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Résumé 

Actuellement, on constate dans le domaine de la navigation, un besoin croissant de 

localisation par satellites. Après une course à l’amélioration de la précision (maintenant 

proche de quelques centimètres grâce à des techniques de lever d’ambiguïté sur des 

mesures de phase), la relève du nouveau défi de l’amélioration de l’intégrité du GNSS (GPS, 

Galileo) est à présent engagée. L’intégrité représente le degré de confiance que l’on peut 

placer dans l’exactitude des informations fournies par le système, ainsi que la capacité à 

avertir l’utilisateur d’un dysfonctionnement du GNSS dans un délai raisonnable. 

Le concept d’intégrité du GNSS multi-constellation nécessite une coordination au niveau de 

l’architecture des futurs récepteurs combinés (GPS-Galileo). Le fonctionnement d’un tel 

récepteur dans le cas de passage du système multi-constellation en mode dégradé est un 

problème très important pour l’intégrité de navigation. 

 

Cette thèse se focalise sur les problèmes liés à la navigation aéronautique multi-

constellation et multi-système GNSS. En particulier, les conditions de fourniture de solution 

de navigation intègre sont évaluées durant la phase d’approche APV I (avec guidage vertical). 

En disposant du GPS existant, du système Galileo et d’un système complémentaire 

géostationnaire (SBAS), dont les satellites émettent sur des fréquences aéronautiques en 

bande ARNS, la question fondamentale est comment tirer tous les bénéfices d’un tel 

système multi-constellation pour un récepteur embarqué à bord d’un avion civil. En 

particulier, la question du maintien du niveau de performance durant cette phase de vol 

APV, en termes de précision, continuité, intégrité et disponibilité, lorsque l’une des 

composantes du système est dégradée ou perdu, doit être résolue. 

 

L’objectif de ce travail de thèse est donc d’étudier la capacité d’un récepteur 

combiné avionique d’effectuer la tâche de reconfiguration de l’algorithme de traitement 

après l’apparition de pannes ou d’interférences dans une partie du système GNSS multi-

constellation et d’émettre un signal d’alarme dans le cas où les performances de la partie du 

système non contaminée ne sont pas suffisantes pour continuer l’opération en cours en 

respectant les exigences de l’aviation civile. Egalement, l’objectif de ce travail est d’étudier 

les méthodes associées à l’exécution de cette reconfiguration pour garantir l’utilisation de la 

partie du système GNSS multi-constellation non contaminée dans les meilleures conditions. 

Cette étude a donc un intérêt pour les constructeurs des futurs récepteurs avioniques multi-

constellation. 
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Abstract 

The International Civil Aviation Organization (ICAO) has defined the concept of Global 

Navigation Satellite System (GNSS), which corresponds to the set of systems allowing to 

perform satellite-based navigation while fulfilling ICAO requirements. 

 

The US Global Positioning Sysem (GPS) is a satellite-based navigation system which 

constitutes one of the components of the GNSS. Currently, this system broadcasts a civil 

signal, called L1 C/A, within an Aeronautical Radio Navigation Services (ARNS) band. The GPS 

is being modernized and will broadcast two new civil signals: L2C (not in an ARNS band) and 

L5 in another ARNS band. 

 

Galileo is the European counterpart of GPS. It will broadcast three signals in an ARNS 

band: Galileo E1 OS (Open Service) will be transmitted in the GPS L1 frequency band and 

Galileo E5a and E5b will be broadcasted in the same 960-1215 MHz ARNS band than that of 

GPS L5. 

GPS L5 and Galileo E1, E5a, E5b components are expected to provide operational 

benefits for civil aviation use. However, civil aviation requirements are very stringent and up 

to now, the bare systems alone cannot be used as a means of navigation. For instance, the 

GPS standalone does not implement sufficient integrity monitoring.  

Therefore, in order to ensure the levels of performance required by civil aviation in terms of 

accuracy, integrity, continuity of service and availability, ICAO standards define different 

systems/algorithms to augment the basic constellations. GPS, Galileo and the augmentation 

systems could be combined to comply with the ICAO requirements and complete the lack of 

GPS or Galileo standalone performance.  

 

In order to take benefits of new GNSS signals, and to provide the service level 

required by the ICAO, the architecture of future combined GNSS receivers must be 

standardized. The European Organization for Civil Aviation Equipment (EUROCAE) Working 

Group 62, which is in charge of Galileo standardization for civil aviation in Europe, proposes 

new combined receivers architectures, in coordination with the Radio Technical Commission 

for Aeronautics (RTCA). 

 

The main objective of this thesis is to contribute to the efforts made by the WG 62 by 

providing inputs necessary to build future receivers architecture to take benefits of GPS, 

Galileo and augmentation systems. In this report, we propose some key elements of the 

combined receivers’ architecture to comply with approach phases of flight requirements. 

 

In case of perturbation preventing one of the needed GNSS components to meet a 

phase of flight required performance, it is necessary to be able to switch to another available 

component in order to try to maintain if possible the level of performance in terms of 

continuity, integrity, availability and accuracy. That is why future combined receivers must 

be capable of detecting the impact of perturbations that may lead to the loss of one GNSS 

component, in order to be able to initiate a switch. These perturbations are mainly 

atmospheric disturbances, interferences and multipath. In this thesis we focus on the 

particular cases of interferences and ionosphere perturbations. 
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The interferences are among the most feared events in civil aviation use of GNSS. 

Detection, estimation and removal of the effect of interference on GNSS signals remain open 

issues and may affect pseudorange measurements accuracy, as well as integrity, continuity 

and availability of these measurements. In literature, many different interference detection 

algorithms have been proposed, at the receiver antenna level, at the front-end level. 

Detection within tracking loops is not widely studied to our knowledge. That is why, in this 

thesis, we address the problem of interference detection at the correlators outputs. The 

particular case of CW interferences detection on the GPS L1 C/A and Galileo E1 OS signals 

processing is proposed. 

 

Nominal dual frequency measurements provide a good estimation of ionospheric 

delay. In addition, the combination of GPS or GALILEO navigation signals processing at the 

receiver level is expected to provide important improvements for civil aviation. It could, 

potentially with augmentations, provide better accuracy and availability of ionospheric 

correction measurements. Indeed, GPS users will be able to combine GPS L1 and L5 

frequencies, and future GALILEO E1 and E5 signals will bring their contribution. However, if 

affected by a Radio Frequency Interference, a receiver can lose one or more frequencies 

leading to the use of only one frequency to estimate the ionospheric code delay.  

Therefore, it is felt by the authors as an important task to investigate techniques aimed at 

sustaining multi-frequency performance when a multi constellation receiver installed in an 

aircraft is suddenly affected by radiofrequency interference, during critical phases of flight. 

This problem is identified for instance in [NATS, 2003]. Consequently, in this thesis, we 

investigate techniques to maintain dual frequency performances when a frequency is lost (L1 

C/A or E1 OS for instance) after an interference occurrence. 
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1. Introduction 

1.1.  Background and motivations 

With the multiplication of the satellite radio navigation systems (Global Navigation 

Satellite System: GNSS), the variety of radio navigation signals increases greatly. The 

development of GNSS is of interest for aeronautical applications. 

 

Amongst the existing navigation systems, the Global Positioning System (GPS) provides 

an accurate positioning service but its standalone use cannot meet the civil aviation 

requirements (particularly for the demanding aircraft phases of flight). The GPS is 

modernized progressively with new signals transmitted by new satellites (block II-R, II-F and 

block III). Galileo is the European positioning system and will be operational in the next 

years. 

 

The future Galileo E1, E5a/E5b and GPS L1 C/A, L1C, L5 signals are of particular interest 

for civil aviation community since they will be broadcasted in Aeronautical Radio Navigation 

Services (ARNS) frequency bands. 

 

The constellation, the signals and the augmentation systems are all GNSS components 

that must be taken into account for aviation applications. If combined, these components 

are expected to provide operational benefits for civil aviation community. 

 

The future civil aviation combined receivers must provide accurate, integrity-compliant 

and continuous measurements in concordance with the International Civil Aviation 

Organization (ICAO) requirements concerning the aircraft phases of flight. 

 

For a targeted phase of flight, the GNSS components needed to meet the civil aviation 

requirements must be identified, and, in case of loss of component needed for perform the 

phase of flight, the receiver must be capable of switching to other available components to 

maintain, if possible, the level of performance. Indeed, the receiver must fully benefit from 

most of the available GNSS components. That is why receiver architecture must be 

established in compliance with the ICAO requirements. 

 

For the purposes of civil aviation, many groups and organisms are in charge of 

validations and certifications of future civil aviation combined receivers. Amongst them, the 

EUROCAE (EURopean Organization for Civil Aviation Equipment) Working Group 62, in 

coordination with the RTCA (Radio Technical Commission for Aeronautics), proposes a 

Concept of Operation document (ConOps), which contains specifications for GPS/Galileo civil 

aviation receivers.  

 

This thesis falls within the framework of the EUROCAE WG 62 ongoing work and is 

sponsored by the DTI (Direction de la Technique et de l’Innovation), which is a DGAC 

(Direction Générale de l’Aviation Civile) service. 

 

Two points of interest are addressed in this thesis work: 
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• The capability of a combined receiver to initiate a switch between GNSS 

components combinations during aircraft operations, when it is necessary; 

• After a loss of component, if the remaining components are not sufficient to 

reach the required performance level for a targeted phase of flight, the receiver 

must be capable to sign alert and to maintain as long as possible the level of 

performance required continuing an operation. 

 

The first point implies to implement detection algorithms that will enable the receiver to 

detect a degradation of performance and thus, a loss of component. In the second point, the 

alert is mandatory in order to decide to use the combined receiver or not. 

1.2. Thesis outline 

The future receivers’ architecture proposed by the EUROCAE Working Group 62 is the 

baseline of this thesis work. This document is organized as follows. 

 

Chapter 2 presents the main GNSS components that are planned to be used for civil 

aviation, that is to say the GPS and Galileo constellations with a set of signals (L1 C/A, L5, E1 

and E5) and augmentation systems. The different services provided by these components 

are described. Then, signals characteristics are recalled and signal processing within civil 

aviation receivers is detailed. A budget of the perturbations affecting the GNSS 

measurements is made. Finally, the civil aviation requirements are described. 

 

Chapter 3 starts with the definition of aircraft navigation modes provided in [RTCA, 

2006] or in [EUROCAE, 2007]. The identified GNSS components combinations are then 

classified by modes of operation. In coordination with the DTI, a global and generic 

combined receiver architecture is proposed in this chapter and is based on a switching logic 

between operational GNSS components combinations. 

 

Chapter 4 describes in details the switching strategy between the GNSS components 

combinations, for the different modes of operation. The strategy proposed depends upon 

the availability of each GNSS component. Since the ICAO performance requirements are 

related to the phase of flight of the aircraft, the WG 62 decided to propose different 

switching strategies for two kinds of phases of flight (En route down to NPA and APV). 

