challenges related to maritime surveillance using only non-cooperative system

since information recovery is limited and the detections need to be interpreted somehow. These

challenges include ship detection, identification and tracking, or speed and heading estimation. Fur-

thermore, some non-cooperative systems have limited coverage and their reliability can vary with

environmental conditions, e.g., related to sea clutter.

For all reasons mentioned above, the use of different sources of information is a natural choice
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to overcome the individual sensor limitations and manage both cooperative and non-cooperative

targets. Radars associated with cooperative systems provided important information for maritime

surveillance applications [MKS16; ZJX+14; GMB+09; CYS+11]. Jointly, AIS data with radar em-

bedded satellites is an interesting solution for ship detection, identification and tracking. Satellites

may overcome some difficulties of performing maritime surveillance within very large oceanic areas,

where no ground infrastructure is available. They enable the surveillance and control of areas be-

yond country borders while avoiding legal constraints and disputes involving the sovereignty of third

countries.

Data fusion systems can exploit the complementary information associated with dissimilar sensors

for high performance maritime surveillance. However, processing the data requires an appropriate

data fusion strategy. There are different ways to integrate AIS with radar data :

• Fusion Level 1: AIS and SAR raw data.

• Fusion Level 2: AIS processed data and SAR raw data (or AIS raw and radar processed data).

• Fusion Level 3: AIS and SAR processed data (most common fusion strategy).

• Fusion Level 4: Tracking of AIS and SAR data (exploring satellite revisit).

The first fusion level is the integration of AIS with radar raw data. In this method, sensor raw

data is explored in a data fusion scheme before performing detection. With detection, when data

exceeds a given threshold, a detection is made and the raw data is discarded. By using a “fusion-

before-detect” scheme, that is, using the raw sensor data fusion before detecting, more data would

be available and possibly a better performance could be attained.

The second approach is to still use fusion with raw sensor data, but this time, only one sensor

raw data is used while exploring processed data from the other sensor (as a secondary source of

information). This approach may allow segregation of different types of ship targets, according to

the types of detection errors and also to improve detection as shown in Chapter 3.

The most conventional approach considers data fusion after detection, where the detectors provide

lists of detections that need to be merged together. Some features that can be used for data fusion
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include ship position, heading and speed among others (see [MVS15; GMB+09; CYS+11; MT11] for

more details). Here this approach corresponds to the fusion level 3.

The fourth level of fusion considers the exploration of satellite revisit time in order to improve

tracking or detection of ships by long term integration of data.

In this thesis the first and second data fusion levels are investigated considering the AIS and

radar systems, being the others levels extensively explored in the literature. The rest of this chapter

presents both AIS and radar systems used for maritime surveillance applications. The AIS system

and the radar are detailed and a signal model is presented for both systems. The radar and AIS

signal models will be used in the following chapters in order to generate the synthetic data to test

the proposed data fusion methods.

1.3 Automatic Identification System

The AIS is an important asset originally designed as an anti-collision communication system for large

vessels, operating locally in a semi-cell organization with the nearby vessels at range. It performs

autonomously ship-to-ship and ship-to-shore communications, automatically exchanging information

with the nearby vessels, navigational aids and shore stations. The AIS equipment is designed to

cooperatively broadcast its own situation while gathering information from others in the vicinity

area simultaneously, providing a picture of the environment and local ship traffic. AIS messages

include positioning and voyage information such as ship identification, size, position, heading, speed

and others.

With sea safety as subject of interest, the International Maritime Organization (IMO) requires

flag states to ensure that their ships comply with minimum safety standards, from which one of those

states the provision of traffic awareness to ship vessels with the compulsory use of the AIS system.

Consequently, with the majority of ships carrying an AIS transmitter the AIS became an important

source of information for ship traffic data.

The AIS was proposed as an anti-collision measure to preserve ship safety and originally designed

for local communications. Despite of that, many [RTC+10; ZJX+14; PPHD15] consider the harvest
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AIS broadcasts in different ways like in sea ports, surveillance ships, aircrafts [PPHD15] and even

satellites [Pré12; ESN+10]. Yet, the AIS system has been proved an important cooperative source of

information for different applications, e.g., ship registration, maritime situation awareness, ship traffic

control and monitoring, safety and security [ESN+10], maritime surveillance [RTC+10; PPHD15],

among others.

The International Telecommunications Union (ITU) and the International Electrotechnical Com-

mission (IEC) define the standards for the different classes of AIS systems from which there are

two types of shipborne AIS: Class A and Class B AIS devices. The IMO adopted the AIS Class

A shipborne equipment through the carriage requirements in the Safety of Life at Sea convention

(SOLAS) which stipulate the size and type of vessels that have to carry AIS devices [ITU14]. SOLAS

defines that the AIS is mandatory equipment for vessels of 300 gross tonnage and upwards engaged on

international voyages, all vessels of 500 gross tonnage and upwards and passenger ships irrespective

of size. AIS Class B are shipborne devices that operate with less functionality and lower transmitting

power compared to Class A AIS and are intended for voluntary use by non-SOLAS regulated vessels.

There are four frequency channels reserved for AIS use worldwide (other frequencies may be

designed for AIS on a regional basis). The first two channels are allocated for standard AIS operations

and the last two channels are reserved for a special type of AIS vessels. They are designed long range

AIS broadcast messages (see Table 1.1). The Class A AIS equipment has operational range within

20 to 30 nautical miles and the reporting interval depends on the speed and ship dynamics. The

repetition time of AIS Class A goes from 2 to 10 seconds when moving to 3 minutes for an anchored or

not moving ship. The operational characteristics define the physical limits of the AIS communications

to a cell, which is a local geographic area where users shall be able to communicate.

The standard AIS communications are realized within AIS 1 and AIS 2 channels using a time divi-

sion channel access method known as Self-Organizing Time Division Multiple Access (SOTDMA) in

order to coordinate ship communications in a given geographic cell. The signal structure is composed

of a frame divided into time-slots. SOTDMA operates without a central controller. Organization of

the messaging structure is done by each user individually announcing their next intended transmis-

sion time-slot. This method lets the users to adapt themselves in allocating the available time-slots in
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Table 1.1: AIS frequency channels

Channel Frequency Description
87B 161.975 MHz AIS 1
88B 162.025 MHz AIS 2
75 156.775 MHz Long range AIS
76 156.825 MHz Long range AIS

order to avoid message collisions (more than one message transmission occurring at a single time-slot).

The next section gives an insight about the AIS communications concerning the structure of AIS

signal and the modeling used.

1.3.1 AIS signal structure

The AIS system broadcast information about ships dynamic and other data in a self-organized

structure in a time division multiple access (TDMA) scheme. The AIS uses the concept of frames to

divide the user transmissions. One frame is equal to the period of one minute and it is subdivided

into 2250 slots that are used for AIS communications.

In this thesis, we are interested in Class A AIS communications because of the widespread usage

and stronger signal power [Pré12]. The class A AIS equipment is conceived to be permanently active

and to operate continuously in order to allow other ships to identify the nearby vessels whenever

they are moving or anchored [ITU14]. The AIS equipment operates by default in the autonomous

mode the majority of time. In this mode, the AIS equipment continuously tries to determine its own

schedule for AIS communications and automatically resolves transmission scheduling conflicts with

the others AIS users that operates in the vicinity (the AIS cell range). Also, the reporting interval

depends on the ship’s dynamic conditions. The report intervals presented in Table 1.2 were designed

to minimize unnecessary loading of the radio channels and to preserve AIS performance standards

defined by the IMO [IMO04; IMO98].

Beyond autonomous mode, the AIS may be set to operate in assigned mode or in polled mode.

In the assigned mode, the current transmission schedule of the AIS equipment changes to take into
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Table 1.2: Repetition times for class A AIS transmissions in autonomous mode

Ship dynamic conditions Reporting interval
Anchored or moored with speed lower than 3 knots 3 minutes
Anchored or moored with speed faster than 3 knots 10 seconds
Moving from 0 to 14 knots 10 seconds
Moving from 0 to 14 knots and changing course 3 1/3 seconds
Moving from 14 to 23 knots 6 seconds
Moving from 14 to 23 knots and changing course 2 seconds
Moving from 23 knots 2 seconds
Moving from 23 knots and changing course 2 seconds

account a command message received beforehand from an AIS base station. In the polled mode, the

AIS equipment automatically reschedules itself to respond the interrogation message received from

other AIS user.

1.3.2 The AIS packet

Data communications with AIS adopt a bit-oriented format which is almost identical to the general

High Level Data Link Control (HDLC) structure specified by ISO/IEC 13239:2002 [ITU14]. The AIS

equipment synchronizes the AIS frames using coordinated universal time (UTC) or, in absence of

an UTC source, it uses packets received from other AIS stations. The AIS packet contains signaling

and message bits that are divided into seven blocks as represented in Figure 1.1. The ramp up and

buffer blocks are used for timing. The training sequence, start flag and ending flag are used for AIS

communication signaling. Together, both data and the cyclic redundancy check (CRC) blocks form

the AIS message part of the packet.

The size of AIS packet may vary according to the quantity of data to be sent. In the standard

form, the AIS packet is a sequence of 256 bits which may hold 168 bits of data. Longer transmission

packets may store more data occupying two or more AIS frame slots. The majority of messages

including the ones that we are interested have the standard size. The AIS message is organized as

follows
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Figure 1.1: The AIS packet format

• The ramp up block represents a guard time of 8 bits to allow the transmitter to reach 80% of

its nominal operation power.

• The training sequence is part of the signaling. It corresponds to a bit pattern of alternating

zeros and ones (0101 . . . 01) containing 24 bits that serves for AIS receiver synchronization. The

sequence always starts with a “zero”.

• The start and end flag patterns are also used for signaling. They are important to indicate

the message boundaries within the AIS packet. They both are represented by the same 8 bits

pattern “01111110”. Detection of AIS signal is usually performed using the known header in

the AIS packet (24 bits of the training sequence and 8 bits of the start flag) [PCB+13].

• The message starts with the data block, which in the standard format may hold 168 bits of

information. Right after data bits there is a block of 16 bits used to store cyclic redundancy

check (CRC) data. The CRC is calculated over the data bits and used to provide error detection

functionality at the reception of AIS packets. The CRC can be also used for error correction

[Pré12].

• Due to the nature of AIS communications it is necessary to add some time margin to avoid

overlapping of AIS transmission slots. This is done by the addition of a block buffer in the

AIS packets. This block reserves 24 bits in order to compensate for timing errors. The buffer

guards for the synchronization jitters that may happen in the AIS transmitting equipment.

• There are also transmission delays due to the propagation time considering the distance between

the receiver and ship transmitting the AIS packet. Buffer is also important to allow reception

of AIS packets with different sizes which are result from the extra bits added by bit stuffing
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process. The number of stuffed bits is unknown and depends on the content of the transmitted

message.

1.3.3 Construction of the AIS packet

The AIS bit stream is represented in Figure 1.1. The construction of the AIS packet starts with the

calculation of the CRC based on the data bits. Then the CRC block is appended to the end of the

data, creating the message part of the AIS packet. Next after the addition of CRC the bit stream

is transformed by a bit flipping process and immediately after it gets transformed by another bit

coding process called bit stuffing. After the bit stuffing process, the transformed message bit stream

is concatenated with the signaling parts of the AIS packet: The end flag is appended to the end

and the training sequence with the starting flag are appended to the beginning of the message. At

this point, the AIS packet entire bit stream is now encoded using the non-return to zero inverted

(NRZI) code, then finally sent to the modulator using the Gaussian minimum filtered shift keying

(GMSK/FM) modulation before the transmission. The AIS packet to be transmitted is sent from

left to the right, starting with the training sequence, followed by the start flag, message part and

finally the end flag). The entire process of AIS packet construction before transmission is represented

in Figure 1.2.

AIS
information

Insert
CRC

Flip bit
order in

each octet

Bit stuffing
Insert

start and
end flags

Insert
training
sequence

NRZI
encode

GMSK
modulation

VHF
transmitter

Figure 1.2: Construction of the AIS packet for transmission

The physical parameters for AIS (such as, e.g., the modulation index, frequency bandwidth, bit

rate,. . . ) are defined in the AIS regulation standards [ITU14].

AIS message

There are 27 different types of AIS messages [ITU14]. This study will focus on the AIS position

reports considering that those contain relevant information with respect to ship positioning and

identification. AIS position reports are the AIS message numbers 1, 2 and 3 defined by the AIS
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standard. Those are the more recurrent message types in AIS communications. Table 1.3 presents

the bits reserved for the construction of the AIS message. Details about the bits in the message block

can be found in [ITU14].

Cyclic redundancy check

The CRC is a cyclic code used to provide a check value to a bit sequence. It is designed to protect

data against errors that are common in communication channels and to grant the integrity of data.

CRC is defined as the remainder associated with a division of the data bits by a polynomial. AIS

provides a way to identify if there are errors in the AIS transmitted data. The CRC is a 16-bit

polynomial that is calculated over the AIS message part (see Figure 1.1). The CRC is computed

from the 168 AIS information bits and then appended to the end of the bit stream, creating the AIS

message block. The CRC calculation is defined in ISO/IEC 13239:2002. The AIS standard defines

that CRC bits are pre-set to “one” at the beginning of calculation. More details of AIS calculation

can be found in [Pré12].

Flip bits

The flip bits process is part of the AIS specifications. It transforms the message (the data and CRC

blocks) by flipping the bit order inside each octet (see Figure 1.3). The order is reversed such as in

a octet the 1st bit becomes the 8th, the 2nd becomes the 7th bit, and so on. This allows calculating

the CRC continuously during the reception of each octet. Bit flipping is performed before the bit

stuffing stage when constructing the AIS message for transmission. At reception, the bits are flipped

back in the original order after the removal of bit stuffing.

Bit stuffing

Bit stuffing is a line code process that inserts extra bits into a stream without adding new information

that would affect the synchronism of communications. It allows the AIS to transmit any sequence of

bits without worrying about the possibility of a flag pattern being inadvertently reproduced inside

the message bit stream, which would interfere with the receiver’s ability to synchronize and detect
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Table 1.3: AIS message bits for messages 1, 2 and 3

Parameter Number of
bits

Description

Message ID 6 Identifier for message type 1,2 or 3.
Repeat indicator 2 Number of times a message has been repeated.
User ID 30 Unique identifier such as the maritime mobile service

identity (MMSI) number.
Navigational status 4 Vessel status code. Indicates ship situation like an-

chored, fishing, among others.
Rate of turn (ROT) 8 Ship rotation rate based in degrees per minute.
Speed over ground
(SOG)

10 Speed over ground in 1/10 knot steps.

Position accuracy 1 Position accuracy based on electronic position fixing
device. Indicates if precision is ≤ 10 meters.

Longitude 28 Latitude in 1/10 000 minute.
Latitude 27 Latitude in 1/10 000 minute.
Course over ground
(COG)

12 Direction of vessel with respect to earth’s surface in
1/10 of degree.

True heading 9 Vessel direction with respect to the north in degrees.
Time stamp 6 Universal coordinated time UTC Time in seconds

when the report was generated by the position sys-
tem.

Special manoeuvre
indicator

2 Code indicating that a special manoeuvre is in exe-
cution.

Spare 3 Not used.
RAIM-flag 1 Receiver autonomous integrity monitoring (RAIM)

flag indicating the use of electronic position fixing
device.

Communication
state

19 AIS communication related data for slot allocation
and synchronization.
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1st byte 2nd byte 23th byte

Original AIS message
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... ...
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...

1 byte = 8 bitsBit transmission order
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Figure 1.3: Flip bits applied to the AIS data

AIS packets. Bit stuffing also creates extra transitions for long bit sequences that help to recover

receiver synchronization and protect from clock drift.

For AIS transmission, bit stuffing shall append an extra bit “zero” immediately after a sequence

of five “ones”. The bit stuffing process is represented in Figure 1.4. At the reception side the process

is reversed, where the first zero that appears after five consecutive ones are removed from the bit

stream in order to recover the original message. Notice that only the message part (the data and

CRC blocks) is subject to bit stuffing.

011 1 1 1 010 1 0

011 1 1 1 010 1 00

Original AIS message

Bit stu�ed AIS message

after �ve consecutive “1”
a bit “0” is appended

Figure 1.4: Bit stuffing process during the construction of the AIS packet
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NRZI line coding

After bit stuffing, the entire AIS packet is encoded. The AIS uses NRZI line coding. For each bit

“zero” found in the bit stream the coding produces a level transition. The output level stays at the

same level for each “one” bit in the bit stream. Encoding is done by the following relation

bk = ak ⊕ bk−1 (1.1)

where the bit ak represents the k-th input bit to be encoded, bk the k-th output and ⊕ is the XOR

binary operator. Note that NRZI uses differential encoding which introduces memory to the signal.

At reception, the NRZI bit stream is decoded by detecting the state of current bit and comparing it

with the previous transmitted bit, that is

ak = bk ⊕ bk−1. (1.2)

GMSK modulation

The GMSK is a type of continuous-phase modulation (CPM). It is a non-linear modulation where the

output phase is constrained to remain continuous. The information is only contained in the phase of

the transmitted signal. The output signal has memory introduced through the imposition of phase

continuity [PS08]. In CPM, each symbol is modulated by continuously changing the phase of the

carrier over the symbol duration. One characteristic is that the memory of cumulative phase from

previous transmitted symbols is necessary to demodulate a symbol from the signal.

The complex envelope of a general CPM waveform is

s(t) = Aej(φ(t)+θ0) (1.3)

where A is the amplitude, θ0 is the initial phase at instant t = 0 and φ(t) is the carrier phase defined

for CPM signals as

φ (t; I) = 2π
n∑

k=−∞
Ikhkq (t− kT ), nT ≤ t ≤ (n+ 1)T, (1.4)

where {Ik} is the sequence of M-ary information symbols selected from the alphabet±1,±3, . . . ,±(M−

1), {hk} is a sequence of modulation indices, and q(t) is the frequency shaping function, which is

some normalized waveform that is used to shape the output signal [Stü00].
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The waveform q(t) may be represented as the integral of some pulse g(t), i.e.,

q(t) =
∫ t

0
g(τ)dτ (1.5)

Considering g(t) a signal pulse with duration limited between [0, LT ], T being the symbol period

and L the duration of g(t) in number of symbols, the duration LT of the pulse g(t) defines if the

modulated signal is a full or partial-response CPM. In a full-response CPM, the demodulation of a

symbol depends on the memory of cumulative phase from the last transmitted symbol (L = 1). For

partial-response CPM, L > 1 symbols and the demodulation depends on the cumulative phase of the

L− 1 last data symbols. This introduces memory to the modulated signal.

GMSK is a special type of partial response CPM that uses a rectangular pulse with Gaussian

pre-modulation filter to create the shaping pulse g(t). As a result, the GMSK modulation yields a

Gaussian shaping waveform pulse

g(t) = Q

[ 2πB√
ln 2

(
t− T

2

)]
−Q

[ 2πB√
ln 2

(
t+ T

2

)]
(1.6)

where Q(α) is the Gaussian cumulative error function with

Q(α) =
∫ ∞
α

1√
2π

exp−x2
dx (1.7)

B being the bandwidth of the Gaussian filter (defined by the −3 dB cutoff frequency) and the pulse

limited at the interval [−LT/2, LT/2]. In AIS communications the GMSK modulation uses binary

symbols (M = 2) with Ik = ±1. The total pulse area is
∫+∞
−∞ g(t)dt = 1/2 and the contribution to

the excess phase for each symbol is ±π/2.

The parameters of the GMSK modulation are the index h = 0.5 and the time-bandwidth product

BT = 0.4. Following from ITU-R recommendation M.1371-5, AIS class A communications use

B = 25 kHz (formerly the AIS prior dual bandwidth optionally had a 12.5 kHz narrow operation

band which is now obsolete). The period L = 3T gives the truncation time of 16 µs. The resulting

AIS parameters are displayed in Table 1.4.
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Table 1.4: GMSK parameters in AIS Class A communications

Parameter Value
Bit rate 1/T 9600 bits/s
Time-bandwidth product BT 0.4
Modulation index h 0.5
Bandwidth B 25 kHz

AIS signal model at the ship transmitter

The AIS signal model during transmission can be modeled as

sAIS (t) = eiφ(t;I) (1.8)

with

φ (t; I) = π
n∑

k=−∞
Ikq (t− kT ), nT ≤ t ≤ (n+ 1)T, (1.9)

and where the bits Ik = ±1 belong to a binary alphabet, q(t) is the Gaussian waveform defined by

(1.5) and the pulse g(t) is defined by (1.6).

1.3.4 Satellite reception of AIS signals

In a space based AIS, the AIS coverage may be close to the size of the satellite footprint because AIS

reception is possible at low elevation angles. For reference, a low orbit satellite (whose altitude goes

from 200 km to 2.000 km) has a footprint between 1.5% to 12% of the Earth’s surface area [MA14].

As described earlier, the AIS system was created for ship-to-ship communications. Thus, some

characteristics of the AIS system were not optimized for satellite communications. For instance, low

SNR conditions may be balanced thanks to the use of error correction techniques, but bit stuffing

makes the use of such methods very complicated (but still possible) [PCB+13]. Despite of that, satel-

lite AIS have proved viable [ITU09; CGE11; EHNM06; WHLN05; Pré12; LM13] and AIS receivers

have been embedded into satellites [LM13] raising some extra difficulties. Message collisions, attenu-

ation and Doppler distortion are common problems that need to be considered in AIS transmissions

[ESN+10].
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Satellite reception of AIS signals has some peculiar differences with respect to maritime direct

communications. For example, there is attenuation due to the involved distances (between the emitter

and the receiver). The distance between ships and the satellite may be 10 times more important

than traditional AIS ship-to-ship communications [Pré12]. As consequence satellite reception of AIS

implies greater noise levels and needs to deal with important bit error rate (BER) in comparison

with standard ship-to-ship communications.

The AIS signal transmission efficiency depends also on antenna directivity. Ship’s antennas are

usually conceived to reach other vessels that are in the horizontal line of sight, being not really

optimized for satellite reception at higher elevation angles.

Another particularity related to satellite reception is the Doppler distortion. This occurs due to

the Doppler effect induced by the relative radial velocity between satellite and transmitting ships.

Figure 1.5 shows an example of the Doppler distortion for a satellite with an AIS receiver located

at 500 km of altitude where the Doppler shift is between +4 kHz and −4 kHz, giving a maximum

perceived Doppler of 8 kHz between two AIS messages. For reference, two AIS messages that occurs

at the same instant may not be separated by spectral filtering due to the Doppler being inferior to

the signal bandwidth of 9600 Hz.

Another known problem is signal model mismatch that may occur due to the existence of ships

carrying low cost AIS transmitters (in particular, with modulation indexes different from the AIS

standard). This may increase the complexity of AIS reception as the receiver needs to estimate the

correct modulation index and the original transmitter frequency of the AIS transmitted signal.

A relevant problem in satellite AIS reception is the higher occurrence of AIS packet collisions.

This is due to in the fact that the satellite antenna footprint generally covers an area many times

greater than an AIS resolution cell. AIS transmissions are scheduled to work with ships that are

within a certain range, and ships that are further than one AIS cell range are not coordinated for

appropriate satellite reception (they may occupy the same time slot). As consequence, a much larger

number of vessels are covered by the satellite swath and transmissions from different AIS cells may

appears at the satellite point-of-view as an excessive reuse of AIS time-slots, increasing the number

of message collisions. Some AIS reception problems were addressed in [Pré12].
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Figure 1.5: AIS signal Doppler shift distribution under the satellite footprint area

AIS signal model at the satellite receiver

The following signal model considers the reception of a unique AIS signal by the satellite receiver

without collisions. The AIS signal being narrow-band can be represented as follows

rAIS(t) = AsAIS(t− τ)ei(2πfDt+θ) + n(t), (1.10)

where rAIS(t) is the received AIS signal, A is an attenuation coefficient, sAIS(t) is the transmitted

AIS signal model from (1.8), τ is the delay due to the propagation time of the AIS signal, fD is the

frequency offset due to satellite Doppler, θ is the value of the signal phase at reception due to the

distance between the satellite and the ship transmitter, and n(t) is the noise modeled as additive

white Gaussian.
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1.4 Radar

Radars use electromagnetic waves in order to extract information about the objects that are being

observed. They are valuable because of their ability to perform measurements, detection, localiza-

tion, imaging and also to extract information about the illuminated targets without depending on

target cooperativeness. Radar systems have very interesting attributes. They are well known for

the high accuracy of their measurements and for being resilient to adverse atmospheric conditions.

As active sensors, they are able to operate during the day or night without directly depending on

the sunlight like optical sensors. In addition, the frequency selectivity of radar allows imaging in

different weather conditions (like in case of cloudy or rainy weather) where imaging with optical

sensors would be compromised. Those characteristics brought attention of a wide variety of applica-

tions. Radars became very popular for military purposes, remote sensing, traffic control, surveillance,

safety, navigation, space observation and many other applications [Sko02]. Radars may be adopted

to investigate objects that are masked, covered or beyond visual perception, whereas others may

use radars to localize, measure and analyze. Radars may also be used to sense and measure the

environment, e.g., to gather information about atmospheric events like winds, snow, rain, clouds or

sea waves. Radar targets may be on ground, sea, air, space, underground, behind clouds, trees, or

even walls.

Among the many available types of radars, the imagery radar has proven its importance in

observation, vigilance, measurement and many other applications. In traditional imaging radar

systems the angular resolution depends on the ratio between radar signal wavelength to the antenna

aperture size. The spatial resolution is the angular resolution times the distance between the radar

sensor and the surface to be imaged. As distance increases, the spatial radar resolution decreases

unless the physical size of the aperture is increased. At wavelengths in the visible and near infrared

spectrum high resolution images can be obtained with sensor apertures of reasonable sizes even at

orbital altitudes. However, for conventional radar imaging with spaceborne instruments operating

at typical wavelengths of five orders of magnitude longer than light, high resolution is impracticable

[CM91]. For example, a radar operating at 20 cm wavelength with 10 m aperture antenna embedded
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into a satellite at 500 km altitude orbit would produce images with spatial resolution of 10 km using

the real antenna aperture. Considering conventional radar imaging process it would be necessary

to greatly increase the antenna aperture size to improve image resolution. Returning to the same

example, to achieve 20 m resolution it would be necessary an antenna aperture of 5 km, which is

unfeasible.

Synthetic aperture radars (SAR) are a group of special imagery radars that, in their basic form,

are able to create two- or three-dimensional images using the synthetic aperture radar technology.

SAR reproduce a synthetic aperture that is many times longer than the antenna real aperture. In

consequence, azimuth resolution may increase far beyond conventional radar resolution limit and it

is possible to reach high azimuth resolution with reasonable size antennas. This however has the

cost of the assumption that the targets are stationary with respect to a moving radar. The term

“synthetic” comes from the signal synthesis that is based on using the radar motion to synthesize a

virtual antenna far longer than the real one (see Figure 1.6). In the figure λ is the wavelength, La is

the antenna length, R is the range from the radar to the target, Vs is the radar platform speed and

L is the synthetic aperture length.

SAR imaging is performed by mapping the received signal energy into the image pixels that

correspond to a location inside the illuminated radar area. Each pixel in a SAR image corresponds

to a calculation done on the received signal in order to concentrate the energy into the pixels that

correspond to the target positions. SAR processing is responsible to improve cross-range (azimuth)

resolution. However, the high azimuth resolution obtained incentive SAR designers to use pulse

compression in order to improve the range resolution. As a result, SAR is known to produce high-

resolution radar images in both range and azimuth directions. Another interesting aspect of SAR

processing is that the spatial resolution does not depend on the target distance like conventional

radar. This makes the SAR a valuable instrument for applications that need to deal with important

propagation distances.

The SAR process is the only technique that leads to high resolution imaging at the long ranges

involving space-based observation [UMF86; GAS+17]. This among other advantages allowed SAR to

consolidate its presence in satellite radar imaging, being currently used by the majority of satellites
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Figure 1.6: Representation of real and synthetic apertures.

embodying radar imaging services. Usually, satellites embedding SAR sensors operate in a near

circular low-Earth orbit (LEO) spanning altitudes between 500 km to 850 km [Sko08]. They usually

cover surface areas with length from tens to a few hundreds of kilometres, depending on the radar

design and the SAR operation mode [MVS15].

SAR is an interesting tool for target detection and imaging in space-based platforms. It is

frequently used in surveillance applications that demand high availability with the ability to operate

in all-weather situations even in adverse atmospheric conditions. Space-based SAR systems have

been used for earth observation and are well known for their ability to generate high resolution

images of the Earth’s surface. They are able to provide important details about the imaged targets
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such as dimensions, orientation and its geographic location.

There are basically three types of SAR operation mode: “stripmap”, “scan” and “spotlight” SAR

(Figure 1.7).

Figure 1.7: Illustration of the three main SAR operation modes.

In the stripmap mode, the radar antenna is fixed with respect to the moving platform while

the radar footprint illuminates a constant strip of the earth surface parallel to the platform path of

movement. In this mode, the radar antenna may be pointing normal to the radar moving trajectory

(broadside) or pointing the earth surface at a fixed and usually small squint angle forward or behind

the normal to the radar platform movement path. The maximum synthetic aperture length in

stripmap mode cannot exceed the azimuth width of the radar beam footprint on the ground. This

occurs because the radar beam fixed angle with respect to the moving platform limits the maximum

viewing angle that a point target on the ground is illuminated to be inside the antenna aperture

length.

In the spotlight mode, the SAR antenna is forced to continuously image a specific area at the

imaged surface by steering the radar beam to compensate the radar platform movement. Spotlight

steering of the radar beam allows focus at a single target area at greater squint angles, producing
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even longer radar exposition of a particular illuminated area, increasing the synthetic aperture size.

The maximum synthetic aperture length in spotlight mode may be even longer than the synthetic

aperture in stripmap mode. As SAR steers the radar beam to keep the target zone under the antenna

view it may reach the target at larger viewing angles. By consequence, the synthetic aperture size

is increased beyond stripmap synthetic aperture limit, providing even finer azimuth resolution when

compared with stripmap. As a downside, the resolution improvement comes in exchange for a much

smaller coverage area. As spotlight mode needs to steer the radar beam at the desired spot on Earth’s

surface it does not observe the entire azimuth extent as the stripmap does.

The SAR scan mode is an operation that also steers the radar beam to image. However, the

scan mode sweeps the imaged area in different ways in order to image at a desired resolution and

radar coverage. Steering in spotlight also allows a scene to be imaged at multiple viewing angles and

different ground patches to be considered dynamically.

1.4.1 Radar principles

This section presents an overview of SAR system.

The SAR is a coherent radar system, meaning that the phase between the transmitted pulses

are preserved. SAR processing uses the coherent transmissions and the returned echoes to image

and geographically map targets at an imaged scene. During the satellite moving trajectory, the

SAR regularly transmits a radar signal to the imaged surface. Those transmissions collide at the

illuminated surface where the signal is backscattered to different directions. A part of the signal

energy is reflected back to the radar direction. The receiver is ready to register the returned signal in

the form of a raw signal to be processed. The amount of energy recovered depends on factors related

to electromagnetic wave propagation, e.g., the antenna gain and directivity, the attenuation due to

the propagation medium. Some important factors related to power transmission are propagation

distance, atmospheric absorption, surface reflectivity, target geometry, among others.

Due to the radar displacement in orbit movement, the radar signals are transmitted and then

acquired at different positions along the movement track of the radar platform. Targets in the radar

line of sight are repeatedly illuminated at different azimuth viewing angles while still inside the radar
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antenna aperture (see Figure 1.8).

The SAR principle is based on the observation that, at any instant, point targets with even

slightly different angles with respect to the radar movement path will have different radial speeds in

the radar point of view [CM91].Consequently, the signal returns from those targets will have distinct

Doppler frequency shifts accordingly to their angle to the antenna during reception. Similarly, target

distance to the satellite are distinguishable by the time delay τ of after the two-way propagation of

the radar signal. The time delay is given by

τ(t) ≈ 2R(t)/c (1.11)

where R(t) is the radial distance of the antenna center to the target, c is the speed of the light and

the factor 2 is due to the two-way wave propagation common in active radar systems.

The location of a target at the Earth surface may be described in terms of their coordinates relative

to the radar positioning. The SAR system performs a reversible transformation of coordinates from

the ground range y and along track position x to observable coordinates, pulse delay τ and Doppler

target
zone

radar
swath

target
object

satellite

R(t1)

R(t2)

R(t3)

Figure 1.8: Representation of SAR satellite illuminating a target at ground.
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shift fD using the echoed radar signal. There are some other factors that impact the target positioning

measurement. For example, Earth rotation and some uncertainties with respect to the radar orbit

trajectory may need additional steps in the SAR processing to compensate their effects in the return

signal. Likewise, non-stationary targets would need an additional step to identify and compensate

the effect of extra Doppler modulation in the radar return signal.

1.4.2 SAR geometry

Suppose a satellite carrying a SAR in orbital movement over the Earth. The satellite distance along

path is denoted as a coordinate in the x axis. Consider a satellite in circular motion over a spherical

earth in which the platform trajectory does an arc with constant height above earth surface. This

consideration means that the uncertainties in satellite radial speed and differences in orbit geometry

have been compensated. Consider that the radar uses synthetic aperture processing. The antenna is

placed broadside on the platform track. The radar beam center points towards the earth surface at

a fixed look angle with respect to the satellite platform. When moving in the azimuth direction, the

radar swath illuminates a constant strip zone of the Earth surface along the satellite displacement

path. In the SAR nomenclature operating in stripmap SAR mode. For sake of simplicity, we consider

the radar as operating broadside (no squint angle).

Considering a single small area of interest, our model may consider a satellite SAR in near linear

movement at certain altitude h with uniform speed Vs in the x direction (See Figure 1.9). The radar

will perceive a Doppler for targets according to their radial speed Vr with respect to the satellite.

Targets that produce identical Doppler shift fD are those positioned on the surface of a cone with

central axis along with the radar axis of movement. Similarly, targets that produce identical time

delays τ are those at the same radial distance over a sphere centered at the radar position. The

intersection of those geometries with the ground plane containing the targets produce iso-Doppler

and iso-range lines (see Figure 1.10). The targets positioned at the same contour line share the same

respective coordinates in a two-dimensional mapping.

The zone of interest in SAR is broadside the movement trajectory of the satellite. At this direction,

the iso-range and iso-Doppler lines are almost orthogonal (have very low coupling between range and
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Figure 1.10: The Iso-Doppler and iso-range contours geometry at the surface

Doppler), serving as pair of planar coordinates. One may use the transmission timing, namely the

slow time and fast time as the coordinate pair related to deal with the radar sampling times. Slow

time samples are related to the Doppler while fast time samples are related to the time between

samples. The slant range and the ground planes are also used to represent the imaged area [Sko08].

The slant range R and azimuth distance y are coordinates usually used to alternatively represent

the imaged area instead of direct working with the ground coordinate pair (x, y). This happens

because the slant range R is a distance coordinate directly associated with the propagation time

delay τ of the radar signal that is directly measurable. It defines the radial distance from the radar

antenna to the target and is coupled with the ground coordinates. The Doppler information is used

to decouple range from azimuth to obtain the ground coordinates.

Considering the radar signal at the receiver acquired at a constant sampling rate, the signal

uniformly sampled in time represents ground samples spaced in a non-uniform manner. This occurs

because radar sampling is uniform in range direction, which is non-linearly related to the ground
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samples by the variable angle of incidence (see Figure 1.11). The incidence angle φ of the radar

beam is not constant. At near range distances, the incidence angle φ(Rnear) is smaller than the look

angle at far ranges φ(Rfar). This means that returns from targets at the near range area arrive on

the radar receiver more closely spaced than samples taken from far range distances. As a result of

uniform sampling there is a non-uniform mapping between slant range and ground range and the

target area will appear distorted in the radar image.

Despite the non-uniform map in the ground coordinates x and y, they are necessary when the

radar image needs to be associated with images from a different sensor such as optical images, or when

radar need to be associated with positions referenced in ground coordinates, or when land masking is

required. An appropriate transformation and interpolation is necessary in order to properly represent

the radar images in ground coordinates.

SAR range resolution

The resolution of the radar in range is defined as the minimum range separation of two points that

can be distinguished by the radar system [CM91]. Without pulse compression, range resolution is

determined by the pulse duration T and the maximum separation between two resolvable echoes is

given by δR = cT/2, where δR is the resolution in slant range. In the same way the ground range

resolution becomes ∆y = cT/2 sin (φ(R)) where φ(R) is the incidence angle of the radar wave at the

target position defined by the slant range R (radial distance).

Narrowing the pulse width improves the radar range resolution. However, the transmitted power

is also directly related to the duration of the radar pulses, which means that signal power is related to

radar range resolution. As a consequence, reducing pulse width also reduces the transmitted signal

power, degrading the radar signal-to-noise ratio (SNR). This can be troublesome for applications

where the resources are limited like with spatial SAR systems. In addition, spatial SAR also need to

deal with important attenuation due to the greater propagation distances involved and transmitting

power is an important parameter. The use of pulse compression may resolve this problem. It

decouples the pulse width T from the range resolution δR, so that range resolution may be improved

without affecting the signal transmitted power. The range resolution and the ground range resolution
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for pulse compressed radar signals are given by

δR = c

2B0
, δy = δR

sin(φ) , (1.12)

where B0 is the projected pulse bandwidth. Range resolution improves as the signal bandwidth is

increased. However, this also increases the receiver minimum sampling rate required to properly

sample the entire pulse bandwidth B0.