Chapter 4 describes each strategy investigated in coordination with the DTI, and proposed to 

the WG62. 

 

To initiate a switch between the GNSS components it is necessary to be able to detect 

performances degradations that lead to insufficient performances to perform a phase of 

flight. This concerns not only the integrity monitoring but also the continuity and the 

accuracy of the GNSS measurements. 

 

Amongst the most feared physical phenomena which lead to degradation, and thus, a 

loss of component availability, the interferences impacts on ARNS signals processing have to 
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be monitored. Indeed, this phenomenon can affect simultaneously several GNSS 

measurements. Future combined GNSS receivers should be robust against interferences. 

 

From a signal processing point of view, interference is one of the most feared event 

because it can caught simultaneously several GNSS frequencies. It can affect signals 

reception at front end level and can lead to a loss of lock in tracking loops. For this reason, 

Chapter 5 focuses on interference detection. 

 

For civil aviation applications, interferences with power level below the masks defined in 

[EUROCAE, 2007] are expected to generate tracking errors within a low margin, so that it 

does not affect significantly the resulting pseudoranges and thus the navigation solution. In 

this study, it is shown that, even below the Radio Frequency Interference (RFI) masks, with 

low Doppler rate between the jammer and the incoming signal, the tracking errors induced 

by a Cosine Wave (CW) interference can be larger than expected in [EUROCAE, 2007]. This is 

all the more important for highly restrictive approach phases of flight in terms of accuracy. 

That is why this study focuses on detection of CW during a demanding approach phase of 

flight which requires vertical guidance (APV I). 

 

After a RFI area crossing, the aircraft embedded receiver can lose one or more 

frequencies. In particular, the receiver can revert to a single frequency mode. 

 

Amongst the sources of propagation errors, the ionosphere is a dispersive medium that 

can strongly affect the GPS and Galileo signals and thus, the resulting GNSS receiver 

measurements. It is the larger source of ranging error, if left uncorrected. In addition, this 

perturbation is difficult to model and thus difficult to predict. Indeed, it is dependent upon 

the aircraft location and the atmosphere behaviour which present a high variability. 

 

A multi-frequency receiver can identify and correct errors induced by the ionosphere. 

Indeed, two frequencies are needed to determine precisely the ionospheric code delay. 

However, if affected by a radio frequency interference, a receiver can lose one or more 

frequencies leading to the use of only one frequency to estimate the ionospheric code delay. 

Therefore, it is identified by the WG62, in [NATS, 2003] and [Shau-Shiun Jan, 2003] as an 

important task to investigate techniques aimed at sustaining multi-frequency performance 

when a multi-constellation receiver installed onboard an aircraft is suddenly affected by 

radiofrequency interference, during critical phases of flight. 

 

When only one frequency is available, one way to use single frequency measurements is 

to use code and carrier phase measurements to deduce the delay induced by the 

ionosphere. This method is called code-carrier divergence technique and is described in 

Chapter 6. 

 

The case of a loss of all GNSS components but one frequency is studied in [Shau-Shiun 

Jan, 2003]. In this case, the code-carrier divergence technique can be used. It consists in 

computing the difference between the signal code and the carrier phase measurements. This 

difference is twice the ionospheric delay plus the carrier phase ambiguity plus errors, from 

which the ionospheric code delay can be extracted. If a cycle slip occurs on phase 

measurements, the integer ambiguity appearing as a constant offset in the code-carrier 
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difference can make this technique not accurate enough to meet the ICAO requirements. For 

this reason, it is necessary to be able to detect cycle slips. The used detection algorithm must 

be compliant with APV I integrity and continuity requirements.  

 

In Chapter 6, the problem of maintaining the dual frequency performances is addressed 

without any use of augmentation system (the hypothesis is that the SBAS: Satellite Based 

Augmentation System is unavailable). For instance, for a dual frequency GPS L1 C/A / L5 

receiver, the loss of L1 or L5 implies the use of the remaining L1 or L5 frequency. The same 

remark can be made for Galileo E1 and E5 signals. 

 

Finally, Chapter 7 summarises the main PhD work results and concludes on it. Some 

remaining issues are discussed and propositions are made for future works. 

1.3.  Thesis original contributions 

The main original contributions of this thesis, detailed all along this dissertation, are 

enumerated below:  

 

• Proposition of a generic global receiver architecture taking into account switches 

between GNSS components and degradation detection algorithms (Chapters 3 and 4), in 

coordination with the DTI 

 

• Proposition and analysis of interference detection algorithms. They are implemented and 

tested on CW detection taking into account the interference masks defined in 

[EUROCAE, 2008]. Their impact is studied on both the GPS and Galileo signals on the L1 

frequency band. The performances obtained during the approach phases of flight are 

analysed in terms of integrity and continuity. (Chapter 5) 

 

• Proposition of an algorithm capable of estimating the interferences characteristics. The 

accuracy of this algorithm is discussed (Chapter 5). 

 

• Development of an algorithm capable of estimating the ionospheric code delay (in a 

single frequency case without any augmentation system) thanks to GNSS single 

frequency measurements and a Kalman filter (Chapter 6).  

 

• A cycle slip detection algorithm is proposed and tested on the measurements. The 

compliance of this detection algorithm with required integrity for the APV I phase of 

flight is discussed. The availability of the cycle slip detection technique is provided by 

means of availability maps over Europe for both GPS and Galileo constellations (Chapter 

6). 
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Résumé 

Le chapitre 2 présente le GNSS appliqué à l’aviation civile tant au niveau signal, services 

que sur des aspects récepteur, traitement du signal et PVT. Nous présentons les différents 

signaux dans la bande aéronautique, les services associés et les systèmes d’augmentation 

aéronautiques. Dans ce chapitre, les modules d’un récepteur GNSS, depuis la tête HF 

jusqu’aux algorithmes de PVT, sont présentés. Nous présentons d’autre part les différents 

types de perturbations rencontrées pour un récepteur avionique et générant 

potentiellement des dégradations dans le traitement des signaux reçus. D’autre part, les 

exigences de l’aviation civile sont décrites en détails et les spécifications à tenir sont 

rappelées suivant les standards de l’OACI. 
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2. GNSS applied to Civil Aviation operations 

2.1. Introduction 

New GNSS signals and constellations are expected to provide operational benefits for 

civil aviation applications which are in the scope of this thesis work. 

 

The targeted aircraft operations are defined according to [ICAO, 2006] in this chapter. 

Then, the International Civil Aviation Organization (ICAO) requirements are detailed and 

used all along this thesis. Indeed, the future embedded combined receivers must comply 

with these requirements.   

 

Before studying such combined receiver architecture, it is of interest to introduce GNSS. 

In this chapter, we describe firstly the GNSS principles. The GNSS signals, constellations, 

services augmentations and their features are then detailed.  

 

Signal processing within the receiver is also described from the receiver front end to the 

tracking loops. The different kinds of perturbations that can disturb signals processing at the 

reception are exposed at the end of this chapter. 

2.2. Civil Aviation application 

2.2.1. Introduction 

Future embedded GNSS receivers must comply with ICAO requirements, for all the 

phases of flight of an aircraft. This section provides the official definitions of the different 

phases of flight and the underlying requirements. These specifications are referred 

throughout this thesis work. 

 

Since we focus on approach phases of flight, the definitions provided hereafter are only 

related to the corresponding aircraft operations, according to the [RTCA, 2006] reference. 

2.2.2. Civil aviation operations 

2.2.2.1.  Phases of flight 

Below, we present the definitions of the different phases of flight as provided by ICAO, 

from Non Precision Approach operation to Cat III.  

2.2.2.1.1.  Non-precision approach (NPA) 



         Chapter 2                                GNSS applied to Civil Aviation 

 6

NPA is a standard instrument approach procedure in which no glide slope/glide path is 

provided [RTCA, 2006].  

2.2.2.1.2.  Approach and landing operations with vertical guidance (APV) 

APV is separated into two broad classes depending on the method retained for the 

provision of the vertical guidance during the approach, [RTCA, 2006]. The first class relies on 

GNSS lateral guidance and on barometric vertical guidance generated through a Flight 

Management System (FMS). However, barometric vertical guidance suffers from limitations 

in terms of accuracy and from a number of potential integrity failures due to the necessity of 

manual input of local atmospheric pressure and of temperature compensation. Therefore 

the ICAO GNSS panel identified two performance levels which are APV-I and APV-II. 

2.2.2.1.3. CAT-I, CAT-II, CAT-III precision approach 

These phases of flight are more restrictive than the last described ones. The categories 

are specified by several parameters, which are Decision Height (DH), the distance of visibility 

(DV) and the Runway Visual Range (RVR), defined in [RTCA, 2006].  

 

The DH is the parameter that determines if a CAT approach can be initiated or not. 

Otherwise, a Missed Approach is initiated. In that way, DH is the minimal height above the 

runaway threshold at which a Missed Approach procedure must be executed. In addition, a 

minimal visual reference is required in order to continue the approach or not and must be 

established to initiate Cat approach for safety. In case Cat is initiated, the aircraft is flown 

manually by the pilot using the external visual reference, or automatically by the autopilot 

under pilot monitoring.  

 

The DV and RVR parameters are taken as visual requirements for such approach 

categories. DV is expressed in units of length. It is a distance in which it is possible to see and 

identify, during the day, a dark object and during the night a light source. Obviously, this 

parameter is strongly dependent upon the atmospheric conditions. The RVR parameter is 

also a distance. It represents the maximum distance between the pilot and the runway in the 

direction of the airstrip, in which the pilot is able to see the runway surface markings and 

lights.  

 

For CAT I, DH have to be greater than 60 m and visual requirements are a visibility 

greater than 800 m or a RVR greater than 550 m. For CAT II, DH value is taken between 30 m 

and 60 m and RVR must be greater than 350 m. For CAT III, three levels are defined, the first 

one (A), while DH is taken between 0 and 30 m, RVR is greater than 200 m, the second one 

(B) when DH is under 15 m and RVR is between 50 m and 200 m and the last one (C) when 

these two parameters are null.             

2.2.2.1.4. Missed Approach (MA)  
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The Missed Approach (MA) is an optional procedure between the Cat phases of flight 

that is initiated when the aircraft cannot land because of too high aircraft dynamics or other 

problems, primary for safety reasons. This procedure cannot be initiated if the aircraft has a 

too low altitude at a point of no return. Generally, the pilot determines if an approach point 

is not in view or when the landing operations cannot be accomplished safely for any reason. 

In this case, the approach must be stopped immediately. The pilot is expected to inform Air 

Traffic Control (ATC) by radio of the initiation of the MA as soon as possible. ATC may simply 

acknowledge the MA call, or modify the MA instructions. ATC may subsequently clear the 

flight for another approach attempt, depending on the pilot's intentions, as well as weather 

and traffic considerations.  