SAR azimuth coverage

Consider the radar operating in stripmap mode with the antenna fixed angle pointing broadside

(according to Figure 1.11). Consider a radar antenna with length La in the azimuth direction (see

Figure 1.6). The radar azimuth beamwidth has angular spread in azimuth direction equals to

θH = λ/La (1.13)

where λ is the wavelength of the transmitted radar signal. The azimuth distance on the ground

covered by the antenna beamwidth is

X = RθH = Rλ/La (1.14)

where R is the slant range distance.

SAR Doppler and azimuth coordinate

The received radar signal from a pointwise target at some slant range R and along-track coordinate

x is perceived as having a modulation from its original frequency. The Doppler shift is proportional

to the target azimuth angle with respect to the radar antenna center (see Figure 1.9). The Doppler

shift is given by

fD = 2Vst cos(θg)
λ

≈ 2Vstx
λR

(1.15)

which Vst is the satellite azimuth speed relative to the target, θg the target angle off broadside and

the factor 2 results from the two-way travel of the radar wave that is intrinsic in active systems.
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Imaged targets may be discriminated in azimuth by associating azimuth position x with the signal

Doppler deviation with

x = λR

2Vst
fD (1.16)

fD being the Doppler shift. Consider δx as the minimum distance to resolve two neighbor targets

in the azimuth direction. Denoting as δfD the resolution of the Doppler measurements (to resolve

targets at δx distance) and using (1.16), the azimuth resolution δx using SAR focused processing is

δx =
(
λR

2Vst

)
δfD. (1.17)

The resolution of the Doppler measurement is nominally the inverse of the time span δfD = 1/S,

which is the time during any particular target is in view (period that a punctual target remains

illuminated by the radar).

SAR synthetic aperture size

Considering the radar operating in the stripmap mode (that is, with the antenna in a fixed angle),

the size of the radar beamwidth on the ground is defined in azimuth by the aperture size of the radar

antenna in both range and azimuth directions. From the Figure 1.11, θH is the maximum azimuth

angle that a target is visible by the radar antenna. Considering (1.13), a target is observable during

the timespan

S = RθH
Vst

= Rλ

LaVst
. (1.18)

The synthetic aperture length is the distance in azimuth that the SAR satellite passes while still

observing the same point target on ground. During the timespan S, the satellite displacement is

L = SVst, which is identical to the radar azimuth beamwidth on the ground for the range distance

R. From (1.17) and (1.18) the synthetic aperture L may be written

L = λR

2δx. (1.19)

SAR azimuth resolution

From equations (1.17) and (1.18) the azimuth resolution of the stripmap SAR may be written as

δx =
(
λR

2Vst

)(
LaVst
λR

)
= La

2 . (1.20)
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This result states that azimuth resolution with SAR only depends on the size of the real antenna

azimuth length La.

SAR constraints

Some practical issues limit the use of very small antennas. Reducing the antenna azimuth length

La enlarges the radar azimuth beamwidth and broads the view angle that targets are observable by

the radar beam. However, it also degrades the radar SNR because smaller antennas have reduced

antenna aperture and, by consequence, inferior power transfer effectiveness.

Another limitation is the use of a pulsed radar to image in both range and azimuth. From Figure

1.11, we observe that the reception time of the earliest possible echo from any point in the swath

needs to occur after reception of the echoes from a previous transmitted pulse. This limitation is

necessary to avoid collision of echoes from far and near ranges originated from different transmitted

pulses at the SAR receiver.

The inferior bound for the radar pulse repetition interval Ti is

∆R = Rfar −Rnear < cTi/2 = c/ (2fp) (1.21)

which fp is the radar pulse repetition frequency (PRF).

Another requirement is the Doppler frequency shift related to the azimuth ambiguity. To avoid

ambiguities, the frequency bandwidth BD of the Doppler signal must be less than the PRF (BD < fp),

which gives a lower bound to the radar PRF fp

BD = fD,high − fD,low = Vst/δx < fp. (1.22)

This means that the radar must transmit at least one pulse each time the radar platform travels a

distance equal to one half of the antenna length to remain unambiguous in azimuth.

Those inequalities yield another requirement for the antenna area as a lower bound for full

resolution SAR of [CM91, Curlander p.21]

Aa = LaWa > 4VstλRc(tanφ)/c (1.23)
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where Aa is the antenna area, Wa is the antenna height, Rc is the slant range to the center of the

target area, φ is the incidence angle at the imaged area center.

1.4.3 Radar signal model

This section summarizes the SAR signal model considered in this thesis.

The SAR transmitted signal is usually a burst containing one sequence of narrow bandwidth

pulses. The radar signal before transmission is represented by the pulse stream

p(t) =
∑
h

ψ(t− hTi) (1.24)

where Ti is the pulse repetition interval, h the integer representing the pulse number, t the time and

ψ(t) is the pulse waveform. SAR system have different types of waveforms for pulse compression.

The most common type of waveform is the linear frequency modulation (LFM). The LFM waveform

is defined by

ψ(t) = 1T (t)ejKrt2 (1.25)

where 1T (t) is the indicator function on the interval ]−T/2,+T/2[, which T is the pulse duration and

Kr the chirp rate parameter. A positive chirp rate parameter represents an upchirp (frequency rising

chirp) and negative a downchirp (frequency decreasing chirp). The pulse waveform is a quadratic

phase in t, where is a linear frequency modulation. This waveform modulates the transmitted pulse,

denoted by the indicator function 1T (t), into an LFM waveform usually known as a chirp (see Figure

1.12).

The SAR signal is mixed with the carrier frequency f0 before transmission. The transmitted SAR

signal can then be written as

srad(t) =
NP∑
h=1

ψ(t− hTi)ej2πf0t (1.26)

where Np is the number of transmitted pulses.

From the geometry in Figure (1.11), we can see that the observation time is

Tob = (L+ ∆x)/Vst. (1.27)
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Figure 1.12: The sampled LFM signal before transmission (waveform in baseband).

During the observation time Tob, the radar travels a distance that covers the synthetic aperture

length L plus the azimuth length of the area of interest ∆x. Tob is the time during which the radar

covers the entire area of interest in the observable angle limit. The quantity of pulses transmitted

during this period is

Np = Tobfs (1.28)

which Np is the number of samples needed to image the area of interest.

Consider a scene where there is only one target at a given position θ = (x, y)T ∈ R2 and where

(x, y) is the target ground coordinates in the local scene. Denote as τθ the time duration of the radar

signal to propagate to the target position θ and return to the radar receiver. At some time t when

the satellite is at some slant range distance R(t) from the target, the radar signal echo received from

this target is

rrad(t) = ap(t− τθ(t)) (1.29)

where a is a scale factor that is locally constant at the slant Rθ(t), and the delay is τθ(t) ≈ 2Rθ(t)/c.

From equations (1.24) and (1.29), the received pulse train quadrature demodulation signal is then

rrad(t) =
NP∑
h=1

ahψ(t− hTi − 2Rθ(t)/c) (1.30)

where ah is an amplitude scale factor for the hth pulse. This formulation shows that received pulses

ψ(t− hTi − 2R(t)/c) are delayed and distorted versions of transmitted pulses srad(t− hTi). The dis-

tortion varies with the range Rθ(t) that depends on the geometry along with the radar displacement.
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The term τθ(t) in is a hyperbolic form which is near quadratic during the time the target is

in view (inside the antenna aperture) for the SAR in stripmap mode operating in the broadside

direction (without squint angle). The quadratic range term produces a Doppler modulation to the

transmitted radar signal that is related to the satellite radial speed Vr. In practice, the induced

Doppler is almost negligible for the fast time samples, as the slant range does not vary significantly

during the pulse duration T . At slow time samples (after each pulse) the range variation is significant

and corresponds to a quadratic phase change that occurs during Ti periods. Omitting the propagation

losses, the received radar signal rrad (t) = srad (t− τθ(t)) is the transmitted LFM signal s (t) after

a time delay transformation of τθ(t) due to Doppler and the time delay associated with the target

position.

1.5 Conclusion

This chapter presented both AIS and radar systems embedded into satellites with focus on maritime

surveillance application. The AIS and radar systems were described in details. Both AIS and radar

signal models are presented. The AIS and radar signal models are necessary to simulate AIS and

radar signals. Those will be useful in the next chapters to provide representative synthetic data for

the simulations.
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This chapter has been adapted from the conference paper [VVT+16].

2.1 Introduction (in French)

L’objectif de ce chapitre est d’étudier l’apport potentiel d’une utilisation conjointe des données radar

et AIS brutes pour la surveillance maritime. Le chapitre débute par la description d’un modèle

mathématique qui relie la position inconnue d’un bateau aux mesures AIS et radar via une fonction

45
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non-linéaire et un bruit de mesure additif blanc gaussien. Plus précisément, on obtient les relations

suivantes

yrad =αa(θ) + nrad

yAIS =βb(θ) + nAIS

où

• θ est la position inconnue du bateau

• β et α sont des amplitudes complexes également inconnues

• b(·) et a(·) sont les signatures AIS et radar d’un bateau situé à la position θ

• nAIS et nrad sont des bruits additifs blancs gaussiens de variances σ2
AIS et σ2

rad.

Afin de détecter la présence potentielle d’un bateau à la position θ, le chapitre introduit un problème

de détection qui consiste à détecter si les amplitudes α et β sont nulles ou pas
H0 : α = β = 0, (absence of ship)

H1 : α 6= 0, β 6= 0, (presence of ship).

Le problème est alors abordé de manière assez classique en étudiant le test du rapport des vraisem-

blances (test classiquement appelé GLRT, pour « generalized likelihood ratio test »). Ce test nécessite

d’estimer les paramètres inconnus des lois des observations sous chaque hypothèse à l’aide de la méth-

ode du maximum de vraisemblance. Ces estimateurs sont ensuite remplacés dans la vraisemblance

du modèle d’observation sous chaque hypothèse. Après quelques calculs détaillés dans ce chapitre,

on obtient la règle de décision suivante, sous l’hypothèse de puissance de bruit connue

Tf = ‖Payrad‖2

σ2
rad

+ ‖PbyAIS‖2

σ2
AIS

H1
≷
H0
ηf (2.1)

où Pa et Pb sont des opérateurs de projection sur les vecteurs a(θ) et b(θ) et ηf est un seuil à

déterminer en fonction de la probabilité de fausse alarme désirée. Une approche similaire permet
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de déterminer les règles de décision correspondant à la présence du radar seul ou de la présence du

système AIS seul.

Dans une seconde partie de ce chapitre, nous étudions la loi de probabilité de la statistique de

test Tf sous les deux hypothèses H0 et H1, de manière à obtenir les courbes COR (caractéristiques

opérationnelles du récepteur) qui sont la mesure communément utilisée pour évaluer les performances

d’un test statistique. La loi de Tf est une loi du chi-deux centrée sous l’hypothèse H0 et décentrée

sous l’hypothèse H1.

Le chapitre se termine par des expériences montrant clairement l’apport d’une fusion des données

brutes radar et AIS, à partir de données simulées. Ces simulations sont tout d’abord effectuées

pour un bateau de taille fixe, puis pour différentes valeurs du rapport signal sur bruit radar, qui

dépend directement de la taille du bateau. Dans chacun des cas d’étude, on peut apprécier le gain

en probabilité de détection résultant de l’utilisation conjointe des données radar et AIS.

2.2 Introduction

Here we present a way to integrate two dissimilar sensors, namely an AIS and a SAR sensor, in the

scope of using raw data for detecting ships.

The SAR signal is designed to be coherent and also orthogonal (in the limits of the maximum

unambiguous distances). The transmitted signal is known to the receiver, that signal process the

signal returns for the different Doppler and delays in order to discriminate targets.

In contrast, AIS is mainly conceived for communications. Excluding the synchronization patterns

present in the AIS signal, the transmitted sequence is mostly unknown to the receiver. Traditionally,

the associated processing for AIS signals is more related to decoding information bits than exploring

correlation by matched filtering. Despite of that, AIS signals may still be explored differently. For

example, one may explore AIS raw measurements with a signal model where there are unknown

parameters (for example the ship location).

An inherent problem of working with AIS signals is that they were designed for local radio

communications based on a TDMA structure. As described in the first chapter, the AIS ships use
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a self-organizing architecture where ships adapt their own transmissions, preventing conflicts and

preserving the structure of communications. Time slot allocation varies under time and geographic

position as users may relocate their transmissions due to changes in their own travel dynamics or

due to a change in time slot availability. This sequential aspect of received signals, the possible non

orthogonality of transmissions, and the existence of more unknown parameters in signal structure

(e.g. ship identification, speed, Doppler and delay are some examples) may complicate the use of

matched filtering methods compared to direct decoding of the AIS bitstream.

One way to identify the ship positioning is to describe the signal measurements as direct function

of a model with unknown parameters. For instance, one may consider ship positioning as unknown

parameters that are of interest and use raw sensor measurements associated with a signal model to

search for the unknown parameters. That method would provide the best theoretical performance

considering that no data is discarded by the sensors signal processing.

A possible way to identify ship positioning is to deal with the problem in an estimation approach.

In this method, one may explore the sensors model as function of ship positions and the other

nuisance parameters (for example, the Doppler shifts, ship speed, delay, frequency offset). By using

some assumptions about the measurement noise, one may search for the desired parameter vector that

maximizes a likelihood function. This theoretical method needs to search into a large dimensional

space. Despite optimal, this approach may not be reliable unless covering a very small geographic

zone and with a limited number of ships to estimate. Despite the considerations to reduce the

computation time, it may remain too computational intense to be tractable.

Based on this, an alternative is to use detection. In this case, the large dimensional parameter

search may be replaced by a detection test, which we must to decide between the presence of absence

of ship for some set of fixed parameters. For instance, we want to answer if there is a ship at the

coordinates fo the test position, estimating only the remaining parameter nuisances.

In classic detection, data from a single sensor is used for detecting targets. Other methods with

multiple sensors usually fusion data after the detection step.

In this chapter, we propose to integrate data from two dissimilar sensors in an upstream step of

the processing. Indeed, the closer to the raw data, the less loss of information due to processing.
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This way, one can expect better detection performance and possibly detect smaller targets that would

have been discarded by a conventional detector. In a fusion-before-detect scheme, we study a new

detector adapted to raw data acquired by both AIS and SAR sensors.

This chapter is organized as follows. First we define a data model for the measured sensor signals

and the considered modeling assumptions. In Section 2.5, we present the Generalized Likelihood

Ratio Test (GLRT) that will be used to detect the presence of radar and AIS signals, followed by

the GLRT of the classical detector that will be used for comparison. In Section 2.6 we determine the

distribution of the GLRT and we will provide the measurement of detection performance in terms

of receiver operational characteristic curves. To finish, in Section 2.8 we draw our conclusions and

discuss some prospective tracks to be explored.

2.3 Raw sensor signals

At the beginning of this section we summarize the raw signals models that are used by the proposed

ship detection method.

2.3.1 AIS signal model

Here we consider directly the raw AIS signal acquired by the satellite receiver. This signal is a vector

of complex time samples obtained after in-phase and quadrature (I/Q) demodulation before any

signal processing step. For a single vessel at a position θ = (x, y)T ∈ R2, the received sampled AIS

signal yAIS = (yAIS(1), . . . , yAIS(NAIS))T ∈ CNAIS (where NAIS is the sample size) is defined as

yAIS = βb(θ) + nAIS (2.2)

where b(θ) ∈ CNAIS represents the AIS signature for a ship located at position θ, β ∈ C is the

unknown complex signal amplitude and nAIS ∈ CNAIS is the additive measurement noise. We assume

that the noise sequence contains uncorrelated complex white Gaussian samples, i.e.

nAIS ∼ CN
(
0, σ2

AISINAIS

)
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where INAIS is the NAIS ×NAIS identity matrix and σ2
AIS is the AIS noise power (here considered as

known initially).

The AIS message is unknown to the receiver, but contains some bits that can be predicted

[HLP15]. Consider that a detector will try do detect a ship in a small region on the earth surface.

The AIS message bits relative to latitude and longitude coordinates may be tested by the detector for

all the possible combinations that cover the area of interest. The detector will identify the presence

of a ship by detecting a signal using the correlation of the known AIS bits.

An AIS demodulator must perceive a good SNR in order to decode all the AIS bits without

errors. Conventional AIS demodulation compares the CRC block from the AIS message against the

CRC calculated over the received AIS bits. The AIS message is considered valid if there is a CRC

match. Otherwise, there are errors and the message is usually discarded. There are more advanced

demodulation techniques that are able to decode AIS messages at lower SNRs and in presence of bit

errors (such as in [Pré12]). However, our interest is to explore the correlation between the known

bits to detect ships with help of AIS raw data.

We consider to have a low SNR environment in which the AIS message may not be correctly

demodulated. Still, some bits may still be correct and data may be used by an AIS signal detector.

As a consequence, the AIS signal model b(θ) can be constructed using the known signaling bits

(here the “training sequence”, “start flag” and the “end flag”) and the predicted message bits (here

“latitude” and “longitude” bits in the AIS message). The remaining unknown bits in the signal model

are blanks (zeros) and thus do not impact in the detection performance.

2.3.2 Radar signal model

We directly consider the raw radar signal which is a vector of complex time samples obtained after

I/Q demodulation and before any signal processing. As described in the radar signal model in Section

1.4.3, we consider the signal model for a single vessel at position θ = (x, y)T ∈ R2 where the received

sampled radar signal yrad = (yrad(1), . . . , yrad(Nrad))T ∈ CNrad is defined as

yrad = αa(θ) + nrad (2.3)
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where a(θ) = (r(t1), ..., r(tNrad))T (with t1, ..., tNrad the sampling times) represents the radar signal

modeled at the respective sampling times, the scalar α ∈ C is the unknown complex signal amplitude

and

nrad ∼ CN
(
0, σ2

radINrad

)
(2.4)

is the additive measurement noise whose samples are uncorrelated complex Gaussian and σ2
rad is the

noise power.

2.4 Modeling assumptions

There are some practical limitations when using both AIS and radar signals for detection. For

instance, considerations need to be made about the reception of both signals. Also, there are detection

scenarios that may not be explored properly by our method. Likewise, there are unknown parameters

in both radar and AIS signal models that increases the computational complexity of the detectors.

Dealing with all those constraints is important for proper use of the signal detectors that will be

presented in the next sections.

In summary, we need some modeling assumptions to be considered in order to simplify our

detection scenario. Here we consider the following assumptions :

Assumption 1: At a given time instant t, the AIS and radar signals are synchronous with respect

to the ship position θ(t) = [x(t), y(t)]T , where the time dependence has been outlined here for clarity.

As the signals coming from the same ship are usually acquired by the SAR and AIS sensors at distinct

time instants trad 6= tAIS, they do not generally correspond to the same coordinates. However, we

assume here that these coordinates have been corrected in order to obtain θ(tAIS) = θ(trad). It is

worth noting that the equality θAIS = θrad is automatically satisfied when repositioning errors are

lower than the radar resolution.

Assumption 2: The proposed model is valid for a single ship per test position. Moreover, we

assume to test only a binary hypotheses case: or there is a ship and both Radar and AIS data are

present, or there is only noise in both Radar and AIS signals. This leads to a simpler detection
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problem with only two hypotheses, ignoring complications such as, e.g., signal conflicts with other

ships (AIS collisions), or other hypotheses like the presence of a ship signal at only one of the sensors.

Assumption 3: The AIS signal model b(·) not only depends on θ but also on other parameters,

like the bit-stuffing in the message, Doppler, time delay, difference in the modulation index, among

others. Even being possible to deal with bit-stuffing, it can be neglected assuming some detection

performance loss [HLP15].

Our assumption facilitates our signal model and provides an upper bound of detection perfor-

mance. In other words, this assumption corresponds to a best case scenario without any error in

bit-stuffing, Doppler, time delay, difference in the modulation index. We assume here that these

parameters are known by the receiver in order to obtain a simplified model b(θ).

2.5 GLRT detectors

In this section we introduce the statistical test proposed to detect the presence of signals applied to

our context of AIS and radar sensors. The concept of the signal detectors presented in this work is

based on a binary hypothesis testing that contrasts the null hypothesis against an alternative one.

More precisely, we are interested in generating a test that evaluates the raw sensor data and infer

about the presence (or absence) of signals in a noisy environment. We present two likelihood ratio

test that will be used to decide between the hypotheses. In fact, as the probability density functions

depend on a set of unknown parameters that differ under each hypothesis, the generalized likelihood

ratio test (GLRT) is considered for this task replacing the unknown by their estimates in order to

obtain the desired detectors.

2.5.1 Detector for AIS and radar raw data

In order to detect the presence or absence of a ship using AIS and radar data, we propose to study

the following binary hypothesis testing problem
H0 : α = β = 0, (absence of ship)

H1 : α 6= 0, β 6= 0, (presence of ship).
(2.5)
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Note that hypothesis H0 corresponds to the absence of ship in both AIS and radar measurements

whereas hypothesis H1 corresponds to a situation for which the ship signature is present in both

AIS and radar measurements. The hybrid case for which the ship is present in only one of the two

signatures will be discussed in the next section. Since the two amplitudes α and β are unknown, it

is standard to consider the GLRT to solve the detection problem (2.5). The GLRT for (2.5) is based

on the following test statistics

p(yAIS,yrad|α̂, β̂,θ, H1)
p(yAIS,yrad|α = 0, β = 0,θ, H0) (2.6)

where parameters α̂ and β̂ are the maximum likelihood estimators of the signal amplitudes under hy-

pothesis H1 and p(yAIS,yrad|α, β,Hi) is the probability density function of the measurement vectors

(yAIS,yrad) at the position θ under the hypothesis Hi.

Under the signal models (2.2) and (2.3) we have the probability density functions

p(yrad;α, σ2
rad,θ) =

(
πσ2

rad

)−Nrad exp
{
−‖yrad − a(θ)α‖2

σ2
rad

}
(2.7)

p(yAIS;β, σ2
AIS,θ) =

(
πσ2

AIS

)−NAIS exp
{
−‖yAIS − b(θ)β‖2

σ2
AIS

}
. (2.8)

Consider that we are going to solve a detection problem for a single position θ = (x0, y0). Since θ is

fixed, for simplicity of notation we write a and b instead of a(θ) and b(θ), respectively. Being the

additive noises nrad and nAIS independent random variables with σ2
rad and σ2

AIS known variances, we

have the joint probability density function

p(yrad,yAIS;α, β) = p(yrad;α, σ2
rad)× p(yAIS;β, σ2

AIS)

=
(
πσ2

rad

)−Nrad
(
πσ2

AIS

)−NAIS exp
{
−‖yrad − aα‖2

σ2
rad

− ‖yAIS − bβ‖2

σ2
AIS

}
. (2.9)

Under hypothesis H1 the unknown signal amplitudes α and β may be replaced by their maximum

likelihood estimates (MLE) α̂ and β̂. It follows immediately that

α̂ = aH

‖a‖2
yrad (2.10)

β̂ = bH

‖b‖2
yAIS. (2.11)
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Reporting (2.10) and (2.11) into (2.9) and also naming k0 = (πσ2
rad)−Nrad(πσ2

AIS)−NAIS , we obtain

p(yrad,yAIS|α̂, β̂,H1) = k0 exp
{
−‖(I − Pa)yrad‖2

σ2
rad

− ‖(I − Pb)yAIS‖2

σ2
AIS

}
(2.12)

where Pa = aaH/‖a‖2 and Pb = bbH/‖b‖2 are, respectively, the projection operators onto the

subspace spanned by their respective vectors a and b. Under the null hypothesis H0, the signal

amplitudes are α = β = 0 which means that yAIS and yrad measurements are composed only by the

noises. It is immediate that

p(yrad,yAIS|α = 0, β = 0, H0) = k0 exp
{
−‖yrad‖2

σ2
rad

− ‖yAIS‖2

σ2
AIS

}
. (2.13)

Applying (2.12) and (2.13) to the test statistics in (2.6) then the generalized likelihood ratio (GLR)

is given by

p(yrad,yAIS|α̂, β̂,H1)
p(yrad,yAIS|α = 0, β = 0, H0) =

exp
{
−‖(I−Pa)yrad‖2

σ2
rad

− ‖(I−Pb)yAIS‖2

σ2
AIS

}
exp

{
−‖yrad‖2

σ2
rad
− ‖yAIS‖2

σ2
AIS

} .

After some trivial manipulation and taking the logarithm, the GLRT then amounts to comparing

Tf = ‖Payrad‖2

σ2
rad

+ ‖PbyAIS‖2

σ2
AIS

H1
≷
H0
ηf (2.14)

which ηf is an appropriate detection threshold [VBR08] to be chosen accordingly. It is interesting to

note that the detector (2.14) is a weighted sum of two independent test statistics that are associated,

respectively, with the radar and the AIS measurements. This weighted sum can be viewed as the sum

of the estimated signal-to-noise ratios for the AIS and radar test statistics. Of course, the probability

of detection Pd and the probability of false alarm Pfa of the test (2.14) are directly related to the

value of the decision threshold ηf .

2.5.2 Detector for radar raw data

When a single source of information is available, the GLRT detector (2.14) reduces to the matched

subspace detector (MSD) [Sch91]. For instance, in the case of radar data only, the test statistics

reduces to

Trad = ‖Payrad‖2

σ2
rad

H1
≷
H0
ηrad (2.15)
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where ηrad is a detection threshold to be adjusted as a function of the desired detection performance

in term of Pd or Pfa.

A similar result can be obtained for the GLRT for AIS data only. The proof is immediate.

2.5.3 Detector for AIS and radar raw data (unknown noise power case)

Here we present a different formulation of the detector considering the case that noise power is

unknown. In that case, σ2
AIS and σ2

rad parameters need also to be estimated. In the same procedure

for α and β, we use the MLE for both noise parameters plugged directly into the GLRT in order to

obtain a constant false alarme rate (CFAR) detector.

From the hypothesis test in (2.5), we have the test statistic presented in (2.6). Now consider

the extra nuisances as the signal noise power for both AIS and radar. Then the test statistics now

becomes
p(yAIS,yrad|α̂, β̂, σ̂2

AIS, σ̂
2
radθ, H1)

p(yAIS,yrad|α = 0, β = 0, σ̂2
AIS, σ̂

2
rad,θ, H0) , (2.16)

where parameters σ̂2
AIS and σ̂2

rad are the maximum likelihood estimators of the signal noise powers

under both hypothesis.

The likelihood for AIS and radar signals are presented in 2.8 and 2.7. Similarly, (2.9) represents

the same joint probability density function of using both AIS and radar sensors. It is immediate to

obtain both σ̂2
AIS and σ̂2

rad. Using the partial derivatives of both likelihoods to represent the extreme

value of the functions with respect to σ2
AIS and σ2

rad, we obtain

∂ lnL
∂σ2

AIS
= ∂

∂σ2
AIS

(
−NAIS ln(π)−NAIS ln(σ2

AIS)− z
Hz

σ2
AIS

)
= 0

σ̂2
AIS = zHz/NAIS, (2.17)

where z is the term yAIS − bβ. It is immediate that

σ̂2
rad = xHx/Nrad (2.18)

where x = yrad − aα. Finally, the likelihood equation considering the MLE of the radar and AIS

noise powers is

L = k1(zHz)−NAIS(xHx)−Nrad (2.19)
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where k1 = (πe/NAIS)−NAIS (πe/Nrad)−Nrad is a constant.

Under hypothesis H1, the unknown signal amplitudes α and β may be replaced by their maximum

likelihood estimates α̂ and β̂. It is immediate that α̂ and β̂ are the same found in (2.10) and (2.11).

Replacing the unknown variables by their MLE we obtain

L =


k1
(
yHradP

⊥
a yrad

)−Nrad
(
yHAISP

⊥
b yAIS

)−NAIS under H1

k1
(
yHradyrad

)−Nrad
(
yHAISyAIS

)−NAIS under H0.

(2.20)

The GLRT considering noise power unknown for the detector of both radar and AIS signals is

Tuf =

 ‖yrad‖
2∥∥∥P⊥a yrad

∥∥∥2


Nrad

 ‖yAIS‖
2∥∥∥P⊥b yAIS

∥∥∥2


NAIS

, (2.21)

where Tuf represents the GLRT of a detector considering the case of unknown noise power that jointly

uses both AIS and radar raw signals. This detector is the product of two constant false alarm rate

(CFAR) matched subspace detectors (see [Sch91]) with different power exponents. It is direct that

the probability law of Tuf is a product of two χ2 distributions with different power exponents.

Next we proceed with performance analysis of the detectors, where we will compare the radar

detector with the detector Tf , the case considering noise power known. The detector Tuf that considers

noise power unknown is presented here for reference only and will not be evaluated.

2.6 Performance analysis

The detectors derived in the last sections will be compared thanks to their receiver operational

characteristics (ROCs), which requires the distribution of the test statistics under both hypotheses. In

the sequel, we present the distribution of the test statistics. The closed form equations of distributions

are used to produce the ROC curves that will evaluate the respective theoretical performance of both

detectors.

The notation χ2
n(λ) indicates a chi-squared distribution with n degrees of freedom and non-

centrality parameter λ. We use the notation W ∼ ρχ2
n(λ) for a random variable W such that W/ρ

is distributed as a chi-squared distribution χ2
n(λ). Of course, the distribution χ2

n(λ) reduces to the

central chi-squared distribution for λ = 0.
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2.6.1 Distribution of the test statistic Trad (radar data)

The test statistic Trad in (2.15) is a quadratic form from a multivariate complex normal distribution.

From the noise distribution (2.4) it is clear that

Payrad ∼ CN
(
aα, σ2

radPa
)
. (2.22)

is correlated with Pa as correlation matrix. The correlation matrix is symmetric and nonnegative

definite. Therefore, there exists an orthogonal transformation matrix Q such that QHPaQ = Ik,

where k = rank(Pa). It follows that the transformed vector

QHPayrad ∼ CN
(
QHaα, σ2

radIk
)

(2.23)

is uncorrelated while preserving the same quadratic form

yHradPaQQ
HPayrad = yHradPayrad = ‖Payrad‖2.

The quadratic function from multivariate normal random variables has a chi-squared distribution

[Sch91, p.63]. Since it is usual dealing with the real χ2 distribution, we define T {·} the real isomor-

phism that allows the one-to-one mapping correspondence from the complex vector space Cp to the

real vector space R2p (see [DFKE95] for more details). A random vector w ∈ Cp may be represented

as

T {w} =

Re(w)

Im(w)


where T {w} ∈ R2p. Similarly, a matrix C ∈ Cp×p the isomorphism transform produces

T {C} =

Re(C) − Im(C)

Im(C) Re(C)


which is a real partitioned matrix with T {C} ∈ R2p×2p. From those definitions, it is straightforward

that the k-dimensional complex random vector in (2.23) may be written as the 2k-dimensional real

random vector

T
{
QHPayrad

}
∼ N (T

{
QHa

}
α,

1
2σ

2
radI2k).
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For convenience, we let w = QHPayrad/σrad so that

T
{√

2w
}
∼ N (

√
2T

{
QHa

}
α, I2k)

has the quadratic form

2w
Hw

σ2
rad

= 2Trad ∼ χ2
2k(λrad)

that is distributed as a non central χ2 distribution with non-centrality parameter

λrad = ‖
√

2αQHa/σrad‖2 = 2α2‖a‖2/σ2
rad (2.24)

with 2k degrees of freedom in which k = rank(QHPa) = 1. The detector distribution under both

hypotheses only differs on the non-centrality parameter, as for the null hypothesis α = 0 and con-

sequently λ = 0. We conclude that the distribution of the MSD in corresponding to radar only

measurements in the case of a known noise power is

Trad ∼


1
2χ

2
2(0) under H0

1
2χ

2
2(λrad) under H1.

(2.25)

A similar result can be obtained for the distribution of the test statistics for AIS data only.

2.6.2 Distribution of the test statistic Tf (radar and AIS data)

The distribution of Tf test statistics in (2.14) may be obtained by evaluating the signal model random

variables in (2.2) and (2.3). Since Tf is the sum of two quadratic forms originated from independent

multivariate normal distributions, it is easily seen from Section 2.6.1 that

‖Payrad‖2

σ2
rad

∼ 1
2χ

2
2k(λrad)

‖PbyAIS‖2

σ2
AIS

∼ 1
2χ

2
2l(λAIS)

are two independent non central χ2 random variables with respectively λrad = 2α2‖a(θ)‖2/σ2
rad and

λAIS = 2β2‖b(θ)‖2/σ2
AIS non-centrality parameters. It is known that the non central χ2 distribution
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satisfies the reproductive property with respect to the number of degrees of freedom and the non-

centrality parameter [Rao02, p.182]. Thus, we have that

Tf = ‖Payrad‖2

σ2
rad

+ ‖PbyAIS‖2

σ2
AIS

∼ 1
2χ

2
2k+2l(λrad + λAIS)

is also χ2 distributed with 2k + 2l degrees of freedom and λrad + λAIS non-centrality parameter.

Given that k = rank(Pa) = 1 and l = rank(Pb) = 1 and considering that under the null hypothesis

λrad = λAIS = 0, we conclude that the test statistic Tf of the joint AIS and radar detector that uses

raw sensor data has the distribution

Tf ∼


1
2χ

2
4(0) under H0

1
2χ

2
4(λrad + λAIS) under H1.

(2.26)

2.6.3 Receiver operating characteristics

The probability distributions derived in the previous section can be used to determine the ROCs for

both detectors Trad and Tf, and thus to evaluate the potential performance gain due to the joint use

of AIS and radar data. Let

Qχ2(y;n, λ) =
∫ ∞
y

pχ2(n,λ)(x)dx

denote the complementary cumulative distribution function (CCDF) of a non central χ2 random

variable y with n degrees of freedom and non-centrality parameter λ, and consider Q−1
χ2 (p;n, λ) its

inverse [VBR08]. The Pd and the Pfa of both detectors can be derived as follows

Radar only

Pfa(Trad) = Qχ2(2ηrad; 2, 0)

Pd(Trad) = Qχ2(2ηrad; 2, λrad)

AIS and radar

Pfa(Tf) = Qχ2(2ηf ; 4, 0)

Pd(Tf) = Qχ2(2ηf ; 4, λAIS + λrad).
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Straightforward use of the CCDF and its inverse lead to the following ROC equations

Radar only

Pd(Trad) = Qχ2(Q−1
χ2 (Pfa(Trad); 2, 0); 2, λrad) (2.27)

AIS and radar

Pd(Tf) = Qχ2(Q−1
χ2 (Pfa(Tf); 4, 0); 4, λAIS + λrad) (2.28)

where (3.26) and (3.25) represent the theoretical performance in terms of Pd versus Pfa. The expres-

sions also indicate that the detection performance is directly related to the non-centrality parameters

of the distributions λrad and λAIS + λrad. Observe that

2α‖a‖2/σ2
rad =2α

Nrad∑
i=1
‖ai‖2/σ2

rad = 2Nrad SNRrad

2β‖b‖2/σ2
AIS =2β

NAIS∑
i=1
‖bi‖2/σ2

AIS = 2NAIS SNRAIS

where Nrad is the number of radar integrated samples and SNRrad the input signal-to-noise ratio

of the radar samples (respectively NAIS and SNRAIS for the AIS samples). Denoting as SNRo the

output signal-to-noise ratio [Sch91], we can express both as function of the non-centrality parameters

as

λrad = 2Nrad SNRrad = 2 SNRorad

and

λAIS = 2NAIS SNRAIS = 2 SNRoAIS .

The different detectors are then comparable for a given target SNR expressing their performance in

terms of Pd as a function of Pfa via the ROC curves.

2.7 Simulation results

To analyze the performance of the two detectors defined before, we consider a simulation scenario

(in agreement with the assumptions in 2.4) with AIS and SAR signals corresponding to a single ship.
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Figure 2.1: ROCs of Tf, TAIS and Trad for a small ship (SNRorad = 8.79 dB). The Trad ROC for a
bigger ship (SNRorad = 13.09 dB) is also presented for comparison.

The SAR system is assumed to operate with 200 pulses of 2µs and 30MHz bandwidth, yielding a

total of Nrad = 12000 samples. For the AIS system, the known signaling bits and the predicted

message bits lead to NAIS = 95. The ROCs are determined using equations (3.25) and (3.26).

The first set of experiments is presented in Fig. 2.1 for a small ship with a radar SNR of −33 dB

(i.e., SNRorad = 8.79 dB) and with an AIS SNR of −8 dB (i.e., SNRoAIS = 11.78 dB). Note that we

used a logarithmic scale for the X axis and a linear scale for the Y axis. The gain obtained by using

both AIS and radar data (blue line with squares) can be clearly observed when compared to the

detector that uses radar measurements only Trad (green line with triangles). For reference, a detector

using AIS measurements only (TAIS) is presented (black line with circles) that is also outperformed
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Figure 2.2: ROCs of Tf for different ship sizes, i.e., different radar SNRs (SNRoAIS = 11.78 dB).

by the joint AIS/radar detector Tf. Note that for a detection probability Pd = 0.9 the probability

of false alarm of Tf is close to Pfa = 10−6, whereas for Trad, we have Pfa close to 10−2. In this

example, the detector based on joint AIS/radar data provides a significative gain that allows us to

detect targets 4.3 dB smaller while keeping the same performance in terms of Pd versus Pfa (blue

line with squares and red line with crosses). Note that the performance of Tf is only compared to

Trad because the radar is more reliable than the AIS.

The second set of experiments compares ROCs associated with the joint AIS/radar detector for

a fixed AIS SNR (SNRoAIS = 11.78 dB) and different radar SNRs (i.e., different ship sizes). Fig.

2.2 shows that the detection performance is an increasing function of the radar SNR, as expected.

This kind of comparison can be made for different SNRs, we may also consider a different number of
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correlation bits for the AIS signal.

Simulation using synthetic AIS and radar data

It is natural to relate the performance ROC curves obtained from the theoretical distributions of the

test statistics with ROC curves from synthetic data generated from the radar and AIS signal models.