2.2.2.2.  ICAO requirements  

Any navigation system has to satisfy a number of performance requirements. In the case 

of GNSS these requirements concern the Signal-In-Space (SIS), that is to say the aggregate of 

guidance signals arriving at the antenna of the aircraft. They are based on required 

navigation performance of the aircraft and are expressed by the ICAO for each phase of 

flight in terms of accuracy, integrity, availability and continuity of service. 

 

GNSS Signal In Space (SIS) performance requirements are defined for all the operations 

identified by the ICAO: oceanic and domestic en-route, terminal approach, initial approach, 

intermediate approach, departure, non-precision approach, and more stringent approaches 

(APV). 

 

All along this thesis, we will focus on NPA and APV phases of flight and on the transition 

between NPA and APV. Indeed, APV is the first approach phase of flight that requires vertical 

guidance after NPA and has restrictive requirements compared to NPA. In addition, the 

EUROCAE WG 62 needs the results concerning the performances requirements for the 

future embedded GNSS receivers. 

2.2.2.3.  Accuracy 

The accuracy is the degree of conformance between the estimated or measured 

position and/or velocity of a platform at a given time and its true position and/or velocity. In 

order to characterize the accuracy on the estimated quantity, ICAO defines a 95%-

confidence level. It means that for any estimated position at a specific location, the 

probability that the position error is within the former requirement should be at least 95 per 

cent [RTCA, 2006]. 

2.2.2.4.  Integrity 

The integrity is a measure of the trust, which can be placed in the correctness of the 

information supplied by the total system. The integrity includes the ability of a system to 
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provide timely and valid warnings (alerts) to the user when the system must not be used for 

the intended operation. The integrity is defined by the integrity risk, time to alert and alert 

limits requirements [RTCA, 2006]. 

 

 Integrity risk 
 

The integrity risk is the probability of an undetectable failure of the specified accuracy. It 

is expressed per hour or per operation. 

 

 Protection levels 
 

The horizontal protection level Fault Detection, HPL, is the radius of a circle in the 

horizontal plane […] with its centre being at the true position, […] for which the missed alert 

and false alert requirements are met for the chosen set of satellites when autonomous fault 

detection is used. It is a function of the satellite and user geometry and the expected error 

characteristics: it is not affected by actual measurement. Therefore, this value is predictable. 

 

The vertical protection level Fault Detection, VPL, is half the length of a segment in the 

vertical axis […] with its centre being at the true position, […]  for which the missed alert and 

false alert requirements are met for the chosen set of satellites when autonomous fault 

detection is used. It is a function of the satellite and user geometry and the expected error 

characteristics: it is not affected by actual measurement. Therefore, this value is predictable. 

 

 Time to alert 
 

It is the maximum allowable time interval between system performance ceasing to meet 

operational performance limits and the appropriate integrity monitoring subsystem 

providing an alert [RTCA, 2006]. 

 

 Alert limits 
 

For each phase of flight, to ensure that the position error is acceptable, alerts limit are 

defined ([RTCA, 2006]) that represent the largest position error which results in a safe 

operation. 

 

The Horizontal Alert Limit (HAL) is the radius of a circle in the horizontal plane (the local 

plane tangent to the WGS 84 ellipsoid), with its centre being at the true position, which 

describes the region which is required to contain the indicated horizontal position with the 

required probability for a particular navigation mode […].  

 

The Vertical Alert Limit is half the length of a segment on the vertical axis (perpendicular 

to the horizontal plane of WGS 84 ellipsoid), with its centre being at the true position, which 

describes the region which is required to contain the indicated vertical position with a 

certain probability, for a particular navigation mode […]. 

 

While horizontal alert limits (HAL) requirements are defined for all of the phases of 

flight, vertical alert limits (VAL) are only defined for phases of flight under NPA.  
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     Positioning failure 
 

If the equipment is aware of the navigation mode/alert limit, a positioning failure is 

defined to occur whenever the difference between the true position and the indicated 

position exceeds the applicable alert limit. If the equipment is not aware of the navigation 

mode/alert limit, a positioning failure is defined to occur whenever the difference between 

the true position and the indicated position exceeds the applicable protection level (either 

horizontal or vertical as applicable) [RTCA, 2006]. 

2.2.2.5.  Availability 

It is the ability of the navigation system to provide the required function and 

performance at the initiation of the intended operation. It expressed as a percentage of 

time. The availability of GNSS is characterized by the portion of time the system is to be used 

for navigation during which reliable navigation information is presented to the crew, 

autopilot, or other system managing the flight of the aircraft [RTCA, 2006]. 

2.2.2.6.  Continuity of service 

It is the capability of the total system (comprising all elements necessary to maintain 

aircraft position within the defined airspace) to perform its function without interruption 

during the intended operation. Continuity relates to the capability of the navigation system 

to provide a navigation output with the specified accuracy and integrity throughout the 

intended operation, assuming that it was available at the start of the operation. The 

occurrence of navigation system alerts, either due to rare fault-free performance or to 

failures, constitute continuity failures. For en-route, since the durations of these operations 

are variable, the continuity requirement is specified as a probability on a per-hour basis. For 

approach and landing operations, the continuity requirement is stated as a probability for a 

short exposure time. Continuity requirement is expressed as the continuity risk, that is to 

say, the probability that the system to be interrupted during the intended operation [RTCA, 

2006]. 

2.2.2.7.  ICAO performance requirements for each phase of flight 
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Table 1: GNSS SIS requirements from [ICAO, 2006]. 
 

Table 1 shows ICAO requirements for the different phases of flight. 

 

If combined, GPS, Galileo and augmentation systems are expected to provide sufficient 

performances for demanding operations. It is thus necessary to: 

• identify the most promising combinations that can be used; 

• build the architecture of future GNSS combined receivers;  

• evaluate the robustness of future combined receivers against all kinds of 

external perturbations. 

 

That is why, this chapter describes first the GNSS principles and measurements, the 

GNSS signals, constellations and augmentation systems and the different perturbations 

affecting the GNSS signals processing. 

2.3. Definition and description of GNSS 

In this section, the GNSS is described in details. Firstly, the GNSS principles and 

measurements are exposed. Secondly, the different GNSS signals, constellations, 

augmentations and services that are in the scope of the EUROCAE WG 62 work are defined 

according to [RTCA, 2007], and their features are exposed in details. Thirdly, the signal 

processing in a GNSS receiver is presented. 

2.3.1. GNSS principle and measurements 

A GNSS receiver provides two main types of measurements called pseudo ranges which 

are ranges including satellites-receiver clock bias plus different kinds of errors due to signal 
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propagation from a satellite to the receiver. These errors are due to multipath, troposphere 

and ionosphere crossing, interferences and residual noise coming from the receiver 

imperfections. These errors will be defined further in this chapter. Pseudo ranges are code 

and carrier phase measurements for each satellite. The following models describe these 

measurements: 

 P��k� = 	ρ��k� + c �∆t��k� − ∆t��k�� + c �I��k� + τ��k�� + D����� �k� + n��k�	 (1) 

 ϕ��k� = ρ��k� + 	c �∆t��k� − ∆t��k�� + c �−I��k� + τ��k�� +	Φ����� �k� +	N�λ� +	n��k�   (2) 

                                                                                           
Where:  

 

• i denotes a particular satellite 

• P is the code pseudorange measurement in meters 

• � the carrier phase measurement (in meters) 

• ρ is the actual distance between a satellite i and the receiver  

• c is the light speed, equal to 299 792 458 m/s 

• )(ktu∆  is the user clock shift  

• )(kt i∆ represents the i
th

 satellite clock shift   

• I is the ionosphere error  

• τ is the troposphere error  

• multD  is the multipath error for code measurement  

• multΦ  is the multipath error for carrier phase measurement  

• N is the ambiguity (random number of cycles) 

• λ is the carrier wavelength 

• n is the residual noise 

2.3.2. GNSS measurements for civil aviation use 

A GNSS receiver user position is usually determined by measuring the propagation delay 

of at least four received satellites signals. Each actual distance between one satellite and the 

receiver is:  

 	ρ� = ��x� − x�² + �y� − y�² + �z� − z�²	 (3) 

 

Where: 

• (x,y,z) refers to the receiver location 

• �x�, y�, z�� refers to the satellite i position (provided thanks to ephemeris) 

 

Thus, the code pseudorange measurement for the satellite i, can be rewritten: 
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P��k� = 	��x��k� − x�k��² + �y��k� − y�k��² + �z��k� − z�k��²+ c �∆t��k� − ∆t��k�� + E		 
(4) 

 

Where: 

• E = c �I��k� + τ��k�� + D����� �k� + n��k� 

 

Making the hypothesis that E is known,  ∆t��k� is known, four unknown have to be 

determined: ∆t��k� and (x(k),y(k),z(k)), which requires four pseudorange measurements at 

less. 

 

The calculated delays are proportional to the distance the signal travelled from the 

satellite, and called ranges. But, before calculating the receiver position, the pseudorange 

measurements are refined according to particular specifications [RTCA, 2006]. The following 

sections describe this process. 

2.3.2.1.  Smoothing process and civil aviation requirement 

The code and carrier phase measurements models are described in the previous section. 

It is required in [RTCA, 2006], section 2.1.4.1.1 that the equipment should perform signals 

carrier smoothing. In the presence of a code-carrier divergence rate of up to 0.018 m/s, the 

smoothing filter output shall achieve an error less than 0.25 m within 200 seconds after 

initialization, relative to the steady-state response of the following 100 seconds Hatch filter:  

 P%�k� = 	 &'() P�k� +	�1 −	 &'()� +P%�k − 1� +	�ϕ�k� − ϕ�k − 1��, in steady-state ( smTkk ≥− 0 )  (5) 

P%�k� = 	 &'P�k� +	�1 −	 &'� +P%�k − 1� +	�ϕ�k� − ϕ�k − 1��,	during convergence ( smTkkT <−= 0 ) (6) 

Where: 

• ( )kP  is the raw code pseudorange measurement in meters 

• ( )kφ  is the raw carrier phase measurement in meters 

• ( )kP
~

 is the smoothed code pseudorange measurement in meters 

• smT  is the time smoothing constant in seconds 

• 0k  is the time index where the filter is initialized 

• during convergence, 0kkT −=  is the time since initialization of the filter ( smTT < ) 

 

The improvement brought by the smoothing process, assuming that the errors affecting 

the raw pseudorange measurements are independent, is given by [Hegarty1, 1997]: 

 

22
~

2 α
σ
σ ≈

P

P  
(7) 
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Where: 

• α is the filter weighting coefficient (unit less), equal to the sample interval in seconds 

divided by the time constant 

• 
P
~σ is the standard deviation of the smoothed pseudorange 

• Pσ the standard deviation of the raw pseudorange 

2.3.2.2. Least squares position solution 

As it is described in details in [Macabiau2, 2005], a GNSS receiver provides n 

pseudorange measurements collected in a vector noted Y. At least n=4 measurements are 

required to provide the user position. The measurement vector Y and the state vector X 

composed of positions and clock bias are linked by:  

 Y = g�X� + 	E (8) 
 
 

• E = c �I��k� + τ��k�� + D����� �k� + n��k� is the error due to the multipath, noise and 

atmospheric effects on the code pseudorange measurements. The same kind of 

model can be used for carrier phase measurements. 