Detection performance may be evaluated using Monte Carlo trials in order to estimate the Pd versus

Pfa using experimental ROC curves.

We consider the same hypotheses used for the theoretical models in the Section 2.4. We use

synthetic data for both AIS and Radar with the GLRT detectors derived in Section 2.5. Likewise,

we also simulate that the AIS and radar signals are originated from a fixed position θ which we want

to test.

Observing the figure 2.3 we evaluate the Tf model using synthetic data. One may see that the

theoretical and synthetic curves are very close for different values of radar SNRo. Notice that the

curves were plotted with lower SNR compared with figure 2.2. This was intentional as lower is

the probability of false alarm samples are needed to trace the curves using synthetic data. Our

conclusion is that the data samples reproduce the same detection probability as the theoretic curves,

which validates our statistical model in a practical simulation using radar and AIS signal samples.

2.8 Conclusion

This chapter presented a ship detector combining AIS and radar data for maritime surveillance.

This problem was formulated as a binary hypothesis test that was handled using the principle of the

generalized likelihood ratio detector. We derived the distribution of the resulting test statistics under

both hypotheses, allowing the receiver operational characteristics to be computed in closed form. A

comparison between the ROCs associated with the joint AIS/radar detector, the AIS detector and

the radar detector allowed the performance gain obtained when using both sensors to be appreciated.

Both theoretical and empirical curves were obtained and compared, allowing to validate the statistical

model used.
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Figure 2.3: ROCs of Tf for different ship sizes, i.e., different radar SNRs (SNRoAIS = 1.78 dB).

This study was based on some important simplifying assumptions that allowed the evaluation of

the detection performance of a detector which uses both AIS and radar raw data. Despite the promis-

ing results, one has to deal with the computational complexity of the method which is complicated

for real time implementation.

In the next chapters another development is devoted to the fusion of radar raw signal with AIS

processed data (the ship positioning information decoded from the AIS signals), where we direct to

a realizable sub optimal solution, exploring data in different manner with reduced computational

complexity.
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This chapter has been adapted from the conference paper [VVT+17].

3.1 Introduction (in French)

Dans le chapitre précédent, nous avons choisi d’exploiter les signaux AIS et Radar bruts, dans le but

de les fusionner en conservant un maximum d’information. Nous avons ainsi formulé le problème de

fusion des données en un problème de détection exploitant directement les signaux issus des deux

types de capteurs. Bien que prometteuse, cette solution se heurte à un problème de charge calculatoire

et des difficultés de mise en œuvre liées au nombre important de paramètres inconnus contenus dans

le message AIS. En effet, celui-ci n’a pas été conçu pour un traitement par filtrage adapté mais pour

65
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un décodage plus standard, basé sur la détection de ses séquences de synchronisation. D’autre part,

il existe des bases de données accessibles gratuitement, diffusant, en temps réel, les positions des

bateaux qui transmettent leur message AIS à la surface du globe. Le site marinetraffic.com est un

exemple de ce type de bases de données résultant de mesures collaboratives à différents points du

globe. Ces deux constatations nous poussent à étudier un nouveau schéma de fusion des données

basé sur l’exploitation des signaux radar bruts assistée d’une base de donnée des positions de bateaux

donnée a priori (méthode dénommée fusion de niveau 2 dans le chapitre 1).

Ce problème de fusion avec des données « mixtes » (brutes pour le radar et déjà traitées pour

l’AIS) peut également être formulé de la façon suivante : est-il possible d’améliorer la détection

radar connaissant une liste a priori de positions de bateau fournie par l’AIS ? Cette question peut-

être décomposée en deux sous-questions que nous traiterons en deux étapes successives.

1. Est-ce que la liste des positions disponibles est valide ?

2. Existe-t-il d’autres bateaux dans la zone ?

A partir de ces questions on peut définir quatre hypothèses liées au problème de détection :

H0 : il n’y a pas de bateau dans la case radar sous test (pas de position AIS correspondant cette

case dans la liste, confirmé par le radar)

H1 : il y a un bateau coopératif dans la case sous test (position de la liste AIS confirmée par le

radar)

H2 : il y a un bateau dans la case sous test sans signal AIS (le radar détecte un bateau ne corre-

spondant à aucune position de la liste AIS). Ce cas regroupe les petits bateaux ne possédant

pas d’AIS et les bateaux n’ayant pas transmis (volontairement ou non) leur position. Cette sit-

uation peut également correspondre au cas de bateaux qui biaisent volontairement leur position

AIS (pêche illégale, piraterie) de manière à masquer leurs positions, sans éveiller de soupçons.

Ce cas sera alors également détecté, dans la case correspondant à la position biaisée, par la

dernière hypothèse de travail, H3.
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H3 : il n’y a pas de bateau dans la case sous test mais on devrait en avoir un, au vu de la liste AIS

(position AIS non confirmée par le radar).

Comme nous l’avons vu précédemment, les positions AIS sont mises à jour avec une répétition

assez lente (pouvant aller jusqu’à 3 minutes) et de manière non synchronisée pour chaque bateau.

Comme la vitesse, le cap et la datation des mesures des navires sont transmis par les messages AIS,

il est cependant possible d’extrapoler les positions des bateaux de la liste pour les comparer aux

données radar acquises à un instant différent. Deux hypothèses peuvent alors être envisagées

• La résolution du radar est suffisamment grande (bande basse) pour que l’on puisse considérer

que l’on ne commet pas d’erreur quant à l’extrapolation des positions AIS sur les cases radar.

• La résolution du radar est fine (bande large) de manière à pouvoir intégrer une erreur de

position éventuelle des positions AIS extrapolées sur les cases radar.

Focalisons-nous, dans un premier temps, sur le cas le plus simple où l’on considère que l’on ne

commet pas d’erreur a priori sur les positions des bateaux à partir des mesures AIS. La première étape

consiste à vérifier que la liste des positions AIS correspond bien à des positions renvoyant de l’énergie

radar au sol. Pour cela, il suffit de tester les positions de la liste AIS θAIS =
[
θAIS1 , . . . ,θAISNAIS

]T
une à une, en supposant que les autres positions de la liste sont valides (on suppose que seule une

erreur est possible à chaque test). Le problème peut donc se formaliser par un test d’hypothèses

binaires :

pour chaque θAISi ∈ θAIS


yrad = A∼iα∼i + nrad under H3

yrad = A∼iα∼i + βa(θAISi) + nrad under H1

où A∼i =
[
a(θAIS1), . . . ,a(θAISi−1),a(θAISi+1), . . . ,a(θAISNAIS

)
]
regroupe, en colonne les (NAIS − 1)

signatures de la liste des positions AIS non testées à l’étape i et α∼i les (NAIS − 1) amplitudes.
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Après cette première étape de confirmation, on obtient une liste des bateaux confirmés θAISconf

(hypothèse H1). Lors d’une deuxième étape, nous pouvons donc maintenant tester la présence de

nouveaux bateaux en dehors de la liste des positions a priori. Ce problème peut être formulé de la

manière suivante :

pour chaque θ /∈ θAISconf


yrad = Aα+ nrad, sous H0

yrad = Aα+ βa(θ) + nrad, sous H2

où A regroupe, cette fois en colonne les NAISconf signatures radar correspondant aux positions des

bateaux confirmés.

On voit que les modèles présentés lors des 2 étapes successives sont identiques. Nous allons donc

nous focaliser sur la deuxième étape pour développer le test GLRT associé. Le même détecteur sera

alors valide pour la première étape, en utilisant la matrice A∼i en lieu et place de la matrice A et

en limitant la zone de recherche au positions θ de la liste AIS.

En considérant les amplitudes des différents échos radar α ainsi que la puissance du bruit σ2
rad

inconnues, on obtient l’expression suivante de la statistique du test GLRT

‖áH ý‖2

‖á‖2‖ý‖2
H1
≷
H0
ηp

où á = P⊥Aa(θ) and ý = P⊥Ayrad sont les projections de la signature radar recherchée et du signal

radar sur le sous-espace orthogonal aux signatures des bateaux déjà répertoriés.

De par l’inégalité de Cauchy-Schwarz, ce test peut être interprété comme une mesure du cosinus

carré de l’angle entre les vecteurs á = P⊥Aa et ý = P⊥Ayrad vecteurs auxquels on a supprimé

préalablement les interférences liées aux cibles déjà connues par l’AIS. Il suffit alors de comparer ce

test à un seuil pour décider entre les hypothèses H0 et H2. La valeur du seuil est fixée en fonction de

la Pfa désirée. On peut également noter que ce test est à taux de fausse alarme constant (CFAR).

Ce processus de détection permet d’une part de fusionner de manière naturelle les informations

AIS et radar, mais peut également améliorer la performance en détection du radar. Pour évaluer
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ce gain éventuel en terme de détection, nous allons comparer notre détecteur au détecteur GLRT

utilisant les données radar sans connaissance a priori de la liste AIS. Sous l’hypothèse d’une puissance

de bruit inconnue, ce dernier est le détecteur appelé « CFAR matched detector » dont la statistique

de test est

Tc = yHradPayrad
yHradP

⊥
a yrad

L’analyse des lois des statistiques de ces deux tests permet de montrer qu’elles suivent des lois

de Fisher centrées et décentrées, en fonction de l’hypothèse valide. Ces lois permettent de comparer,

de manière théorique, leurs performances en terme de courbes ROC (Pd en fonction de Pfa). Les

tracés de ces courbes théoriques permettent de montrer que les performances dépendent de la densité

de bateaux connus à proximité de la case sous test. Plus la densité des bateaux connus de par la

liste AIS est grande, plus la performance chute. Néanmoins, de par sa construction, le détecteur

proposé, qui élimine les interférences des bateaux déjà connus est beaucoup moins sensible à cet

effet et ses performances sont quasi constantes en fonction de la densité de bateaux. On observe le

même phénomène en fonction de l’éloignement et de la taille des bateaux à proximité de la case sous

test. Logiquement, plus le bateau répertorié est gros et proche de la case sous test, plus la détection

d’un nouveau bateau sera délicate. Cet effet est néfaste mais grandement atténué par le nouveau

détecteur.

Enfin, pour finir ce chapitre, nous nous sommes intéressé au cas où les positions de bateaux de

la liste AIS peuvent contenir des erreurs, du fait de leur extrapolation à la date de prise de vue

radar. Dans ce cas, on peut modifier le modèle d’observation en intégrant du bruit sur ces mesures

de position, comme suit :


yrad = A (θr)α+ βa (θ) + nrad

θa = θr + na

où θr représente le vecteur des vraies positions captées par le radar et θa les positions extrapolées

sujettes à des erreurs modélisées de manière gaussiennes par na.
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On peut supposer que la puissance de ces erreurs de positionnement peut être estimée connaissant

la précision des mesures AIS brutes (position, vitesse, datation) ainsi que la durée d’extrapolation.

De même, on peut supposer que l’on a accès à des données radar secondaires pour déterminer la

puissance du bruit des mesures radar. On peut alors calculer un nouveau détecteur intégrant ces

erreurs de mesures AIS. Ce nouveau détecteur GLRT présente un terme correctif dont le poids

dépend naturellement de la puissance (supposée connue) des erreurs sur les positions. Des simulations

permettent de comparer le comportement de ce nouveau détecteur avec le détecteur ne prenant pas

en compte d’erreurs de position.

3.2 Introduction

In the previous chapter we decided to explore the fusion of raw AIS and radar data in order to preserve

the maximum of information. We formulated the problem of data fusion into a detection problem

by exploring directly the raw data from both sensors. While promising, the proposed solution has

high computational cost and is difficult to implement due to the number of unknown parameters

in the AIS message. The AIS is a telecomunication signal and it was not conceived for matched

filtering reception, but instead, to be decoded using a more simple scheme based on detecting the

synchronization sequences and then using bit decoding with the possibility of error detection by using

the CRC block to assure message integrity.

The data obtained from AIS decoded messages provides useful information about ships position-

ing. In a surveillance scenario, this may be used not only to inform about the cooperative ships

but also to improve detection and classify ship detections. Also, AIS decoded information is avail-

able from other sources than from the direct acquisition. The website “www.marinetraffic.com” for

example is one service that offers real time AIS processed data. For those reasons, we direct our

research to a more feasible fusion scheme, where we consider exploring the radar raw data assisted

by a secondary data source, providing a list of “know” ship positions (that may have errors and need

to be validated) named “the fusion level two” in the list of data fusion methods presented in chapter

one.
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Moreover, there are many challenges that need to be dealt it. In the first chapter we cite some im-

portant surveillance scenarios like, e.g., navigating in crowded areas (the North sea, Mediterranean,

the English channel, among others). The detection of ships that are close range or near the coastal

area are more examples of scenarios that are specifically challenging to deal with. We will see that

a conventional detector (that uses only raw radar data) may have a non uniform detection perfor-

mance in those cases. We propose a different model for the ship detection problem and compare the

performance between the conventional radar detector with a proposed detector in some surveillance

specific scenarios.

In this chapter, we propose a detector that uses the vessel position provided by the AIS system

to improve the radar detection performance. This time the processed AIS data is used as secondary

information for the radar detector in order to improve the detection performance. The idea is also

to use a detector that is able to separate target into four different surveillance hypotheses, namely

to classify targets as a new detection, a non detection, a confirmation of a target or a false alarm.

Besides the classification of targets, the proposed detector shall be used for detecting ships that are

not in the AIS list (non cooperative ships), which we expect to observe a performance gain in ship

detection by using AIS positioning with radar raw data.

First we introduce the signal models associated with the radar signals and with the AIS detection

map. Section 3.4 introduces the problem and issues addressed in this work. Section 3.5 investigates

the GLRT based on the proposed detection problem. Section 3.6 derives the probability distributions

of the test statistics that are used to determine performance using ROC curves. Section 3.7 compares

the detection performance obtained for both theoretical and simulated data in different scenarios. We

clearly show the gain of using a detector combining AIS and SAR data when compared to the classical

radar detector for scenarios characterized by different ship scenario configuration like different ship

densities, sizes or the distance between ships. Afterwards, we present a model that considers the case

that AIS positioning error is greater than the radar resolution. To finish, we draw our conclusions

in Section 3.9.
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3.3 Signal model

AIS processed data

AIS messages are transmitted every 2 to 10 seconds for moving ships and every 3 minutes for the

anchored ones [ITU14]. The AIS information can be obtained in different ways: They may be

acquired onboard a satellite embedding AIS receiver, or may be gathered from some AIS databse (an

example of AIS database may be found in www.marinetraffic.com). Mainly due to the asynchronous

nature of AIS, the list of positions provided by the AIS usually does not coincide with ship positions

associated with radar snapshots. This leads to ship positioning errors that need to be considered

accurately. A simple approach consists of propagating the AIS detection map by using information

contained in AIS messages, such as, e.g., ship heading, speed, rate of turn indicator and message

timestamps. Moreover, precision may be improved when multiple AIS messages from the same

ship are available. In practice, the majority of ships travel on straight lines and a simple linear

extrapolation may be sufficient to propagate the AIS positions. Propagation of the AIS positions up

to the radar time measurement may be done by simple extrapolation of positions using target speed,

heading and timestamp. Also, we consider here at first that the positioning interpolation errors are

lower than the radar resolution so that their impact on detector performance can be neglected. The

AIS positions list after being propagated to the current radar scene instant is represented by θAIS.

3.4 Problem statement

Referring to the radar model in Section 2.3.2, in this case we no more consider the raw AIS signals

but the list of AIS positions θAIS. If we consider the coordinates, ship speeds and also the time of

reception of the AIS message of each ship in the area of interest, we may propagate those positions

to the instant of reception of the radar signal θAISprop . For simplicity, we will omit the suffix “prop”

and by θAIS we are referring uniquely to the already propagated list of AIS ship positions. The radar

raw signal at the satellite receiver is

yrad = A (θAIS)α+ βa (θ) + nrad (3.1)
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where A (θAIS) is a Nrad ×NAIS matrix containing NAIS radar signatures of the cooperative targets

at the positions in vector θAIS, and a (θ) is the radar signature at the test position θ 6⊂ θAISprop

with unknown signal amplitude β, and vector α = (α1, . . . , αNAIS)T is the unknown amplitudes of

the radar signals corresponding to the cooperative ships in the AIS positions.

Here, we consider that the AIS ship detection list may be incomplete (or corrupted), where we

have to discriminate among four hypotheses: Hypothesis H0 corresponds to the absence of ship

(confirmed by the radar and the AIS), hypothesis H1 is associated with a radar echo from a ship

whose position is known from the AIS list (a cooperative ship confirmed), whereas hypothesis H2

represents a radar echo from an unknown ship (a non-cooperative ship detected with the radar) and

lastly, hypothesis H3 corresponds to the absence of radar echo at an AIS reported position (an AIS

error, deliberate or not).

The hypothesis H3 indicates a problem that is observable only when using both AIS and radar

associated. In this case the AIS position does not match to a radar detection, indicating that the

AIS information is either biased to a position farther than the radar resolution, or represents a false

AIS data, situation that may be intentional or not. In some maritime surveillance scenarios like in

illegal fishing, AIS data may be intentionally forged by fishing vessels in order to avoid authorities

surveillance or concurrent fishers that searchs for good fishing zones. In hypothesis H2 there are ship

detection that does not transmit their AIS position but are confirmed by the radar, representing in

surveillance scenarios situations like an illegal cargo operation, where ships intentionally turn of their

AIS in order to proceed with the illegal activity, or some ships that does not have an AIS transmitter.

The cases of hypotheses H1 and H2 are, respectively the confirmation of a ship and a non-detection

of a position that is not in the AIS list.

We conduct a two-step procedure in order to decide between the different hypotheses:

1. Confirmation of the AIS ship positions

In this step we exclusively test the AIS positions in order to confirm the presence (or the

absence) of ships with the radar. We are interested in testing if each of AIS positions θAISi
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corresponds to a radar detection. For this first stage, the model to consider is

yrad = A∼i (θAIS∼i)α∼i + αia (θAISi) + nrad (3.2)

where i ∈ {1, . . . , NAIS} represents the index of a ship in the AIS positioning list θAIS =(
θAIS1 , . . . ,θAISNAIS

)
, being θAISi the i-th AIS position to test while θAIS∼i are the remaining

ones. A∼i is a Nrad × (NAIS − 1) matrix whose columns contain the radar signatures cor-

responding to the remaining (NAIS − 1) positions in the AIS list. αi and α∼i represent the

complex amplitudes of the radar signals from the AIS list at, respectively, the i-th position

and the remaining ones. The binary hypothesis test used to validate the AIS positions consists

testing whether αi is zero or not, distinguishing each ship in θAIS between the two hypotheses

H1 (cooperative ship confirmed) and H3 (AIS biased ship).

2. Detection of unknown ships

After validating the AIS list θAISconf , the two hypotheses H0 (no ship) and H2 (ship detection

without AIS) can be tested for all other positions θ that do not belong to the AIS list, i.e., for

θ /∈ θAISconf

yrad = A (θAISconf )αconf + βa (θ) + nrad. (3.3)

3.5 Generalized Likelihood Ratio Test

We are interested in solving the following binary hypothesis test problem

H0 : β = 0 (absence of ship) (3.4)

H2 : β 6= 0 (presence of ship) (3.5)

considering the radar noise power σ2
rad and the signal amplitudes α and β as unknown. The GLRT

compares the following quantity

p(yrad|σ̂2
1, α̂1, β̂1,θAISconf ,θ, H2)

p(yrad|σ̂2
0, α̂0, β = 0,θAISconf ,θ, H0) (3.6)
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to an appropriate threshold, where α̂i and β̂i are the maximum likelihood estimators (MLE) of the

signal amplitudes under the hypothesis Hi, p(yrad|σ2
i ,αi, βi, Hi) is the probability density function

of the radar measurement vector yrad at test position θ. The probability density function is show to

be

p(yrad|σ2
rad,α, β,θAIS,θ, Hi) =

(
πσ2

rad

)−Nrad exp
{
−‖yrad −Aα− βa‖2

σ2
rad

}
, (3.7)

where we write a and A instead of respectively a(θ) and A(θAIS) to shorten notation. It is straight-

forward to show that the unknown parameters σ2
rad, α, β have their MLE estimates respectively

given by

σ̂2
rad = ‖yrad −Aα− βa‖2/Nrad

α̂ = A+ (yrad − βa)

β̂ =
(
aHP⊥Aa

)−1
aHP⊥Ayrad,

with A+ = (AHA)−1AH representing the pseudo-inverse of A(θAISconf ), PA = AA+ is the pro-

jection matrix onto the subspace containing all the ships belonging to the AIS list θAISconf , and

P⊥A = I − PA the orthogonal projection. Replacing the unknown parameters by their respective

MLE, we obtain the following probability density functions for both hypotheses H0 and H2

p(yrad|σ̂2
rad, α̂, β = 0,θAIS,θ, H0) =

(
πe

Nrad
‖yrad −Aα̂‖2

)−Nrad

p(yrad|σ̂2
rad, α̂, β̂,θAIS,θ, H2) =

(
πe

Nrad
‖yrad −Aα̂− β̂a‖2

)−Nrad

where straightforward computations show that

l =


(

πe
Nrad

)−Nrad
(
yHradP

⊥
Ayrad

)−Nrad under H0(
πe
Nrad

)−Nrad
(
yHradP

⊥
Ayrad −

yH
radP

⊥
Aaa

Hyrad
aHP⊥Aa

)−Nrad
under H2,

are the likelihoods functions with respect to each hypothesis. The GLRT in (3.6) may be written

p(yrad|σ̂2
1, α̂1, β̂1,θAIS,θ, H2)

p(yrad|σ̂2
0, α̂0, β = 0,θAIS,θ, H0) =

 yHradP
⊥
Ayrad

yHradP
⊥
Ayrad −

yH
radP

⊥
Aaa

HP⊥Ayrad
aHP⊥Aa


Nrad

. (3.8)
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Taking the Nradth-root and after some manipulations, we obtain the GLRT

Tp = yHradP
⊥
Aaa

HP⊥Ayrad(
aHP⊥Aa

) (
yHradP

⊥
Ayrad

) = ‖áH ý‖2

‖á‖2‖ý‖2
H1
≷
H0
ηp (3.9)

where á = P⊥Aa(θ) and ý = P⊥Ayrad are respectively the signal and the measurement vectors

projected onto the subspace orthogonal to the confirmed AIS positions, ηp is the detection threshold

to be chosen with respect to the desired performance in terms of Pd and Pfa. The proposed detector

Tp is a constant false-alarm rate (CFAR) that compare the square of the cosine of the angle between

two vectors: the measurement vector yrad and the radar signature vector a(θ) after both being

projected onto the space of the radar signatures orthogonal to the AIS position list θAISconf .

Alternatively, one may consider an equivalent GLRT statistic which is also invariant to the same

group of transformations that makes Tp invariant [Sch91]. Noticing that ýH ááH ý

áH á
= ýHP áý and

ýH ý = ýHP áý + ýHP⊥á ý, taking the Nradth-root of (3.8) we obtain

T ′p = ýHP áý

ýHP⊥á ý
(3.10)

which is also a ratio of quadratic forms in projection matrices that measures the energy of yrad that

lies in the subspace defined by P á. Observe that Tp = T ′p
T ′p+1 .

To evaluate the performance we compare the proposed detector Tp with the standard matched

detector in the hypothesis of unknown noise power

Tc = yHradPayrad
yHradP

⊥
a yrad

H1
≷
H0
ηc (3.11)

is the CFAR matched subspace detector (available in [Sch91]) where Pa = a(θ)
[
a(θ)Ha(θ)

]−1
a(θ)H

and P⊥a = I − Pa are both the projection matrices associated respectively with the radar signal

subspace and its orthogonal.

3.6 Performance analysis

In the sequel, Fn,m(λ) denotes a real noncentral Fisher distribution (F-distribution) with n,m degrees

of freedom and noncentrality parameter λ. Moreover, we use the notation W ∼ ρFn,m(λ) for a
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random variable W such that W/ρ has an F-distribution Fn,m(λ). Of course, the noncentral Fn,m(λ)

distribution reduces to a central F-distribution with n,m degrees of freedom when λ = 0.

3.6.1 Distribution of the test statistic Tp

As nrad is supposed to be Gaussian, Tp is (up to a multiplicative constant) the ratio of a central

under a noncentral chi-square distribution under hypotheses H0 and H2 which is known as a Fisher

distribution [Sch91].

Degrees of freedom

We evaluate the numerator and denominator of Tp separately. Consider Q an orthogonal matrix

such that QHPAQ = Ik and PA = QIkQ
H , which Ik notation indicate that I is a n × n diagonal

matrix with k ones and n− k zeros so that rank(Ik) = k. For the denominator we have

yHradP
⊥
AP áP

⊥
Ayrad = yHradQIn−kQ

HQI1Q
HQIn−kQ

Hyrad

= yHradQIn−kI1In−kQ
Hyrad.

(3.12)

This way, rank(In−kI1In−k) = 1.

Proof: As a ⊥ A, < I1, In−k >= I1. Then rank(In−kI1In−k) = rank(I1) = 1.

Evaluating the numerator

yHradP
⊥
AP

⊥
áP
⊥
Ayrad = yHradQIn−kQ

HQIn−1Q
HQIn−kQ

Hyrad

= yHradQIn−kIn−1In−kQ
Hyrad,

(3.13)

where rank(In−kIn−1In−k) = n− k − 1.

Proof:

rank(a) = 1, a ⊂< A⊥ >

rank(a⊥) = n− 1, a⊥ ⊂< A ∪A⊥ >
(3.14)

As a⊥ ∩ a = ∅ and a ⊥ A, then < a⊥ ∩A⊥ >=< A⊥ − a >. rank(< A⊥ − a >) = n− k − 1. The

(complex) number of degrees of freedom are d1 = 1 and d2 = n− k − 1, where k is the dimension of

< A > and n the complete complex vector space Cn.
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Probability distribution

The Fisher distribution is defined as: X = u/d1
w/d2

where u and w are χ2 distributed with respectively

d1 and d2 degrees of freedom and being u and w independent. To grant independence of the ratio

between χ2 distributions we use the alternative GLRT formulation T ′p

T ′p = y′HP a(θ)y′

y′HP⊥
a (θ)y′ =

∑d1
i=1 ‖ui‖2∑d2
j=1 ‖wj‖2

(3.15)

with u = P aP
⊥
AQ

Hyrad and w = P⊥aP
⊥
AQ

Hyrad are mutually orthogonal transformations of the

Gaussian random vector yrad. We granted that the numerator of T ′p is orthogonal to the denominator

so that

T ′p = k
χ2

2d1

χ2
2d2

∼ F (2d1, 2d2, 2λ) (3.16)

is a non-central Fisher distribution where k =
(
σ2d1
σ2d2

)
= d1

d2
. Notice that the “times 2” in terms is due

to the isomorphism between C 7→ R2 (see [DFKE95] for details). Thus, straightforward computations

lead to

T ′p ∼


1
2F2,2(n−k−1)(0) under H0

1
2F2,2(n−k−1)(λp) under H2

(3.17)

where

λp = 2β2‖P⊥A(θAIS)a (θ)‖2/σ2
rad (3.18)

is the noncentrality parameter of the distribution under hypothesis H2, n = Nrad is the number of

radar samples and k = NAIS is the number of ships that are in the AIS detection list.

3.6.2 Distribution of the test statistic Tc

The distribution of the radar as CFAR matched filter in (3.9) is classical (available in [Sch91])

Tc ∼


1
2F2,2(n−1)(0) under H0

1
2F2,2(n−1)(λc) under H2

(3.19)

where

λc = 2β2‖a (θ)‖2/σ2
rad (3.20)
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is the noncentrality parameter of the F-distribution under hypothesis H2 and n = Nrad is the number

of radar samples.

3.6.3 Receiver Operating Characteristics

The probability distributions derived in the previous section can be used to determine the ROCs for

both Tc and Tp detectors. The ROCs will be used to evaluate the potential performance gain due to

the exploitation of AIS information. Denote

QF (y;n,m, λ) =
∫ ∞
y

pF (n,m,λ)(x)dx

as the complementary cumulative distribution function (CCDF) for the noncentral F-distribution,

with n and m degrees of freedom, noncentrality parameter λ. Also define Q−1
F (p;n,m, λ) the CCDF

inverse [VBR08]. The probability of detection (Pd) and the probability of false alarm (Pfa) of both

(3.17) and (3.19) test statistics can be obtained as follows

Radar with AIS positions

Pfa(Tp) = QF (2ηp; 2, 2(n− k − 1), 0) (3.21)

Pd(Tp) = QF (2ηp; 2, 2(n− k − 1), λp) (3.22)

Radar only

Pfa(Tc) = QF (2ηc; 2(1), 2(n− 1), 0) (3.23)

Pd(Tc) = QF (2ηc; 2(1), 2(n− 1), λc). (3.24)

These results can be used to determine the theoretical ROCs of the detection problems, i.e.,

Radar with AIS positions

Pd(Tp) = QF (Q−1
F (Pfa(Tp); 2, 2(n− k − 1), 0); 2, 2(n− k − 1), λp) (3.25)
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Radar only

Pd(Tc) = QF (Q−1
F (Pfa(Tc); 2, 2(n− 1), 0); 2, 2(n− 1), λc) (3.26)

Note that (3.25) and (3.26) indicate that the detection performance depends on the noncentrality

parameters λp and λc, which are related to the signal-to-noise ratio after match filtering (SNRo).

More precisely, for θ /∈ θAISprop and considering that the minimum distance between the test position

θ and the AIS positions θAISprop is not lower than the radar resolution, we have SNRo = λc ≈ λp as

‖P⊥A(θAIS)a (θ)‖ ≈ ‖a (θ)‖.

3.7 Performance assessment

To evaluate the performance of both detectors Tp and Tc, we simulated a spatial SAR system op-

erating with a B = 15 MHz bandwidth and transmitting N = 81 pulses of W = 3.33µs, leading to

BNW = 4050 radar signal samples. Empirical ROCs were obtained using Monte Carlo trials for a

fixed SNRo = 10 dB. We considered a scene defined as a 13× 13 (for computational time reduction

of the simulations) grid with a 10m resolution. The classical radar detector Tc and the proposed one

Tp are compared for the detection of an unknown ship located in the center of the radar scene in

the presence of cooperative ships. The two detectors are compared in two scenarios with different

ship densities. Note that the cooperative ships were randomly positioned in the scene of interest.

Simulated ROCs were obtained by using the results of 3.75 × 106 Monte Carlo trials corresponding

to random configurations of ship positions and different noise realizations. The theoretical ROCs

determined in (3.25) and (3.26) are also displayed for comparison. The ROCs of the different detec-

tors considering the ship density are shown in Figure 3.1. Our conclusions about these results are

summarized below

• Theoretical ROCs: The theoretical ROCs are represented in purple for the classical detector Tc

and in black for the proposed detector Tp. These curves correspond to the optimal performance

obtained at a given location of interest by using, respectively, radar data only and using radar

data with the AIS position information. Note that the classical detector assumes the presence
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Figure 3.1: Theoretical and experimental detector performances using ROCs considering scenarios
with different ship densities.

of a single ship in the scene of interest. As can be seen, the optimal performances obtained in

this context for the two detectors are approximately the same.

• Empirical ROCs: The empirical ROCs are more realistic since the detection of ship at a given

location will be affected by the presence of ships in the neighborhood. In order to illustrate this

point, we have represented in Figure 3.1 the empirical ROCs computed by averaging the results

of the different Monte Carlo runs (classical detector Tc in blue lines, proposed detector Tp in

red lines, solid curves for 30 cooperative ships and dashed lines for a more dense scenario with

70 cooperative ships). First, we can observe that the detection performance decreases with the

number of ships present in the scene. It can be explained by the fact that the probability of

having interferences due to sidelobes of the processing scheme at a given location (affecting

detection performance) is related to the number of ships present in its neighborhood. However,

the performance degradation of the proposed detector Tp due to a higher density of ships in the
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scene is much reduced when compared to the one obtained for the classical detector Tc. This

is due to the fact that the proposed detector uses AIS data to remove the interferences from

the known ships by projection the data in to the subspace orthogonal these known positions

before to compute the matched filter. Another important remark is that the empirical ROCs

associated with the proposed detector are closer to the optimal performance than the ones

obtained for the detector Tc using radar data only.

10-6 10-5 10-4 10-3 10-2 10-1 100

P
fa

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

AIS ship near an unknown one

Distance = 15m, resolution = 10m, SNRo = 10dB

AIS ship size=1, T
c

AIS ship size=2, T
c

AIS ship size=4, T
c

AIS ship size=1, T
p

AIS ship size=2, T
p

AIS ship size = 4, T
p

Figure 3.2: Experimental detector performance considering two ships: Different cooperative ship
sizes. Distance = 15m, resolution = 10m.

We also propose to evaluate the detection performance of the ship detectors in a specific maritime

scenario. Consider a cooperative ship which is at a close distance to an unknown ship. Ships are

near but still separated by a distance bigger than the radar resolution. The detection performance of

the conventional detector against the proposed one is evaluated using ROC simulations for different

ship sizes and separation distances.

The ROCs of the different detectors considering a fixed distance of 15 meters is shown in Figure
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3.2. The empirical ROCs are represented in two fashions: dashed lines for the proposed detector Tp

and solid lines for the classical radar detector Tc. Colors discriminate three different sizes for the

cooperative ship: blue indicates relative size equals to 1 (both have the same size), followed by red

and yellow indicating respectively that the cooperative ship has twice and four times the size of the

unknown ship to be detected. As can be seen, the performances obtained in this context for the

two detectors are quite different. The classic detector performance in detecting the unknown ship

is strongly affected by the other ship. As bigger is the cooperative ship size, more important is the

impact in Tc detection performance. It may be observed that Tp is almost unchanged and preserves

the performance close to its theoretical curve.
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Figure 3.3: Experimental detector performance considering two ships: Different cooperative ship
sizes. Distance = 14.4m, resolution = 10m.
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Alternatively, those results may be observed in the Figure 3.3. Here we fixed the separation dis-

tance to a value that produces the most important impact in detection performance for the unknown

ship (14.4 m separation in our test case). It may be observed that the classical radar detector looses

performance as the size of the known ship increases (blue line with dots) while the proposed detector

(red line with crosses) keeps the same performance of the classical detector in the single ship case

(dotted violet line). The comparison with the classic detector in the case that both ships are far

separated is show as reference (yellow line with circles).

In a second situation, consider now the fixed distance of 25 meters between the ships. It can be

seen in the Figure 3.6 that the classic detector has better detection performance than the proposed

one. The performance seems to increase when the size of the cooperative ship increases. Despite

seeming beneficial at this situation this is actually a problem. The non uniform performance gain

means that at certain situations the unknown ship may be or easily detected or not detected at all.

The selection of a fixed detection threshold would not provide a constant false alarm rate in this kind

of maritime scenario as desired.

Despite that we may still argue about the benefit may or may not surpass the loss in using the

conventional detection in scenarios where one tries to detect unknown ships near known ones ships.

To evaluate that we observe the Figure 3.7 that shows the impact in the detection performance with

respect to the ship distance for a fixed value of Pfa.

First notice that we are interested in detecting ships that are farther than the radar resolution

distance, so we consider only the positioning that are far than the radar resolution. In our simulations

we considered a radar imaging with 10 m resolution. From the blue line representing the classical

radar detector it can be seen that detection performance strongly depends on the distance between

the ships. The proposed detector (here represented by the red line) has more stable performance

almost identical to the theoretic curve (dotted line). For reference, when ships are far enough they

approach the theoretical performance, which is close to the performance curve for the classic radar

detector in a single ship case (when there is no interference from other ships). One may observe that

both detectors have performance almost identical in the distances that represents the zeros of the

radar lobes (multiples of the radar resolution distance) which indicates the source of the degradation
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in Tc performance.
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Figure 3.4: Representation of the radar signal lobes with respect to the distance between ships.

The radar resolution distance is defined by the widths in both range and cross-range axes of the

main lobe of the radar signal pulse compressed (see Figures 3.4 and 3.5). After SAR processing, the

radar return signal from a target at some coordinate pair θ has most of its energy concentrated into

the resolution cell respective to θ coordinates. Though, a ratio of the radar energy spreads outside

its resolution cell going into the side lobes. Because of that, radar scatters from other targets that

are close but in different resolution cells may still suffer (and produce) constructive (or destructive)

interference to neighbor resolution cells, impacting the performance. The proposed detector uses the

projection of the known ships due to the AIS information to perform the “pre-whitening”, meaning

that the measurement vector has the interference (radar scatters from the ships that transmits their

positions via AIS) removed before performing detection. This provides a detection map where noise

is better estimated.

3.8 Case with important AIS errors

In this case we suppose that the AIS position list does not provide sufficient information about

the target positioning. This may happens due to AIS positioning extrapolation errors or insufficient
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Figure 3.5: Representation of the radar signal lobes with respect to the distance between ships,
compared to a radar detection cross section view.

precision of the GPS data, for example. One way to deal with the errors is to model the AIS positions

as secondary data with noise modeled according to some probability distribution.

In this case, the signal model in (3.1) may be rewritten as


yrad = A (θr)α+ βa (θ) + nrad

θa = θr + na

(3.27)

where θa is the AIS positioning list, θr is the vector containing the correct positions of the AIS

ships at the radar measurement time, and nAIS is the positioning error, here modeled as a Gaussian

distribution with variance σ2
a.