• [ ]TbzyxX =  is composed of positions (x, y and z) and clock bias b. 

 

Let us describe the least squares navigation solution. If 0X̂  is an initial estimate of X (the 

actual position of the aircraft receiver antenna), then X can be noted: 

 X = 	X01 + 	ΔX (9) 
 

Where ΔX is the deviation between the aircraft position estimation and its actual 

position. Therefore, the measurement model can be rewritten as:  

 Y = g3X01 + 	ΔX4 + 	E (10) 
 

This expression may be linearized around 0X̂ , the initial estimate of X , as follows:   

 Y = g3X014 + 5657 3X014ΔX		 + 	E
       

(11) 

 

Where:  

 

5657 3X014 = G =	 9::
;56<5= 3X014 56<5> 3X014⋮ ⋮ 56<5@ 3X014 56<5A 3X014⋮ ⋮56B5= 3X014 56B5> 3X014 56B5@ 3X014 56B5A 3X014CDD

E		(12) 

 

The linearized model can be then rewritten as:   
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 Y − 	g3X014 = G	ΔX		 + 	E
   

 (13) 

 

The measurement residual represents the deviation between the measurements made and 

the predicted noiseless measurements that the receiver would have made if its position and 

clock delay were X01  and if there were no noise. This residual can be expressed such as: 

 ΔY = Y		 − 	g3X014 (14) 

 
 ΔY = G	ΔX		 + 	E (15) 

 

Where FG is the deviation between measurements and noiseless predicted measurements if 

the position and the clock delay were 0X̂ .  

From this linear relationship between Y∆ and X∆ , we deduce the least squares 

estimate of X∆ :   

 ΔXH = IG'GJK&G'	ΔY (16) 
 

And 
 XH = 	X01 + 	ΔXH 

 

(17) 

 

The residual Y∆ considering X̂  may be expressed as:  

 ∆Y = Y − g3XH4 = 	g�X� − 	g3XH4 + 	E (18) 
 ∆Y = 	g3X01 + ∆X4 − 	g3X01 + ∆XH4 + 	E (19) 
 

 As it is described in [Macabiau2, 2005], the previous expression is linearized: 

 Y − g3XH4 ≈ G∆X − G∆XH + 	E = G�∆X − ∆X�1 + 	E (20) 

 
 

However, ∆XH = IG'GJK&G'+Y − g3X014, (21) 

 

 

Therefore:  ∆XH = IG'GJK&G'IG∆X + EJ (22) 
 

Which is equivalent to:  

 ∆XH = ∆X + IG'GJK&G'E (23) 
 

 ∆XH − ∆X =	 IG'GJK&G'E (24) 
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Let us note the pseudo inverse matrix A as follows:  

 A =	 IG'GJK&G' (25) 
 

Then: 

 ∆XH − ∆X = AE (26) 
 

 

In this calculation, we assume that, at the end of the iterative process, XH and X01 are very 

close. 

 

The relationship between the measurement residual and the measurement error is: 

 ∆Y = 	G∆X	 − 	G∆XH 	+ 	E = 	G�∆X	 −	∆XH� 	+ 	E (27) 
  
 ∆Y = 	−	GAE	 + 	E = 	−	GIG'GJK&G'E	 + 	E = �I − 	GIG'GJK&G'�E (28) 
 

For a weighted least squares estimate, ∆Y is written as: 

 ∆Y = 	 �I − 	GIG'ΣK&GJK&G'ΣK&�E (29) 
 

Where: Σ = OPQ�R� is the covariance of E. 

2.3.3. GNSS components  

A GNSS component is identified by EUROCAE WG 62 as a constellation, a frequency, an 

augmentation system or a service [EUROCAE, 2007]. The GNSS includes several positioning 

systems. Amongst the constellations, we can quote GLONASS (USSR), GPS (USA), Galileo 

(Europe) and Beidou (China). But, the WG 62 priority for future GNSS receivers is to track the 

Galileo and the GPS satellites. As a consequence, only these systems are described in the 

following. 

2.3.3.1.  GPS 

The GPS is a satellite radio navigation system. Nominally, 24 satellites in orbit round the 

Earth can be used [GPS SPS, 2008]. These satellites send signals which allow a receiver 

determining its position velocity and time everywhere on the Earth surface. The GPS 

infrastructure includes three segments dedicated to specific functions:  

 

• The space segment includes the constellation of GPS satellites, which transmit the 

signals to the users. It is composed of satellites located in 6 orbital planes; each plane 
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has a 55 degree inclination from the equator. The revolution period of each GPS satellite 

is 12 sidereal hours. 

 

• The control segment is responsible for the monitoring and operation of the space 

segment. Indeed, several ground stations monitor the signals transmitted from GPS 

satellites. The control segment then uses these signals to estimate and predict the 

satellite orbits and clock errors. This information gathered in the navigation message is 

then uploaded to the satellites.  

 

• The user segment includes user hardware and processing software for positioning, 

navigation, and timing applications. 

 

The GPS modernization plan is resumed in the following. It is divided in three steps: 

• The actual basis GPS emitting L1 C/A and L1, L2 P(Y) signals; 

• The “IIR-M” block including the L2C signal; 

• The “IIF” block including the L5 signal; 

• The “III” block including the L1C signal. 

2.3.3.2.  Galileo 

Galileo will be a 27 satellite (+ 3 spare) constellation. The Galileo system provides its 

own integrity information (INAV message) broadcasted on two different frequencies that are 

described later in this chapter. A called Galileo Integrity Channel (GIC) will provide integrity 

information to the user. EUROCAE WG62 is currently working on Galileo receivers 

specifications to provide Minimum Operational Performance Standards (MOPS) to civil 

aviation users. 

2.3.3.3.  Augmentation systems 

The augmentation systems are the elements installed on ground, on board satellites and 

on board the aircraft, which are providing the aircraft with signal and data enabling the 

aircraft to determine its position and timing. Three types of augmentation systems are used 

for civil aviation: the ABAS, the SBAS and the GBAS [EUROCAE, 2007]. 

2.3.3.3.1. Aircraft Based Augmentation System 

The ABAS or Aircraft-Based Augmentation System is a system which augments and/or 

integrates the information obtained from GPS or Galileo with information on board the 

aircraft. The Receivers Autonomous Integrity Monitoring algorithm is an example of ABAS. 

Its aim is to verify the integrity of the signals received from the GPS or Galileo constellation. 

It is also intended to detect local effects which cannot be fully modelled by the SBAS. 



         Chapter 2                                GNSS applied to Civil Aviation 

 17

2.3.3.3.1.1. Protection levels calculation 

The protection levels derive from the smallest bias the RAIM algorithm is able to detect, 

satisfying the false alarm and the missed detection requirement, by using statistical tests 

described in [Walter, 1995]. 

 

Let us consider the measurement residual ∆Y, also called the prediction error vector, 

which can be expressed thanks to the linear relationship between the measurement error 

vector E, its covariance matrix: ∑  and the observation matrix G: 

 ∆Y = 	 �I − GIG'GJK&G'�E (30) 
  
Or for a weighted least square solution: 
 ∆Y = 	 �I − GIG'ΣK&GJK&G'ΣK&�E (31) 
 

Let us define the norm of the measurement residual as: 

 SSE = 	∆Y'∆Y = 	‖∆Y‖² (32) 
  
Or for a weighted least square solution: 
 WSSE = 	∆Y'ΣK&∆Y (33) 
  
In literature, classical RAIM statistical tests are built thanks to these norms, as it is described 

in [Walter, 1995]. 

 

If we note: AW =	 IG'ΣK&GJK&G'ΣK& (34) 
 
And: BW = 	GIG'ΣK&GJK&G'ΣK& (35) 
 

The protection levels are calculated as follows: 

 

The HPL provided by the RAIM algorithm is: 

 HPL = 	HSLOPE�\= ∗ pA�\_ (36) 
 

And the VPL is: VPL = 	VSLOPE�\= ∗ pA�\_ (37) 
 

 

 

Where: 
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HSLOPE�\= = maxc de
�AW&,c² + AWf,c²g1 − BWc,c hi 

(38) 

 
 VSLOPE�\= = maxc j AWk,cg1 − BcW,cl 

(39) 

And: pA�\_ = bias ∗ �1 − BWc,c (40) 

Where bias is the smallest detectable bias on the pseudorange j, corresponding to the 

satellite j, as it is described in [Walter, 1995]. 

2.3.3.3.2. Satellite Based Augmentation System 

The SBAS stands for Satellite-Based Augmentation System and is designed to improve 

the accuracy and to ensure the integrity of information coming from GPS, Galileo, GLONASS 

or other positioning system satellites [EUROCAE, 2007]. Accuracy is improved thanks to 

differential corrections computed from widely-spaced ground stations and further broadcast 

by geostationary satellites. They correct for ionospheric disturbances, satellite timing and 

orbit errors. The quality of navigation signals is also monitored by ground stations and, 

amongst others, a USE or DON’T USE flag is forwarded to users. 

 

The European Geostationary Navigation Overlay Service (EGNOS) and Wide Area 

Augmentation System (WAAS) are European and American SBAS. EGNOS is intended to 

augment GPS on the L1 and future L5 frequencies over the European Civil Aviation 

Conference (ECAC) airspace using Inmarsat satellites. The WAAS is operational over 

CONtinental United States (CONUS). 

 

The SBAS systems such as EGNOS require a significant geographically diverse ground 

infrastructure as well as access to geostationary satellite navigation transponders. Specific 

SBAS receivers are also required on aircraft to take advantage of the broadcast information.  
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Figure 1: EGNOS theoretical coverage [ESA, 2004]. 

 

 

As it can be seen in figure 1, EGNOS (like other SBAS) is not worldwide and this may be 

an issue when its use is required to meet the ICAO performances needed to continue or 

begin a phase of flight. It can be clearly seen that for an EGNOS receiver, this system cannot 

be used out of its coverage region. For instance, in non-covered airports, approach 

operations cannot be treated thanks to this augmentation. 
 

The availability of SBAS is determined by confidence bounds on position errors. The 

error due to the ionospheric delay and satellite errors are corrected according to the SBAS 

Minimum Operational Performance Standards (MOPS), and local errors such as error due to 

tropospheric delay, user receiver noise and multipath errors are removed by a standard 

model described in [RTCA, 2006]. 

2.3.3.3.2.1. Protection levels calculation 

The ICAO normalized protection levels computation for SBAS receivers. We provide 

hereafter the principles of calculation of the SBAS protection levels. 