Once again, one must decide between both hypotheses H2 and H0 considering the existence (or

not) of a radar signal in the test position θ. This can be translated into the GLRT by deciding if β
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Figure 3.6: Experimental detector performance considering two ships: Different cooperative ship
sizes. Distance = 25m, resolution = 10m.

is different from zero or not:

H0 : β = 0 (absence of ship) (3.28)

H2 : β 6= 0 (presence of ship). (3.29)

There are different possible cases considering the knowledge about the signal noise power and

the noise power of the positioning measurement θa. The variance of the positioning error may be

estimated using historical data from past AIS acquisitions. A formalization of the error model may

be done considering the acquisition time, ship speed, signal propagation delay in order to produce a

model about the position uncertainty of the AIS ships. Conversely, for the radar noise we may again
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Figure 3.7: Experimental detector performance considering two ships: Comparison of Pd against the
distance between the cooperative and an unknown ship. Resolution = 10m.

consider that both cases have known noise power. Alternatively, one could use secondary data to

estimate the value of σ2
rad, or again, consider that the noise power is unknown and must be estimated

from the signal model.

Considering the case that σ2
r and σ2

a are known variances we have the following probability density

functions


p(yrad|σ2

r ,α, β,θr,θ) =
(
πσ2

r

)−Nrad exp
{
−‖yrad−A(θr)α−βa(θ)‖2

σ2
r

}
p(θa|σ2

a,θr) =
(
2πσ2

a
)−NAIS/2 exp

{
−‖θa−θr‖2

2σ2
a

}
.

(3.30)

Being the additive noises nr and na independent random variables, the joint probability density
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function is given by the product

p(yrad;θa|σ2
r , σ

2
a,α, β,θr,θ) = p(yrad|σ2

r ,α, β,θr,θ)× p(θa|σ2
a,θr)

= k exp
{
−‖yrad −A(θr)α− βa(θ)‖2

σ2
r

− ‖θa − θr‖
2

2σ2
a

}
. (3.31)

where k =
(
πσ2

r

)−Nrad (2πσ2
a

)−NAIS/2 is a constant. Considering both hypotheses H2 and H0 one may

replace the unknown variables by their MLE considering each hypothesis as

p(yrad|σ2
r , σ

2
a, α̂i, βi, θ̂ri,θ, Hi) = k exp

{
−‖wi‖2

σ2
r

− ‖θa − θr‖
2

2σ2
a

}
, (3.32)

where wi = ‖yrad−A(θ̂r1)α̂1− β̂a‖2 for i = 2 and wi = ‖yrad−A(θ̂r0)α̂0‖2 for i = 0, and i ∈ {0, 2}

represents the index of the corresponding hypothesis H0 or H2. The GLRT is

T = p(yrad;θa|σ2
r , σ

2
a, α̂1, β̂1,θr,θ, H2)

p(yrad;θa|σ2
r , σ

2
a, α̂0, β = 0,θr,θ, H0) . (3.33)

Taking the logarithm we obtain the following formulation for the detector

T ′ = ‖yrad −A(θ̂r0)α̂0‖2 − ‖yrad −A(θ̂r1)α̂1 − β̂a(θ)‖2
σ2
r

+ ‖θa − θ̂r0‖2 − ‖θa − θ̂r1‖2

2σ2
a

. (3.34)

Considering the hypothesis H0, it is clear that the MLE of the unknown variables α0 and θr0 are


α̂0 = (AHA)−1AHyrad = A+(θ̂r0)yrad

θ̂r0 = arg min
θr0

(
yH

radPA
⊥(θr0)yrad
σ2

r
+ ‖θa−θr0‖2

2σ2
a

) (3.35)

where A+ denotes the pseudo-inverse of the matrix A. The AIS position list θr has errors and need

to be estimated. For hypothesis H2

α̂1 = (AHA)−1AHyrad = A+(θ̂r0) (yrad − βa(θ))

β̂ = áH
(
áH á

)−1
ý

θ̂r1 = arg min
θr1

(
yH

radPA
⊥(θr1)yrad
σ2

r
− 1

σ2
r

yH
radPA

⊥(θr1)aaHPA
⊥(θr1)yrad

aHPA
⊥(θr1)a + ‖θa−θr1‖2

2σ2
a

) (3.36)

where á = PA
⊥a and ý = PA

⊥yrad and the orthogonal projector PA⊥ defined for A(θr1).



90 Chapter 3 - Improve radar detection using AIS processed data

The detector is then

T ′ = yHradPA
⊥(θ̂r0)yrad
σ2
r

− 1
σ2
r

yHradPA
⊥(θ̂r1)aaHPA⊥(θ̂r1)yrad

aHPA
⊥(θ̂r1)a

+ ‖θa − θ̂r0‖2 − ‖θa − θ̂r1‖2

2σ2
a

.

(3.37)

3.8.1 Simulations

Here we demonstrate with simulated data the detector when there are important errors bigger than

the radar resolution. In this case, the detector must determine the position θr that minimizes the

cost function related to choosing a position θr that is different from θa measured (which means

acquired by the AIS). We simulated a scenario which two ships are close but still separated by a

distance bigger than the radar resolution. One of the ships is cooperative and the other is present

for reference. The radar target positions are (+3,0) meters and (+2,+2) meters from the target area

center.

It can be seem that in 3.8 that the detector that admits small errors in the AIS positions could

not remove the radar detection of the known ship at (2,2) as the positioning error is greater than the

radar resolution. The detector identifies a detection at the correct ship position but as the position

is not considered in the AIS list the detector identifies the coordinates as a unknown ship. With the

detector that models AIS errors greater than the radar resolution we searched for the best θr that

minimizes the cost functions. As the estimated value for theta identified that (2,2) best matches the

real AIS position, the detector now considers the target at (2,2) as the real AIS position and removes

the signature by projecting the measurements to the orthogonal of A.

The detection map presented at Figure 3.9 shows that the target that before was present at the

coordinates (2,2) is now removed and only the unknown ship at (3,0) is presented as a new detection.

3.9 Conclusions

Here we addressed the problem of detecting a ship at a given location in the presence of cooperative

ships potentially present in its neighborhood. We demonstrated the interest of using the knowledge

of cooperative ship positions with raw radar data. Considering that the list of ships detected by
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Figure 3.8: Detector considering positioning errors smaller than the radar resolution. The AIS
position is the pair of coordinates (0,0) (azimuth;range), while the real AIS is at (2,2). The reference
is an unknown ship at (3,0). SNRo=11 dB, σ2

a = 2.82, radar targets at (+3,0) and (+2,+2), resolution
is (2m;5m) meters.

the AIS can be incomplete or corrupted, we proposed a two-step procedure: 1) validation of AIS

detections, and 2) detection of unknown ships. The results obtained in this study showed that the

classical detector performance decreases when the number of ships in the scene increases. However,

the proposed detector using the AIS data is much less affected by the number of cooperative ships

present in the scene. The advantage of the proposed method is that it provides improved radar

detection in dense environments. Also, it produces a detection map that considers both radar and

AIS sources to discriminate between the four hypotheses. One possible application of this detector

is ship detection in high density scenes considering that most ships cooperatively transmits their

positions using the AIS. Other uses may consider the elimination of known returns that are not

exclusively ship (for example the coastal area). We evaluated the impact of other ships in specific

scenario considering two ships that are close distance and provide an explanation to the effect of the
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Figure 3.9: Detector considering positioning errors bigger than the radar resolution. The AIS
position is the pair of coordinates (0,0) (azimuth;range), while the real AIS is at (2,2). The reference
is an unknown ship at (3,0). SNRo=11 dB, σ2

a = 2.82, radar targets at (+3,0) and (+2,+2), resolution
is (2m;5m).

interference in the detection performance from when more than one ship is present. Building new

detectors mitigating the impact of positioning errors in the AIS is also an interesting problem that

would deserve to be investigated and will be presented in the next Section.

In the next chapter we will present the simulations of the radar and AIS signals and applications

of the detectors presented so far. We also present the detection maps produced with the detectors

considering some scenarios that are pertinent to maritime surveillance (high density scenario and

detection of ships that are close distance, for example). With the simulations we are going to discuss

the challenges considering the detection methods presented so far.
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4.1 Introduction

Here we describe the simulation method used for generating the raw sensor signals and by specifying

the key parameters used in these simulations. Also, we propose some maritime surveillance problems

to be addressed using the detection methods discussed so far. Our objective is to show the radar signal

simulation and that the fusion of data from dissimilar sensors can be applied to specific maritime

surveillance applications.

This chapter is organized as follows. In the first section we introduce the simulation method

that we have been used for AIS and radar data and the simulation parameters. We then introduce

some test scenarios where we explore three surveillance examples. In these examples, ship targets

93
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are presented in different scenarios. The radar signal simulator will produce the radar signals that

will be used by the detectors to produce a detection map of the scenarios presented in this chapter.

The simulation results are analyzed carefully and some conclusions are finally provided.

4.2 Radar signal simulator

In the first chapter, we presented a mathematical model for raw radar signals obtained from targets

positioned at Earth’s surface (specifically the seas) being illuminated by a radar embedded satellite.

Consider that the imaging of a maritime scene with ships is done by a signal simulator based on

the same model. Consider also the radar operating as focused SAR in “stripmap” mode, positioned

broadside in a side-looking configuration, that is, the radar beam is normal to the flight direction

continuously observing a swath parallel to the satellite flight path on Earth’s surface (see the SAR

geometry in Figure 1.11).

With those considerations, we proceed detailing the steps to simulate the surveillance scenarios.

We use the raw radar signals produced by our radar signal simulator, and the signals will be processed

by the ship detectors to produce a detection map. The block diagram in Figure 4.1 indicates how the

radar raw signal simulator is used to reproduce a radar signal a(θ) and a radar measurement yrad.

With the radar signal simulator, a radar signal a(θ) is modeled considering a target at some

position θ for a specific configuration of the radar (given by the set of SAR parameters). The radar

measurement yrad contains the radar raw signals from the targets in the radar view, added with noise

nrad. The columns of matrix A(θall) are composed of the radar signals a(θi) from the illuminated

ships in the area of interest (θi ∈ θall, the position list containing all radar illuminated ships), and

α is the vector containing the amplitude of each signal in A(θall). Finally, the noise nrad is modeled

as in (2.4).

The Figure 4.1, we illustrate the process of building a detection map using the classical radar

detector and the synthetic signals from our simulator. This detector uses as input the signal modeled

a(θ) and the measurement vector yrad. The detector output is compared to a threshold to produce

a binary output indicating if a ship is detected (or not) at the position under test θ. We produce
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the detection map by repeating this process for the test positions covering the area of interest.

Radar raw
signal simulator

Noise model

Target list

SAR parameters

Noise parameters

Radar raw
signal simulator

Target

SAR parameters

Measurement

Signal model

True / False
Detector

Figure 4.1: The block diagram for detecting targets using the classical radar detector.
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4.2.1 Simulator parameters

The simulator have parameters for both the target and radar sensor. Target parameters include the

positioning information θ = (x, y)T in the form of a pair of coordinates and the reference amplitude

α for each respective return signal. Radar parameters consist in information about the radar and the

scene geometry (see Figure 1.11), e.g., the antenna dimensions, radar speed and direction, altitude,

incidence angle, among others. The SAR signal process parameters are defined according to a desired

performance, e.g., the carrier frequency, radar signal bandwidth, PRF, radar resolution, coverage,

wave penetration, the SNR, signal processing gain, among others.

The choice of simulation parameters has compromises in many aspects. For example, the choice

of radar carrier frequency influence other factors like the resolution, power, coherence requirements,

propagation factors (related to radar penetration like weather), stealth or low probability of intercept

in military application [CGM95]. Here we simply consider the radar operating in the X-band and

resolution in tens of meters.

The satellite velocity in the simulator is derived considering orbit information using the vis-viva-

equations [See03], where speed at any point of the orbit is given by v =
√
GM(2

r −
1
as

), which as

is the length of the semi-major axis of the satellite orbit, r is the distance between orbiting bodies,

namely the satellite and Earth’s gravity center, and GM the standard gravitational parameter, which

for the Earth is GM = 3.98600× 1014m3/s2.

Some simulation parameters used in the simulations are presented on the parameter Tables 4.1

and 4.2.
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Table 4.1: SAR simulation input parameters

Parameter Value Description
h 500 km Altitude
fc 9.5 GHz Carrier frequency
La 20 m Azimuth antenna length
δx 10 m Azimuth resolution
γ 25◦ Antenna look angle

B0T 50 Time-bandwidth product
fs 1.2B0 Hz Sampling rate

PRF 1.2BD Hz Pulse repetition frequency

Table 4.2: SAR simulation calculated parameters

Parameter Value Description
Vst 7612.6 m/s Platform speed
L λRc/La m Synthetic aperture length
BD Vst/δx Hz Minimum PRF (azimuth unambiguous)

PRFmax c/(2∆R) Hz Maximum PRF

Notes: c denotes the speed of light and λ the radar wavelength.
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4.2.2 The radar detection map using the signal simulator

Consider the example scenario in Figure 4.2. The radar signal returns are modeled considering the

acquisition of a serie of pulses gathered in timed intervals restrained to a certain observation window

(the area of interest). The measurement yrad contains all samples obtained from the illuminated

targets in the area. Yet, the antenna aperture limits the practical amount of samples that SAR

integration process is effective in the azimuth direction x, that is, which may be integrated by the

detector when testing a single position θ. In range, it is the pulse duration and the vertical aperture

of the antenna that limits the number of samples in the range direction. This way, the antenna

aperture sizes, the pulse duration T , the PRF fp and the sampling rate fs are the parameters that

define the quantity of effective signal samples in the SAR processing. This limitation in the number

of processed samples can be observed using an example of the raw radar signal with our simulator.

In Figure 4.3a we observe the return signal from a single target at coordinates (0,0) meters. As

it may be seen, the signal returns are spread in the range direction and azimuth where the signal is

clearly limited to an area of near 60 samples in range by 90 samples in azimuth.

due to the pulse width T and the antenna real aperture size in azimuth.

The Figures 4.3a and 4.3b show the raw radar signals for targets located at different coordinates

(for reference plots indicate the real part of complex signals). In Figure 4.3a is presented the raw

radar signal for a target at (0,0) meters. We consider the coordinates with respect to the radar scene

illustrated in 4.2. The Figure 4.3b is the measurement of a scene with two targets: one at (0,0) meters

and other at (200,200) meters. Observe that the raw signals does overlap when targets are separated

by less than the size of the antenna aperture in azimuth direction, or by less than cT/2 meters in the

range direction. Targets that are closer than this distance overlaps causing some interference. It is

the SAR processing that will resolve overlapping targets from the measurement signal yrad. In Figure

4.4 we observe the chirp from the radar raw signal. The fast time samples in the range direction and

the slow time samples in the azimuth direction. The fast time signal obtained by sampling the chirp

echo, while chirp waveform observed in the slow time samples is result from the inter-pulse phase

rotation of the coherent signal (caused by the target distance variation between each radar pulse).
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Figure 4.2: Geometry of a radar stripmap scene.

4.2.3 Simulation considerations

The radar signals are represented as bi-dimensional maps representing range versus Doppler coordi-

nates. The relative displacement of the radar with respect to a target enables the cross range position

discrimination. However, there is an extra Doppler with non-stationary targets that must be com-

pensated in order to correctly position target objects. One can estimate the correct ship position for

each ship in a scene or compensate using external information. For the sake of simplicity, we consider

that the targets are stationary during the radar imaging.

About the radar signal power, we consider that the received radar signal attenuation due to

propagation is uniform in the swath. The antenna aperture is considered ideal, meaning that target

amplitude has unitary gain inside the antenna aperture while those outside are not considered.
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(a) Radar raw signal from a single target at (0,0) m.
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(b) Radar raw signal for two targets: One at (0,0)
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(c) Radar detection map example for the scene
containing two targets before applying a detection
threshold.
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Figure 4.3: Example of radar raw signals that are generated by the signal simulator and their
detection maps.
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4.3 Surveillance test scenarios

In broad sense, a surveillance system needs to deal with the different events that are particularly

interesting with respect to maritime safety and security. So far we presented ways to improve de-

tection by integrating AIS and radar sensor data. In order to observe how using ship detection and

classification may improve maritime surveillance we reproduce some typical scenarios. Specifically,

we present a piracy activity, an uncontrolled sea cargo transshipment and also an example of high

ship traffic scene based on a real situation. We begin introducing each surveillance scenario and

exploring the scenes with our simulations.

4.4 Piracy: the ship hijacking case

Here we represent a classical piracy example of a ship hijacking case. In this scenario, criminals

boarding a pirate ship moves from the coastal region approaching a commercial maritime route with

the objective to hijack a possible victim, in our case a cargo ship. This is illustrated in the figure

4.5. The case is represented in a sequence of four events shown in the figure. The colored arrows

represent the displacement of ships from the color of the arrow. The identification markers (crosses,

plus signs, circles) represent a snapshot of the ship positions at some time instant, the parenthesis

indicate the start and the end time in hours of each vessels in the chain of events in the ship hijacking

case.

The first event occurs in figure 4.5a, where one pirate ship represented by the green circles sets

course from the coast at the coordinates (0, 42) kilometers to the direction of a maritime route (green

arrow), when 5.1 hours later a cargo ship appears, here represented by the blue “x”.

The second event is illustrated in figure 4.5b, the pirate ship (pirate 1) continues to approach the

cargo ship, stopping at hour 8.4 and releasing a smaller vessel (pirate 2) represented by the orange

crosses.

The third event is illustrated in figure 4.5c. The pirate 1 here stands still for near half an hour

while the pirate 2 goes fast to the cargo ship to seize the victim. The figure 4.5d shows the last

event when both cargo and the pirate 2 moves in the direction of the main ship (pirate 1), and all
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(d) Pirates travel back to the coast while controlling
the cargo ship. The hijack is complete.

Figure 4.5: Piracy in a ship hijacking case divided in four chronological events.
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three ships then travel back to the coast to the original position where the pirates came from. The

hijacking now is complete with the total scenario, taking nearly 17 hours.

4.4.1 Piracy scenario simulation

In order to reproduce the surveillance situation we process snapshots of the scene as it would be seen

by a satellite embedding a radar that passes over the scene. For sake of simplicity, we consider only

imaging snapshots of some events that are more relevant to perform detection.

In the Figure 4.6 we observe the radar map of the scene at the instant of the third event, when

both pirate vessels are on the scene and the smaller ship set course to seize the cargo vessel. To be

more realistic, we assume the following sizes for the vessels: The cargo ship has 150 meters length and

beam (ship width over the water) of 25 meters, the first pirate ship is 30x10 meters and the second

pirate boat is about 10x10 meters wide. A intensity map of this scene is observable in the figure 4.7.

This map has no measurement noise for illustration purposes. Data is displayed in a mesh plot where

the peaks represent raw output of the classical detector before applying a detection threshold. The

detectors are used to test a grid at the surveillance scene and the result for each position corresponds

to a point in the grid. The radar parameters used in the simulations are indicated in the Table 4.3

and 4.4.
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Figure 4.6: Radar map of the piracy scene : The pirate 1 at the upper left corner, pirate 2 is the
small peak near the pirate 1, and the cargo ship at the lower right corner.
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Figure 4.7: Piracy in a ship hijacking case. Using the classic detector. Scene of a pirate ship (upper
left corner) releasing a second pirate ship at coordinates (80,180) km, heading for the cargo vessel
(lower right corner).
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Table 4.3: SAR input parameters for simulation

Parameter Value Description
h 500 km Altitude
fc 9.5 GHz Carrier frequency
δx 10 m Azimuth resolution
δx 10 m Range resolution
γ 25◦ Antenna look angle
B0T 50 Time-bandwidth product
∆x 15 km Range length of target area
∆y 200 m Azimuth length of target area
fs 1.2B0 Hz Sampling rate
PRF 4× PRFmin 4x the minimum unambiguous

PRF (PRFmin=1.2BD Hz)

Table 4.4: SAR calculated parameters for simulation

Parameter Value Description
Vst 7612.6 m/s Platform speed
BD Vst/δx Hz Minimum PRF (azimuth unambiguous)
∆R cT + 200

√
2 m Range swath length

PRFmax c/(2∆R) Hz Maximum PRF
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Now we observe the scene using the classical radar detector in a noisy environment. In the Figure

4.8 we observe that in the classical detector map of the scene both pirate ships very close, being

almost inseparable.

Next, we reproduce the same scenario but instead of using the classical radar detector we use the

proposed one that explores the AIS information. Obviously both pirates are uncooperative and they

are not to be found in the AIS list. However, consider that the snapshot was taken before the pirates

take control of the cargo vessel, meaning that the cargo AIS was active and the ship position was

available at the instant of the radar snapshot. Consider also at this example that the output radar

SNR (SNR after signal processing) is 14 dB.

While in the classical detector case the cargo and the pirate ship are too close to be distinguished,

it may be observed in the Figure 4.9 that the proposed detector maps the scene without showing

the cooperative cargo vessel, and we may cleary isolate and detect the peak corresponding to the

small pirate ship near the cargo position. For detecting, we applied a detection threshold over

the intensity maps. The Figures 4.10b and 4.10a represents the intensity maps (before applying

a detection threshold) of respectively the classical detector and the proposed one, and the Figures

4.11b and 4.11a represents respectively both detectors after a threshold is applied.

The detection maps shows more clearly the difference between the detectors. For the given

threshold we may not be able to correctly differentiate the small pirate ship from the big cargo in

the conventional detector while it is clearly visible in the Figure 4.11a when the proposed detector

is used.
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Figure 4.8: The classical detector map of the ship hijacking case. SNRout = 14dB.

Figure 4.9: The proposed detector map of the ship hijacking case. SNRout = 14dB.
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(a) The proposed detector map of the ship hijacking
case. SNRout = 14dB.

(b) The classic detector map of the ship hijacking
case. SNRout = 14dB.

Figure 4.10: The classic and proposed detector map of the ship hijacking case, before applying a
detection threshold.

(a) The proposed detector map of the ship hijacking
case. SNRout = 14dB.

(b) The classic detector map of the ship hijacking
case. SNRout = 14dB.

Figure 4.11: The classic and proposed detector map of the ship hijacking case after applying a
detection threshold.
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4.5 Cargo transshipment case

In this case we have a transshipment scenario involving three ships, where one ship transfers a part

of its cargo to another ship by an intermediary vessel in order to illegally export goods without being

noticed. Here the first ship is referred to as the export cargo (the ship that is going to provide

the cargo), the second ship is the import cargo (the vessel that is interested in getting the cargo)

and the third ship is an intermediary vessel, here a fishing “Trawler” that is going to transfer the

cargo from the export ship to the import ship. Note that all ships are merchant and transmit their

positions cooperatively using the AIS. However, they stop cooperating when engaged likely to perform

illicit activities in order to avoid being detected by the policy authorities. In this context, all three

ships stop transmitting their positions AIS at some point during the transshipment operation. This

scenario is illustrated in the figure 4.12 where the export ship is located left and the other two ships

are in the right of the figure. The red zone is the area that there are no AIS information.

Figure 4.12: Illustration of a sea transshipment between two cargos using a third “Trawler” ship as
intermediary. Red area indicates the zone where AIS is turned off.
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4.5.1 Transshipment scenario simulation

Similar to the piracy case, the transshipment case is processed in a series of snapshots as it would

be seen by a radar observing the scene. In this case we observe mainly the classification of targets

considering both radar and AIS sources.

Consider that the transshipment operation may be gathered using 12 snapshots, and during

the operations the ships turn off the AIS transmitter in order to avoid being noticed by policy

authorities. In Figure 4.13 we observe the dynamic scenario with black circles indicating the real

position of cooperative ships and red squares for the non-cooperative vessels. The number indicate

the snapshot order from 1 to 12, the letters are the ship ID obtained from the AIS message. Here

for simplicity we call the export cargo “A”, “B” for the Trawler and “C” the import cargo ship. We

also consider targets as punctual.

Next, we proceed by detecting using the radar classical detector and also with the proposed

detector using the AIS positioning list. We consider in the simulation the SNR output of 20 dB and

radar resolution of 50 m for both range and azimuth directions. The parameters of the simulation

are presented in Table 4.5 and Table 4.6.

Table 4.5: SAR simulation input parameters

Parameter Value Description
h 500 km Altitude
fc 9.5 GHz Carrier frequency
La 50 m Range resolution
δx 50 m Azimuth resolution
γ 25◦ Antenna look angle

B0T 50 Time-bandwidth product
fs 1.2B0 Hz Sampling rate

PRF 4×BD Hz Pulse repetition frequency
SNRout 20 dB Output signal-to-noise ratio

In a first step, the known positions are validated using the detector to confirm the AIS list. After
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Table 4.6: SAR simulation calculated parameters

Parameter Value Description
Vst 7612.6 m/s Platform speed
L λRc/La m Synthetic aperture length

PRFmin Vst/δx Hz Minimum PRF (azimuth unambiguous)

confirming the AIS positions we proceed to detect new unknown ships using the proposed detector

and compare with the classical detector. In Figure 4.14 and Figure 4.15 we present the superposition

of the snapshots taken from the sequence of events in the transshipment operation. The detection

maps are presented after applying a detection threshold. The red squares indicate the unknown ship

positions and black circles are the position of cooperative ships. The classical detector images all

ships in the scene while the proposed detector only shows the new detections.

Apart from the detection gain using the proposed detector the other scenarios, here we focus in

observing how the proposed detector may improve surveillance in target classification. In the scenario

we infer about a suspicious activity only when comparing AIS information with a radar detection

map. However, the proposed detector already fuses the AIS information with the radar data and

presents directly the map with only new detections that occurred during the time window when an

illegal cargo transshipment was occurring. This allows to easier evaluate the scenario and may serve

as input for an improved surveillance system to identify suspicious activities.
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Figure 4.13: Transshipment scene : Reference map of the ships to be detected.

Figure 4.14: Classical detector : Detection map after applying a detection threshold.
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Figure 4.15: Proposed detector : Detection map after applying a detection threshold.
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4.6 Scenario with important ship traffic

Here we explore the problem of detecting vessels in a dense ship density scenario. For reference,

in Figure 4.16 we observe the extent of ship traffic in crowded areas like the Mediterranean, the

English channel and coastal regions. The routes with dense ship traffic are indicates in the color

map. Consider an example of crowded region near a port. A representation of this example scenario

is illustrated in Figure 4.17.

Figure 4.16: Representation of sea traffic obtained with the AIS data from www.marinetraffic.com.

4.6.1 Ship traffic scenario simulation

In this scenario we simulated a region using the classical detector to produce a radar detection map.

For simplicity, we consider that all ships have the same size, and with the radar resolution, they

appear as punctal targets in the radar map. For this, we modified the radar parameters in order to

consider targets with radar resolution of 70 × 70 meters. For the simulations we consider the radar

parameters indicated in the Tables 4.7 and 4.8.
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Figure 4.17: Snapshot of ship traffic from AIS data in a crowded region near a port.

Table 4.7: SAR simulation input parameters

Parameter Value Description
h 500 km Altitude
fc 9.5 GHz Carrier frequency
La 20 m Azimuth antenna length
δx 10 m Azimuth resolution
γ 25◦ Antenna look angle

B0T 50 Time-bandwidth product
fs 1.2B0 Hz Sampling rate

PRF 4×BD Hz Pulse repetition frequency
SNRout 12 dB Output signal-to-noise ratio

For the simulation we assume a density of 200 ships including five that are not represented in the

AIS list for some reason (AIS error, wrong data or because it is intentionally not cooperative). In

Figure 4.18 we display the simulation scene. The black circles indicate the AIS ships while the red
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Table 4.8: SAR simulation calculated parameters

Parameter Value Description
Vst 7612.6 m/s Platform speed
L λRc/La m Synthetic aperture length

PRFmin Vst/δx Hz Minimum PRF (azimuth unambiguous)

squares display the ships that are not cooperative.
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Figure 4.18: The reference map of the ships to be detected. In black circles the cooperative AIS
ships and in red the unknown ones to be detected.

First, we reproduce the dense scenario using the classical radar detector. The detector images

the entire scene with both cooperative and non-cooperative ships. The radar map is presented in

the Figure 4.19. The peaks correspond to the more likely candidates for ships to be detected when

using a given threshold to be chosen. In Figure 4.20 we observe the classical detector after applying

a detection threshold. This produces a detection map of the scene with the bright spots indicating

the possible positions that were classified as detections.
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Figure 4.19: Radar map of a crowded region using the classical detector. The peaks in the map are
probable target candidates. The circles indicate the real ship position, here indicated for referencing.

For comparison, we proceed by using the AIS data and the radar raw signal to process the

simulation scenario. We begin by the two-step procedure discussed in 3.4, that is:

1. AIS validation

We validate the AIS detections using the detector at the known positions in the AIS list.

2. Detection of unknown ships

After validating the AIS, we proceed with the detection of new ships at the unknown positions

using the proposed detector in order to identify non-cooperative ships in the scene.

In the Figure 4.21 we observe the raw output the proposed detector before applying a detection

threshold. We denote in the figure using red squares the true positions of the non-cooperative ships

in the scene. As it may be observed results show that the detection map of the proposed detector

clearly indicates fewer peaks compared to the classical detector.

To show the detector in operation we also apply a detection threshold to the detection map. In

the Figure 4.22 we have the positions that are classified as ships by the proposed detector.
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Figure 4.20: Classical detector : Detection map after applying a detection threshold.

The detection map have less interference (fewer ships) and noise from known ships when compared

to the detection map of the classical radar detector.

From equation (3.9) we observe that the proposed detector explores ý = P⊥Ayrad, which is the

orthogonal projection of the radar signatures to the orthogonal of the space containing the known AIS

positions, while the classical radar detector explores the measurements yrad. The main difference is

that the proposed detector contains fewer radar signatures, as the “whitened” measurement vector ý

has only the signatures from the unknown ships, meaning less interference to the detector correlator.

This gives better estimation of the radar noise power (yHradP
⊥
Ayrad) when compared with the classical

radar detector (yHradyrad) as there are fewer interference to perturb the detector noise estimation. In

practice, the proposed detector identify the new detections (unknown ships) among a scene containing

cooperative AIS ships. In the dense scenario despite targets being close it is not clearly observable that

detecting the ships with the proposed detector improves detection. It is necessary to perform many

realizations of the scene to observe the gain in probability of detection. Detection performance with

proposed detector is improved when compared to the classical detector because the cooperative ships
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Figure 4.21: The reference map of the ships to be detected. In black circles the cooperative AIS
ships and in red the unknown ones to be detected.

signatures are removed before detecting and there are less interference to perturb the detecting of

new ships. This result was demonstrated in the third chapter using theoretical ROC curves and using

Monte Carlo trials to obtain empirical ROC curves. Here we propose to observe a single detection

map snapshot in a specific situation that the classical detection is perturbed by a ship. In the Figure

4.23 there is a small scenario showing three ships including one cooperative. The ship at coordinates

(0,0) m is used for calibration of the noise level for choosing the detection threshold. Again, we plot

both detector maps and apply a threshold to isolate detections in Figure 4.24. Needless to say that

the AIS ship is not visible in the proposed detector map (Figure 4.24d) because it is testing only for

the unknown positions. We observe that due to the interference of a nearby cooperative ship in the

scene a ship detection is missing in the classical detection map. However, the proposed detector is

able to detect the non-cooperative ship correctly using an equivalent threshold for the same noise

realization and given an equivalent detection threshold.



122 Chapter 4 - Fusion of AIS and radar data for specific surveillance applications

Figure 4.22: Proposed detector : Detection map after applying a detection threshold.
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Figure 4.23: Small scene : Reference map of the ships to be detected. In black circles the cooperative
AIS ships and in red squares the unknown ones to be detected.
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(b) Proposed detector : Detection map.
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(c) Classical detector : Detection map after applying
a detection threshold.
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(d) Proposed detector : Detection map after apply-
ing a detection threshold.

Figure 4.24: Detection map of a small scenario containing two ships including one cooperative. For
reference, the red square indicates the unknown ship positions and the black circles the position of
the cooperative ship. The detection at coordinates (0,0) m is for calibration purposes.



Conclusions and perspectives

The objective of this thesis was to propose solutions in order to improve maritime surveillance using

both AIS and SAR systems. In this context, the first chapter presented some possible ways of

fusing AIS and radar data. From the identified methods related to data fusion, the first level of

fusion seems to be promising. The joint use of raw data from both sensors, that is, data obtained

just before applying any sensor’s detection threshold, allows more information to be used in a ship

detection process. The chapter also presented some bases about the AIS and radar systems, including

details about the mathematical models used for both AIS and radar raw signals, considering them as

from ships being observed from a satellite in orbit. These models were used to generate synthetic AIS

and radar signals in order to evaluate and test the detection algorithms investigated in the following

chapters.

The second chapter proposed a ship detection algorithm that combines the raw signals from both

AIS and radar sensors for improving ship detection. It was demonstrated that fusing AIS and radar

raw data allows cooperative AIS ships to be detected with a performance gain when compared to

a classical radar detector, that is, a ship detector that considers only the radar data. However,

the proposed detector model needed to consider important constrains due to the computational

complexity resulting from the use of AIS raw data. For example, the acquisition time of the AIS

signal depends on the ship dynamic conditions, whereas the radar signal corresponds to the ship

position at the instant it was illuminated by the radar. Other difficulties arose from the AIS signal

model, which depends on parameters different from the position, for example, related to the bit

stuffing operation, the time delay, the modulation index, among others, limiting the practical use of

the proposed detector in a real time application.

125
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The third chapter studied a different approach for detecting ships using AIS and radar data in

order to relax some constraints limiting the first fusion method. We proposed to use a detection list

containing the positions of the AIS ships instead of the raw AIS signals. The positioning information

was obtained from the AIS decoded messages after being propagated to the instant of the radar

scene. The chapter also proposed a detection model that considers both the list of AIS ship positions

and the radar raw signals for two different situations regarding the AIS positioning errors: First, the

model assumed small positioning errors which may be neglected. Afterwards, the case of important

positioning errors was considered, with positioning errors modeled using a Gaussian distribution.

With respect to the AIS and radar detection errors, four hypotheses were considered. The problem

can be solved using two consecutive binary hypothesis tests: In a first step, the AIS list of ship posi-

tions is validated, classifying the detections between a confirmed target (corresponding to hypothesis

H1) or a false AIS position (hypothesis H3), that is, respectively between a ship position validated by

both radar and AIS detections, or a ship position in the AIS list that does not correspond to a radar

detection (due to an error in AIS data or possibly an illegal activity). In a second step, the validated

AIS detections are considered in a detection model to perform another binary test for detecting new

ships (hypothesis H2), that is, confirming the presence of a ship with the radar at a position that is

not in the AIS list (it might be the case for non cooperative ships). The positions that are not in the

AIS list and that are not detected by the radar are associated with the last hypothesis (hypothesis

H0).

When considering the detection of new ships, the detector proposed in the third chapter outper-

formed the classical radar detector in the cases including cooperative ships with an important ship

density or when ships are close. This improved performance is due to the interferences between the

different radar signals, which affect the detection performance of the classical radar detector, while

the radar signatures from cooperative ships (those belonging to the AIS positioning list) are removed

by the proposed detector before detecting new ships.

The fourth chapter presented the radar signal simulator and examples of maritime surveillance

scenarios being explored by the ship detectors. Some typical surveillance scenarios were chosen to

illustrate how the detector proposed in the third chapter can be used to improve maritime surveillance
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compared to the classical radar detector. Our results showed that the proposed detector can be used

to identify specific maritime surveillance situations. For example, in cases where ships are voluntary

hidden (a case of piracy) or when cooperative ships suddenly turn off their AIS transmitters (a case

of illegal sea transshipment). The simulations clearly showed that ship detection can be improved

with a detector that considers AIS positioning information.

This thesis showed that the combination of AIS and Radar data can improve maritime surveillance

using satellites. In this context, there are different perspectives that may be considered for future

work. In the second chapter regarding the detector that uses raw data from both AIS and radar,

one may consider other message bits than only ship coordinates (Latitude and Longitude) in order

to improve the detection performance gain. Indeed, one may consider more information bits based

on previous knowledge of local ship traffic, for example, for estimating user ID, or the ship heading,

or maybe other parameters from the AIS message specification.

In the third chapter, the proposed detector considered the cases of small and important positioning

errors. In the case of important errors, the detector model explores the positioning errors in the AIS

list and considers them as secondary data. A possible alternative would be to formalize the detection

errors using a Bayesian approach, for example, by associating some prior probability for AIS detection

errors (case of a false AIS) and assuming that the AIS ship coordinates are close to the expected ship

position, with a positioning error described by a probability distribution (Gaussian for example). In

the case of small positioning errors, a Bayesian approach could assume a probability value for the

AIS detection errors, while positioning errors are negligible when smaller than the radar resolution.

Another perspective would be to explore some particularities of the maritime surveillance scenario.

The maritime scene is usually very sparse, that is, the majority of tested positions do not contain a

ship. It should be possible to explore this specificity of the maritime scene and try to detect ships

using a sparse estimation approach. For example, considering a grid of ship coordinates, one could try

to estimate the ship amplitudes assuming that, from all the possible positions in the grid, only few of

them contain a ship. This approach leads to the estimation of radar signal amplitudes assuming that

most of them are equal to zero (no ship), which can be formulated as a sparse estimation problem.

Another possibility to improve maritime surveillance would be to explore the information obtained
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when the satellite revisits a scene. The long term ship tracking would allow more information to

be available for detecting ships. Also, the tracking information would be very valuable to better

estimate the occurrence of surveillance scenarios that concerns maritime surveillance applications,

for example, with cases of illegal fishing, piracy, cargo transshipment, among others.

An improvement could be done in chapter 4 by dealing with extended targets. In the presented

scenario containing extended targets we assumed that target form is known beforehand and the

positioning information is already translated to all resolution cells relative to the ship in the detection

scene, which usually is not the case. One may process the AIS heading information and the ship

identification in order to obtain those information and to correctly remove the raw radar signature

of the ship scatters from the scene.

Considering the radar ambiguity problem, a perspective would be to evaluate the use of the

AIS information and the proposed detector to detect new targets masked by radar ambiguities from

known ships with AIS.
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