 

The corrected range measurements are used to compute the navigation solution, using 

weighted least squares: 

 

ΔXH � IG'WGJK&G'W	ΔY (41) 
 

Where the weighting matrix is: 

 

oK& � pσ&² ⋯ 0⋮ ⋱ ⋮0 ⋯ σt²

u 
(42) 
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With: 

 

 

σ�² =	σ�,v��² +	σ�,wxyz² +	σ�,\�{² + σ�,�{|}|² 

 

(43) 

• σ�,v�� is the fast and long-term degradation confidence, which is the confidence bound 

on satellite clock and ephemeris corrections (satellite errors). 

• σ�,wxyz is the user ionospheric range error confidence, which is the confidence bound 

on ionospheric delay corrections. 

• σ�,\�{ =		gσ~|�_�² + σ�����}\��² is the airborne receiver error confidence. It is the 

confidence bound on aircraft user receiver error. 

• σ~|�_�² is the variance of the receiver thermal noise and interferences 

• σ�����}\��² is the variance of multipath 

• σ�,�{|}| is the residual tropospheric error model bound, E is the satellite elevation 

angle 

 

If we note: 

 

D = pd&& ⋯ d&t⋮ ⋱ ⋮d�& ⋯ d�tu = IG'WGJK&G'W 
(44) 

 

 

The variance of the horizontal position estimate is: 

 

��² = ∑ d&�σ�²���& + ∑ df�σ�²���&2 + �∑ d&�σ�²���& − ∑ df�σ�²���&2 + �d&�df�σ�²
�

��&  

(45) 

 

 

The HPL (Horizontal Protection Level) is: 

 ������� = 6	�� 

 

(46) 

 

The variance of the vertical position estimate is: 

 

��² = �dk�σ�²
�

��&  
(47) 

 

The VPL (Vertical Protection Level) is: 

 ������� = 5.33	�� 

 

(48) 
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5.33 is a multiplier on the standard deviation of the vertical error such that the VPL is only 

exceeded at most one time in ten million (10
-7

), according to [Shau-Shiun Jan, 2003]. 

2.3.3.3.3. Ground Based Augmentation System 

The Ground-Based Augmentation System (GBAS) is composed of reference stations 

located on airports where the GBAS service is intended to be provided. Reference receivers 

are placed in these stations and produce differential corrections to be applied and also the 

navigation signal integrity. These informations are then transmitted to the GBAS airborne 

receiver. 

2.3.4. GNSS services  

2.3.4.1.  Galileo services [ESA, 2004] 

2.3.4.1.1. Safety Of Life (SoL) 

One of the purposes of the SoL (Safety of Life) service is to satisfy the civil aviation 

requirements for en route down to APV II phases of flight. It is created to provide integrity 

information to user with critical and non-critical levels of risk exposure.  

 

Critical levels include critical operations like approach with vertical guidance. Other non-

critical levels are less critical operation like en-route. The performance of Galileo airborne 

receivers processing Galileo SoL signals should allow an aircraft to fly worldwide safe, 

accurate paths during the phases of flight including en-route, terminal area, NPA and 

instrument approach with vertical guidance (APV-I and APV-II). For more stringent phases of 

flight (precision approach CAT-I type up to CAT-II/III type) other configurations will be 

needed.  Such configurations will include the use of Galileo local component or/and Galileo 

combination with GPS/GBAS or GPS/SBAS. The frequencies used to provide SoL are Galileo 

E1 and E5b [Hein, 2002]. Their main characteristics and features are described further in this 

chapter.  

2.3.4.1.2. Open Service (OS) 

 The Open Service (OS) refers to all information (including positioning, velocity and 

timing) which can be accessed free of charge by all users. The OS will be interoperable with 

other GNSS systems. Its performance in timing, accuracy and availability will be competitive 

with respect to existing GNSS systems. It will not provide integrity information. Its signals will 

be provided on up to three frequencies (E5a, E5b and E1 described latter in this chapter).  

2.3.4.1.3. Public Regulated Service (PRS) 
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The main goal of Public Regulated Service (PRS) is to improve the probability of 

continuous availability of Signal In Space (SIS), in the presence of jammers. Indeed, it will be 

capable of using interference mitigation techniques to reduce the threats due to jamming 

[Hein, 2002]. This service is encrypted and consequently dedicated to private use.   

2.3.4.1.4. Commercial Service (CS) 

The Commercial Service (CS) will allow the development of professional applications 

that will be based on broadcasting of two signals, separated in frequency from the OS signals 

to facilitate advanced applications such as integration of Galileo positioning applications 

with wireless communications networks, high accuracy positioning and indoor navigation. 

The CS signals will be the OS signals plus two encrypted signals on the E6 band, presented in 

2.3.5. 

2.3.4.1.5. Search And Rescue service (SAR) 

The Galileo support to the Search And Rescue service (SAR) represents the contribution 

of Europe to an international cooperative effort on humanitarian search and rescue 

activities.  The SAR transponder on future Galileo satellites will detect the distress alert from 

a beacon emitting in the 406-406.1 MHz frequency band. Then, it will broadcast this 

information to the dedicated receiving ground stations in the 1544-1545 MHz band. The SAR 

data, from SAR operators to distress emitting beacons, will be used for alert 

acknowledgement and coordination of rescue teams and will be embedded in the OS data of 

the signal transmitted in the L1-E1 carrier frequency. 

2.3.4.2.  Conclusion  

GPS, Galileo and augmentation systems can be used for civil aviation applications as 

depicted in [EUROCAE, 2007]. Galileo services rely on new signals features and 

characteristics. That is why, in the next sections, GPS and Galileo signals main characteristics 

are described. 

2.3.5. Signals characteristics  

GPS and Galileo signals are successively described in the next paragraphs. The following 

figure presents the GPS and Galileo frequency plan and is provided by [GSA, 2008]. 
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Figure 2: Galileo and GPS frequency plan, [GSA, 2008] 

2.3.5.1.  GPS L1 signals  

The current GPS L1 signal has a central frequency of 1575.42 MHz. It carries a navigation 

message using two different spreading codes at least: the C/A code, which stands for 

Coarse/Acquisition, free of charge and available to civilian users and the P (Precise) code 

available to military users. Note that the P code is usually encrypted into the Y code. 

Another new signal on the same band and with the same carrier frequency, denoted 

GPS L1C will be added in a next future. The L1C signal consists of two main components, one 

denoted L1 Cp which represents a pilot signal component, free of navigation message data, 

modulated thanks to a particular Time Multiplexed Binary Offset Carrier modulation, and the 

other component, denoted L1Cd that is modulated by a data message. 

In this thesis, only the GPS L1 C/A signal is used for simulations. The GPS L1 C/A is 

generated according to the following scheme based on the GPS ICD information. 

 

Figure 3: GPS L1 C/A generation 

2.3.5.2.  GPS L5  
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L5 is a future GPS signal that will be transmitted with a BPSK (10)
1
 modulation and will 

have the particularity to have two channels: a data channel and a pilot channel. The signal 

power is equally shared between these two channels. The central frequency is 1176.45 MHz 

with a code frequency of 10.23 MHz and a length of 10230 (1 ms code period) with a 

bandwidth of 24 MHz. The minimum received power at the receiver antenna level is – 154 

dBW. Each component is modulated thanks to a Neumann-Hoffman code as described in 

[Bastide1, 2004]. The following scheme illustrates the future GPS L5 signal generation [GSA, 

2008]. 

 

Figure 4: GPS L5 generation 

2.3.5.3.  Galileo E1  

Galileo E1 is broadcasted on the L1 frequency band:  

• The Galileo E1 OS signal, free of charge; 

• The Galileo E1 PRS signal, which contains encrypted ranging codes, 

available only for regulated or critical applications by European and 

sponsoring state members. 

In the following, only the E1 OS signal is described since it is studied in this thesis 

(Chapters 5 and 6). Its specifications are provided in the Galileo SIS ICD [GSA, 2008].  

 

The Galileo E1 OS signal will be available for all equipped civilian users. This signal is 

composed of two channels: 

• The data channel (E1B) which carries the navigation message (INAV); 

• The pilot channel (E1C) which is free of data.  

The total power of this OS signal is equally distributed between the data and pilot 

channels. The specified minimum received power with an isotropic antenna of 0 dB gain is -

157 dBW. 

Note that the navigation message (INAV), will carry an integrity information [GSA, 2008]. 

                                                           
1 The modulations definitions and complete descriptions are not addressed in this thesis dissertation but the 
interested reader can find more information in [Julien, 2005] or [Rebeyrol, 2007]. 
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The E1 OS signal is modulated thanks to a Composite BOC (CBOC) modulation as it is 

specified in the Galileo SIS ICD [GSA, 2008]. On both E1B and E1C, the ranging code chip rate 

will be 1.023 Mcps. The symbol rate for the B component will be 250 symbols/s, as it is 

detailed in [GSA, 2008].  The primary code length for E1B and C will be 4092 chips. A 

secondary code also modulates the E1C component. The signal generation is described in 

the following scheme: 
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Figure 5: Galileo E1 (B+C) generation 

2.3.5.4.  Galileo E5a/E5b  

Galileo E5a will have the same central frequency as L5 (1176.45 MHz), Galileo E5b 

central frequency will be 1207.14 MHz. Each signal will carry two different spreading codes 

in quadrature [GSA, 2008]. The useful power will be equally distributed between 

components. The minimum received power will be – 155 dBW. An ALTBOC modulation will 

be used for E5 signals as described in [Rebeyrol, 2006] to build the wideband E5 signal (E5a + 

E5b). The following schemes represent the E5a and E5b signals generation and are provided 

according to the Galileo OS SIS ICD ([GSA, 2008]). 
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Figure 6: Galileo E5a generation 
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Figure 7: Galileo E5b generation 
 

 As it is illustrated in the previous figures, the E5a and E5b signals are generated 

thanks to primary and secondary codes on both data and pilot channels, each signal is FEC-

encoded (rate ½) and QPSK-modulated. The resulting wideband E5 signal is then the 

combination of the E5a and E5b signals. The E5 composite signal is AltBOC-modulated. 

 

Note that the navigation message broadcasted on the E5b component is a INAV message like 

for the E1 OS signal. It will carry an integrity information [GSA, 2008]. 

2.3.5.5.  Conclusion 

A key characteristic of GPS L1 C/A, L5, Galileo E1, E5a and E5b is that they are (or will be) 

available worldwide to civil users and transmitted in ARNS bands. These signals are thus of 

interest for civil aviation community and will be processed by future combined receivers. 

The existing L1 C/A signal is only composed of a data channel whereas the L5 signal has both 

a data and a pilot channels. All the E1 OS, E5a and E5b Galileo signals have also a data and a 

pilot channel. The following paragraphs describe how these signals are processed within 

GNSS receivers.   

2.3.6. Signals reception 

In the following, signal processing is described from the front end level to the tracking 

loops. The goal of this section is not to describe the whole receiver signal processing 

architecture in details. 

2.3.7. RF signal conditioning 
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The following section presents the RF signal conditioning from the antenna to the 

baseband processing. A generic conditioning scheme is presented in the following figure. In 

the future combined GPS-Galileo receivers, the elements presented in the following scheme 

can be duplicated (for instance two antennas, several amplifiers etc…) to take into account 

the variety of signals to be received (with different bandwidths). 

                  

 

Figure 8: RF signal conditioning until digitalization, VCO stands for Voltage Control Oscillator 

2.3.7.1.  Antenna 

GNSS antenna is the interface with the propagation medium, it is characterized by its 

frequency selectivity, gain pattern, multipath and interference rejection (these phenomena 

are described in 2.4). For civil aviation community, the antenna is also adapted to the aircraft 

design and constraints like shape constraints and high dynamics. 

2.3.7.2.  Preamplification 

Pre amplification is needed to amplify the signal while setting the lowest possible level 

of noise. It is composed of a low noise amplifier (LNA) designed to achieve a desired level of 

system noise level. It is defined by three characteristics that are the loss figure, the amplifier 

noise figure and the gain as mentioned in [Bastide1, 2004].  

2.3.7.3.  Reference oscillator 

A local reference oscillator is used as a basis for generation of all local signals. For civil 

aviation use, this oscillator has to comply with requirements in terms of power consumption, 

size, short and long-term stability, sensitivity to high accelerations and phase noise as 

described in [Bastide1, 2004]. 

2.3.7.4.  Frequency synthesizer 
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The output of the reference oscillator is used by the frequency synthesizer to derive 

local oscillators (LO) and clocks needed to achieve certain functions within the receiver. For 

instance, the LO enables the frequency conversion of the received signals from radio 

frequency (RF) to intermediate frequency (IF) to ease signal processing as described in 

[Bastide1, 2004].   

2.3.7.5.  Down conversion and filtering 

Incoming signal down conversion from Radio Frequency to Intermediate Frequency is 

necessary to ease the amplification of useful signals and the filtering of interference and 

noise. It is achieved by mixing the incoming amplified signal with Local Oscillators (LO). 

Generally, the down conversion function is performed by successive down conversion stages 

towards IF. As the frequency of the incoming signal decreases towards IF, the filtering 

requirements of the applied successive filters can become more stringent while limiting 

insertion loss. A mixer is followed by a pass-band filter to suppress the unwanted sideband, 

LO feed-through and harmonics. Regarding unwanted image, it is filtered at RF before mixing 

signals.  

 

Filtering at IF is then easier than at RF and it is consequently easier to design sharp 

filters at lower frequencies. The filters are chosen so that they remove the entire unwanted 

signal generated by the mixer, they limit the power of the noise entering the IF and they 

provide a good rejection of out-of-band interference. For future onboard GNSS receivers, 

these filters will be designed according to interference rejection masks defined by EUROCAE 

WG 62 in [EUROCAE, 2007] for civil aviation application.  

2.3.7.6.  Sampling and quantization 

The conversion from the analog state to the digital world is accomplished by an Analog-

to-Digital Converter (ADC), whose function is to sample then to quantize the incoming signal. 

Future GNSS combined receivers will probably only have multi bit quantization with uniform 

law. Anytime a signal is quantized, there is an associated degradation of the system 

performance. In a GNSS receiver it is classically expressed as Signal to Noise Ratio (SNR) 

degradation at correlator output described hereafter. Indeed, in a spread spectrum 

communication system the useful signal power is retrieved at correlator output once the 

signal has been de-spread.  

2.3.7.7.  Digital signal processing 

In the following, we present the digital signal processing: the acquisition, tracking and 

correlation processes. These functionalities are duplicated for each receiver channel; each 

channel being dedicated to a different satellite. Here it is supposed that the satellite PRN to 

be searched on each channel was already identified. 
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The first step of the signal processing is the carrier wipe-off which is carried out to 

translate the received IF signal to baseband. This is done by multiplying the incoming signal 

with a local IF replica generated using a carrier NCO. It should be noted that the received 

signal is subject to Doppler frequency due to the relative satellite to aircraft receiver 

velocity. An estimation of the Doppler frequency is used during the baseband translation. 

Next, the signal is despread using a locally generated replica of the incoming signal PRN. The 

dispreading operation is done by correlating the local code replica with the I and Q baseband 

signal components. The correlation stage is the core of the GNSS CDMA signal processing.  

When switched on, a GNSS receiver must first acquire satellites. A successful acquisition 

enables the receiver to switch on to the tracking process. 

2.3.7.7.1. Acquisition 

The received signal is delayed because of the emitted signal propagation in the 

propagation medium, the time offset between satellite and receiver clocks, the payload-

induced group delay, the receiver antenna imperfections, the presence of cables and the 

receiver front end. The acquisition goal is to detect a signal, which implies to find the good 

pseudorandom noise code used for transmission. The acquisition process also provides a 

first estimation of the code delay and the carrier Doppler frequency, before the tracking 

process described in the following section. This research of the good pseudorandom noise 

code is done testing all the possible codes during sky search. 
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Figure 9: Acquisition process 

 

Where: 

• Tint (seconds) is the integration time 

• Fs (Hertz) is the sampling frequency 

• Fd (Hertz) is the Doppler offset 

• (seconds) is the PRN code delay 

• (rad) is the phase offset 

From the block diagram above, it can be seen that the acquisition unknown parameters 

are: 1) the PRN code delay , 2) the Doppler offset fd. The acquisition problem can 

therefore be formulated as a parameter estimation problem where a signal is transmitted 

from a source with a set of unknown parameters. The traditional acquisition technique 

consists in visiting all the Doppler and code delay bins. 
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Thus, the I and Q prompt outputs are summed and squared (summing or squaring steps 

are realized in different sequences for coherent or non coherent integrations) to build a 

statistical test criterion. An hypothesis test is then performed by comparing the statistical 

test to a threshold.  

2.3.7.7.2. Acquisition to tracking transition 

By the end of the acquisition process, the signal characteristics may have significantly 

changed. Indeed the acquisition is a relatively long process and may take several tens of 

seconds per satellite. During this time, and due to the receiver-to-satellite dynamics, the 

signal Doppler and code delay are continuously modified. In the case where the Doppler and 

the code delay variations at the end of the acquisition are higher than the tolerated 

resolution on each of them a second acquisition should be realised based on the results of 

the first acquisition, the time taken to successfully acquire the signal, and the signal 

dynamics.  

2.3.7.7.3. Tracking 

Tracking the IF signal aims at keeping track of the acquired satellite, and subsequently 

demodulate the navigation message. The tracking process is thus realized in real time, and 

the signal used is the real incoming signal at each instant. The correlation result is then 

passed on to the discriminators and next to the loop filters so as to precisely determine the 

right code delay and carrier phase. These parameters are used to generate the local code 

and carrier replicas to keep track of the considered satellite. The receiver remains in this 

stage while the test statistic is higher than a tracking predetermined threshold. Otherwise, it 

goes back to the acquisition or reacquisition stage. A general block diagram of the tracking 

process is depicted in the next figure. 

The acquired sampled signal (supposing the presence of data and only a primary ranging 

code, like, for instance the L1 C/A signal) can be expressed by:  

 V�k� = 	A. D�kT� − τ�. C�kT� − τ�. cos�2πfxkT� − θ� + 	b�k� (49) 

 

Where: 

• A is the magnitude of the incoming signal  

• D and C are waveforms, respectively associated to navigation message and code (C/A for 

instance)  

• fI  is the final intermediate frequency   

• Ts is the sample period and Fs=1/Ts is the sampling frequency 

• θ  is the incoming signal carrier phase shift  

• τ  is the group propagation time of the signal  

• b is the additional noise  

 

So, after multiplication by local carrier and code, the output to be integrated is then:  
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 �Vx�k� = V�k�. cos32πfxkT� − θ�4 . C�kT� − τ �V¡�k� = V�k�. sin32πfxkT� − θ�4 . C�kT� − τ � (50) 

 

 

In order to track the incoming GNSS signals, two loops have to be used:  

• One loop to track the carrier of the incoming signal, called phase lock loop (PLL). The 

PLL goal is to generate a local carrier as close as possible to the incoming carrier to 

keep the phase error between the locally generated carrier and the incoming signals 

close to zero. 

• One loop to track the GNSS signals code, called the Delay Lock Loop (DLL) The objective 

of the DLL is to generate a local code as close as possible to the incoming code to keep 

the delay error between the locally generated code replica and the incoming signal 

code. 

 

The following figure illustrates the signal tracking process, which relies on 

discriminators outputs (and consequently the correlators outputs). The discriminators are 

defined and described in the next section. 
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Figure 10: Tracking process 

2.3.7.7.4. Correlation 
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During the tracking of GNSS signals, after signal carrier wipe-off the correlation process 

consists in the multiplication by a PRN code local replica and then, integration over a certain 

time. In its strict definition, the correlation is the process of multiplying the incoming signal 

with the locally generated replica of the received spreading sequence and accumulating (or 

integrating) the result. The accumulation operation is referred to as the coherent 

integration. In addition to the effects of external disturbances due to the signal propagation 

(described latter in this chapter) and frontend filtering (that limits the incoming signal 

spectrum), the correlation process is greatly affected by the presence of a carrier. For this 

reason, the correlation process also includes the frequency removal process. Frequency 

removal, or carrier wipe-off, is performed by multiplying the incoming signal with the locally 

generated replica of the received carrier. This operation is followed by correlating the 

resulting incoming signal with a local PRN code replica. It is realized according to the 

following block diagram. 
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Figure 11: Correlation process 

 

For normal aircraft dynamics, after front end filtering, I and Q channels prompt outputs 

formal expressions are:  

¢£¤
£¥ I} =	A2 sin�π∆fTx�π∆fTx Rx§�ϵ©	� cos�ϵª� +	nx
Q} =	A2 sin�π∆fTx�π∆fTx Rx§�ϵ©	� sin�ϵª� +	n¡ (51) 

 

Where: 

• ∆¬ is the frequency offset between received and local carrier 

• ®	 is the code tracking error  

• ¯ is the phase tracking error 

•  ILR is the correlation function between the filtered incoming signal and the local 

replica  

• A is the amplitude of the referred signal  

• IT  is the integration time  

• In  is the noise at correlator output on the I channel  
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• Qn is the noise at correlator output on the Q channel  

 

As it is mentioned in the signals structure description (paragraph 2.3.5), future GNSS 

signals will be composed of data (with message transmission) and pilot channels. It can be 

noticed that the maximum coherent integration time is limited to the duration of the data 

bit on the data channel. This constraint does not exist on the pilot channel. As a 

consequence, for the Galileo E1 OS data channel and the GPS L1 C/A signal, the coherent 

integration °± is limited to 4 and 20 ms respectively. Nevertheless, there are other strong 

limitations to signal integration time like oscillator stability and dynamics as it is detailed in 

[Julien, 2005].   

2.3.7.7.5. Discriminators  

Discrimination is the first step for accurate estimation of code and phase tracking errors. 

Several discriminators exist and are based on the use of I and Q channels outputs.  

 

The PLL uses phase tracking discriminators that measure the lag between input and local 

carrier phase. Phase discrimination is dependent upon the presence or absence of data bits 

on the data and pilot channels. Indeed, the presence of data (data bit transitions) generates 

changes in phase. It results changes in signal polarity that must be taken into account while 

discriminating. As a consequence, two types of phase discriminators can be distinguished: on 

the data channel and on the pilot channel as mentioned in [Julien, 2005].  

 

For the data channel, the discriminator must be insensitive to the phase jumps due to 

data bit transitions. The most used corresponding phase discriminator is the IQ one [Ward, 

2007]. Indeed, the IQ (or Costas) discriminator is based on the product of I and Q channels 

correlation components. So the sign changes during data bit transitions are compensated, 

and the discriminator output keeps the same sign.   

 V� = I. Q (52) 

 
 V� = Af4 Rx§f �³®�	sin�³¯� cos�³¯� +	´µ  (53) 

 

Where:  

• 




−=
−=

θθε
ττε

θ

τ
ˆ
ˆ

 are respectively, the delay error and the phase tracking error 

• ( )τε2R  is the square of the correlation function between the filtered incoming signal 

and the local replica 

• ´µ	is the PLL discriminator noise 

 

When the phase loop is locked, the error is then congruent to zero moduloπ . The phase 

is estimated with an error equal to a multiple of π . Ve is not normalized. This discriminator is 
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not linear and, in reality, it tracks twice the carrier phase error. Consequently, as depicted in 

figure 4, the stability domain is reduced to ¶− ·̧ ; ·̧º. 
 

Another well-known discriminator used for the data channel is the arctangent one:  

 V� = arctan ¼QI ½ (54) 

 

Indeed, as for the Costas discriminator, the sign changes are cancelled by the ratio 

between I and Q channels. This discriminator has the same stability region than the IQ one 

and has the same uncertainty but it is linear as it can be seen Figure 13 and normalized. 

 
 

Figure 12: Costas discriminator 

 

Figure 13: Arctan discriminator 

 

 

Note that these two discriminators have several lock points separated by π radians. As a 

consequence, for any reason, if the receiver loses lock of this tracking loop for a certain time 

(this problem is called cycle slip and is described in details and studied in chapter 6), the 

minimum slip amplitude is equal to half a cycle. Nevertheless, this is only true before data 

frame synchronisation.  

 

For the pilot channels, as mentioned in the correlation description (section 2.3.7.7.4), 

the integration time is not limited by the data bit transitions. Other parameters can limit the 

integration time like dynamics or local oscillator stability. Thus, the PLL discriminator does 

not have to be insensitive to data bit transitions. Other discriminators were proposed in 

literature, for instance, the coherent discriminator [Julien, 2005] with a stability domain 

twice as large as the Costas stability domain. Another example of discriminator is the 

extended arctangent discriminator that is described in [Julien, 2005]. It has a wide linear 

tracking range and is consequently more robust against losses of lock and so cycle slips.  

2.3.7.7.6. Loop filters  

The purpose of the loop filter is to reduce the power of the noise that affects the 

discriminator output without cancelling high frequency variations of the error due to the 

receiver dynamics. A loop filter is usually composed of a sum of digital integrators with 

different orders. Only two parameters are necessary for the design of a loop filter: the noise 

bandwidth Bn and the filter order which determines the filter’s response to signal dynamics. 
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The higher the filter order, the higher the loop robustness to dynamic variations of the 

system, but the lower the loop stability. 

The temporal model of pseudoranges variations is used to model the loop robustness 

against dynamics. There is no tracking error due to dynamics in a first order PLL if the 

pseudorange has no more than a first order polynomial time variation. The same remark can 

be made for higher order models. As for PLL, a loop filter is used for DLL. As explained in 

[Julien, 2005], phase tracking is less robust against dynamics than code phase tracking. So 

the choice of PLL loop filter order must be higher than the DLL loop filter order. In addition, 

the DLL is aided by the PLL. Indeed, the DLL DCO command equals the DLL discriminator 

output plus the filtered PLL discriminator output. 

2.3.7.8.  Conclusions  

From the signal processing described in the previous sections, the receiver provides 

pseudoranges. In a real world, as described at the beginning of this chapter, pseudorange 

measurements are affected by signal propagation and several kinds of perturbations 

identified in [Parkinson, 1996] and described in the next section. 

2.4. Perturbations affecting GNSS signals 

2.4.1. Introduction  

The GNSS measurements are affected by various phenomena due to the receiver 

environment and capability to track the incoming GNSS signals. Amongst these phenomena 

are identified the effects due to the signals propagation environment: the ionosphere and 

troposphere crossing, the signal multipath, and the interferences. Other sources of 

perturbations are the aircraft dynamics and the receiver noise described in [Julien, 2005] or 

in [Bastide1, 2004]. The following paragraphs provide a description of each of these 

phenomena. 

2.4.2. Ionosphere 

One of the most important effects on the radio navigation signals is the one caused by 

the ionized layer of the atmosphere, the ionosphere, which causes a delay in the 

electromagnetic signals that go through it. The GNSS signals used for civil aviation goals are 

consequently affected by this perturbation. In the following paragraph, we describe the 

ionosphere and we demonstrate the impact of this atmosphere layer on the electromagnetic 

wave. 

 

The Earth atmosphere is divided into several layers, one of these is the plasma called 

the ionosphere. It begins at around 50 km from the Earth surface and ends at around 2000 

km [Garcia, 2002]. In this layer of the Earth atmosphere, particles are ionized under the 
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action of sunlight, cosmic, UV, X radiations and even meteorites falls. At the higher altitudes, 

there is the layer called magnetosphere. 

 

The ionosphere is produced by the ionization of molecular species as for instance, 

oxygen, after sun radiations. As this effect is decreasing when approaching the Earth surface, 

the consequences are different for varying altitudes. That is to say, the electronic content 

due to the solar radiations varies as a function of altitude. Consequently, several layers in 

the ionosphere corresponding to different effects on GNSS signals propagation are defined. 

The layers are the F, E and D regions and are described in [Garcia, 2002]. In the following 

paragraphs, the characteristics of these layers are recalled.  

 

The F layer (130-150 km) corresponds to the layer where the electrons concentration is 

between 10
11

 and 10
12

 electrons per m
3
. Within this region, ionization effect decreases 

exponentially with altitude because of the decreasing number of molecules. The ionization 

of this region of the atmosphere is extremely variable with time and space. Thus, it presents 

sometimes electronic content irregularities responsible of electromagnetic signals 

scintillations. 

 

The E layer is located at 90 up to 130 km altitudes and presents more regular 

fluctuations than the F region. The maximum ionization level, located at 110 km high, is the 

order of 10
11

 m
-3

. 

 

The D layer (50 to 90 km) where the molecular density is higher than in the other layers 

is characterized by collisions between neutral and ionized particles.  

 

The ionospheric code delay is the largest source of ranging error for GNSS signals as 

mentioned in [Parkinson, 1996]. It is depending upon the Total Electronic Content (TEC) of 

the medium, which corresponds to the total number of electrons met along one given signal 

path, considering a 1 m²-section cylinder around the signal path [Garcia, 2002]. TEC varies as 

a function of several phenomena such as solar activity (sunspot numbers), the Earth 

inclination, its rotation around its spin (hours) and around the Sun (seasons). 

 

In the following, we describe the impact of the ionosphere crossing on all GNSS signals. 

The link between the TEC value and the ionospheric code delay is established. The model 

proposed in [RTCA, 2006] to estimate ionospheric code delay for any satellite elevation is 

also provided. 

The propagation speed of an electromagnetic wave is proportional to the emission 

frequency f . More precisely, for a corresponding signal wavelength λ , which depends upon 

the signal carrier frequency �λ = ¾v�, the phase velocity is given by [Garcia, 2002]:  

v} = λ	f (55) 

The group (where the information is carried) velocity is given by: 

v6 =	−λf ÀvÀÁ  (56) 
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Since f = 	 ÂÃÁ ,  these two expressions are related by the following equation: 

v6 = −λf ÄÅÆÃÅÇ ÁKÂÃÅÇÅÇÁÈ É = v} − 	λ ÀÂÃÀÁ   (57) 

 

Since the ionosphere is a dispersive medium, the phase and group speeds are not equal 

in this medium. Therefore, two refraction indexes to characterize the impact of the 

ionosphere on the phase and group celerity are defined [Garcia, 2002]. 

The ionosphere impact on the signal phase is defined thanks to: ´Ê =	 ËÌÍ 
, which is the 

ratio between the light celerity in the vacuum c (which is also the phase velocity in the 

vacuum) and the phase velocity in the ionosphere. A development of the refraction index of 

the phase pn  described in [Garcia, 2002], provides:  

 n} = ∑ ¾ÎvÎÏ��&   (58) 

 

The ic  coefficients depend upon the TEC. 

 

The link between the refraction indexes can be derived: 

 n6 =	n} + 	f	 À~ÃÀv 	  (59) 

 

According to [Seeber, 1992], the phase refractive index can be approximated thanks to a 

series expansion truncated after the quadratic term. A second order truncated development 

of pn  allows obtaining a significant value of these indexes:  
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So, gn equals to:  

 

²
1 2

f

c
ng +=  (61) 

 

For ionosphere, the 2c  coefficient is: eNc 3.402 −=
 
(62),  

where:  

• eN is the electron density in el
3−m , it represents the number of electrons in a volume 

unit; 

• 40.3 is expressed in 
23 −sm  

  

Along a straight path of an electromagnetic wave, that is to say when the refraction 

index is equal to 1, the geometric range Ð0 (in meters) between a satellite and the receiver is 

provided by:  
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∫=
receiver

satellite

dss0  (63) 

 

When the electromagnetic waves cross the ionosphere, then for each satellite in view of 

the receiver, the path corresponding to phase (ÐÊ� and group (ÐÑ) are then:  
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 (64) 

 

As a consequence, the ionosphere error is expressed as a code delay and a phase 

advance, taking into account the difference between the straight path and the actual path:  

 

ÒI} = s} − s0 =	− �0.kvÈ ÓN�ds = − �0.kvÈ TECI6 = s6 − s0 =	+	�0.kvÈ TEC   (65) 

 

Where ÔÊ corresponds to the phase advance and ÔÑ corresponds to the code delay. It is 

expressed in meters, but it can also be expressed in seconds by dividing by the speed of light 

in vacuum. 

 

The first equation is synonymous with a phase advance (because of the presence of the 

minus sign) and the second one, a group delay (sign plus). For instance, for L1, L2, L5, E5a 

frequencies, the time of arrival of code and phase measurements at the receiver antenna 

level is:    

 
Figure 14: Time of arrival of code and carrier phase of each signal 

 

where the origin represents the theoretical time of arrival of the signal at the receiver level 

(if the signal followed the s0 path); P
xT  represents the carrier phase arrival and φ

xT  the code 

arrival with delay for each frequency. 

 

Therefore, the pseudorange measurements can be re-written as: 

   P��k� = 	 ρ��k� + c �∆t��k� − ∆t��k�� + c �Ig��k� + τ��k�� + D����� �k� + n��k�
= ρ��k� + c �∆t��k� − ∆t��k�� + cÕ40.3f2 TEC��k� + τ��k�Ö + D����� �k�
+ n��k� 

(66) 
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 ϕ��k� = ρ��k� + 	c �∆t��k� − ∆t��k�� + c �Ip��k� + τ��k�� +	Φ����� �k� +
	N�λ� +	n��k� 		= ρ��k� + 	c �∆t��k� − ∆t��k�� + c j− 40.3f2 TEC ��k� + τ��k�l +	Φ����� �k� +	N�λ� +	n��k�   

(67) 

                                                                                           
Where:  

 

• i denotes a particular satellite 

• P is the code pseudorange measurement in meters 

• � the carrier phase measurement (in meters) 

• ρ is the actual distance between a satellite i and the receiver  

• c is the light speed, equal to 299 792 458 m/s 

• )(ktu∆  is the user clock shift  

• )(kt i∆ represents the i
th

 satellite clock shift   

• I is the ionosphere error  

• τ is the troposphere error  

• multD  is the multipath error for code measurement  

• multΦ  is the multipath error for carrier phase measurement  

• N is the ambiguity (random number of cycles) 

• λ is the carrier wavelength 

• n is the residual noise 

 

The TEC is linked to the behaviour of the ionosphere all along electromagnetic waves 

path from a satellite to a receiver. It is consequently linked to the receiver and satellites 

positions. In particular, the TEC value is a function of the considered satellite elevation from 

the receiver point of view. 

 

The electronic content along an electromagnetic wave path is different if the satellite is 

at the receiver zenith or near the horizon. In order to take this effect into account, the 

obliquity factor is defined as the ratio between the real TEC computed between the satellite 

and the receiver called Slant TEC (STEC) and the Vertical TEC (VTEC) computed when the 

satellite is at the receiver zenith [Garcia, 2002].  

 

VTEC

STEC
Ob =  (68) 

 

As a conclusion, the ionosphere causes the GNSS signals phases to advance and the 

corresponding codes to delay. The ionosphere can be described thanks to several layers with 

different electron densities (D, E, F layers) in which the electrons have different densities. In 

addition, the ionosphere medium has a large variability (in terms of electronic content) 

depending upon many parameters like for instance the Earth inclination or the solar activity. 

Thus, the impact of the ionosphere on the GNSS signals is difficult to predict and difficult to 

model. Nevertheless, some models are built to provide an estimation of the TEC and the 

corresponding code delay on the GNSS measurements. These models can be based on 
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single-layer assumptions (Klobuchar) or multi-layer assumptions (NeQuick) and are 

described in Chapter 6. 

 

Concerning the single-layer models, the assumption made is that the ionosphere can be 

imagined as a thin shell at 350 km around the reference geoid (WGS 84). Thus, a theoretical 

derivation of the obliquity factor geometrical value can be made. In the next paragraph, we 

describe this model proposed in [RTCA, 2006]. 

2.4.2.1.  Thin shell model 

Assuming the ionosphere is extremely thin (thin shell model described in [Parkinson, 

1996]) and located at 350 km around the Earth reference geoid (WGS 84), the obliquity 

factor can be modelled geometrically thanks to the elevation angle of the space vehicle, 

from the model proposed in [RTCA, 2006], assuming the receiver is located near the Earth 

surface: 
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e  (69) 

 

Where:  

• eR is the mean equatorial radius of the Earth,  

• h  is the altitude of the considered ionosphere,  

• E is the elevation angle.  

                                
Figure 15: Geometrical parameters for obliquity calculation 
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Where:  

• IPP stands for Ionospheric Pierce Point, it is a theoretical point located at around 350 

km high where the electromagnetic wave path from the satellite to the receiver 

crosses the ionosphere.  

• E is the elevation angle of a considered satellite from the receiver point of view taken 

from the tangent plane to the WGS 84 at the receiver location.   

 

Then, the ionosphere error is given by:   

 I = �0.k¾v² STEC  (70) 

 

It can be seen that it depends upon the TEC computation within an atmosphere column 

located around an electromagnetic wave path from a satellite to the receiver.  

 I = 40.3cf² . VTEC. Ob (71) 

 

2.4.3. Troposphere  

Troposphere effects are generated by the non-ionized portion of the atmosphere 

extending from the surface of the Earth up to an altitude of nearly 40 km. An 

electromagnetic signal propagating through this neutral layer of the atmosphere is affected 

by the constituent gases (wet and dry parts) [Parkinson, 1996]. 

 

The troposphere causes a refraction of the RF signals because of the larger refractive 

index than that of vacuum. This index is constant with frequency, non dispersive for 

frequencies lower than 30 GHz. Thus the group and phase velocities are identical, contrary 

to ionosphere propagation. The actual path of the RF ray through the troposphere is longer 

than the straight geometrical line, bent in such a way that the curved path is closer to the 

zenith than the straight line [Parkinson, 1996]. 

2.4.4.  Multipath  

A signal can arrive to the receiver via multiple paths, with different faded power of the 

replica of the original signal. This phenomenon, attributable to reflections and diffraction on 

surrounding obstacles (buildings, hard ground, trees etc...) is called multipath and its impact 

on signals processing is briefly described hereafter. 

 

The reflected signals entering the front end of the receiver are mixed to the original 

direct signal and entails tracking errors. Indeed, multipath can unshape the correlator 

outputs used for code and carrier tracking. It can also distort carrier phase as mentioned in 

[Rebeyrol, 2007]. 
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The amplitudes of multipath signals are frequently less than or equal to the LOS signal. 

Indeed, the reflectors attenuate the replica of the LOS signal and reflected signals. This 

fading is thus dependent upon the type of reflecting surface (ground, aircraft fuselage...). 

2.4.5.  Interferences  

The interferences have the particularity to be one of the most feared phenomena 

affecting GNSS signals and consequently aircraft positioning. Indeed, this phenomenon can 

affect simultaneously several GNSS components located in the same ARNS band.  

 

Interferences have various and numerous effects on signal processing and consequently 

on pseudoranges estimation. The impact of the out of band interferences is reduced at the 

front end level by filters according to maximum interference levels specifications provided 

by [EUROCAE, 2007].  

 

The main unintentional interference types in the ARNS band are Carrier Waves (CW), 

Wide Band interferences (WB) and pulsed interferences. In the next paragraphs, a short 

description of these interferences is provided hereafter. 

 

A CW is a sinusoidal waveform. The mathematical model of a transmitted CW is 

provided by the following equation: 

 CW�t� = 	gP×Ø. cos	32π�fx + ∆fÙ�t + θ4 (72) 

 

Where:  

• PCW is the power of the CW interference (dBW) 

• ∆fÙ is the frequency offset of the jammer with respect to the considered GNSS signal 

carrier frequency (Hz) 

•  fx + ∆fÙ is the central frequency (Hz) 

• Ú is the interference phase (rad) 

 

 

Pulsed interferences can affect GPS L5 and Galileo E5. Indeed, for instance, the DME 

(Distance Measuring Equipment) system is a pulsed ranging system which provides range 

measurement from an aircraft to a ground beacon. This system is internationally 

standardized and operates in the 960-1215 MHz ARNS frequency band. The DME 

interrogator obtains a distance measurement by transmitting pulse pairs and waiting for 

reply pulse pairs from the beacon. The aircraft selects a near beacon and an appropriate 

frequency to measure its distance to ground. Each beacon transmits Gaussian pulses by 

pairs.  

 

In this thesis, only continuous CW are considered. Indeed, the impact of pulsed 

interferences has been already conducted in another project and reported in several other 

publications and in particular in [Raimondi, 2006] for the EUROCAE WG62. 
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2.4.6. Satellite clock error 

The satellite clock error comes from satellite oscillator offset with regard to the GPS or 

Galileo time. This satellite clock modeling can be done through clock parameters transmitted 

in the satellite ephemeris [Winkel, 2003]. 

2.4.7. Receiver dynamics 

Aircraft dynamics is another perturbation that can affect GNSS signals processing and 

consequently, aircraft instantaneous position estimation. The main civil aviation standards 

([EUROCAE, 2007], [RTCA, 2006]) provide the onboard receiver dynamics specifications. The 

maximum dynamics values in terms of ground speed, horizontal and vertical acceleration 

and total jerk are provided for an aircraft having normal and abnormal maneuvers. 

 

The dynamics values for both normal and abnormal maneuvers are recalled in Table 2:  

 
NORMAL AIRCRAFT 

DYNAMICS 

ABNORMAL 

AIRCRAFT 

DYNAMICS 

GROUND SPEED  800 KT 800 KT 

HORIZONTAL ACCELERATION 0.58 g 2.00 g 

VERTICAL ACCELERATION 0.5 g 1.5 g 

TOTAL JERK 0.25 g/s 0.74 g/s 

Table 2: Normal and Abnormal aircraft dynamics, [EUROCAE, 2007]. 

Where: g = 9.81m/s² and Kt are Knots. 

The normal dynamics are defined to be manoeuvres whose acceleration and jerk do not 

exceed the values in the first column. The abnormal dynamics are defined to be manoeuvres 

whose acceleration and jerk are between the values recalled in the first column and the 

maximum values in the second column. 

The pseudorange measurements model in presence of aircraft dynamics can be re-

written as: 

P��k� = 	ρ��k� + v�k�. t�k� + 9.81	a�k�. t�k�22 + 9.81	j�k�. t�k�36 + c�∆t��k� − ∆t��k��+ c �Ig��k� + τ��k�� + D����� �k� + n��k� 
(73) 

 ϕ��k� = ρi�k� + v�k�. t�k� + 9.81	a�k�. t�k�f2 + 9.81	j�k�. t�k�k6+ 	c �∆t��k� − ∆t��k�� + c �Ip��k� + τ��k�� +	Φ����� �k� +	N�λ�+	n��k� 

(74) 

 

Where:  

 

• i denotes a particular satellite 
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• k denotes the sample time number 

• P is the code pseudorange measurement in meters 

• � the carrier phase measurement (in meters) 

• v is the ground speed of the aircraft (receiver), in m/s 

• a is the acceleration of the aircraft, in m/s
2
 

• j is the jerk of the aircraft in m/s
3
 

• ρ is the actual distance between a satellite i and the receiver  

• c is the light speed, equal to 299 792 458 m/s 

• )(ktu∆  is the user clock shift  

• )(kt i∆ represents the i
th

 satellite clock shift   

• I is the ionosphere error  

• τ is the troposphere error  

• multD  is the multipath error for code measurement  

• multΦ  is the multipath error for carrier phase measurement  

• N is the ambiguity (random number of cycles) 

• λ is the carrier wavelength 

• n is the residual noise 

 

In the following, the index k, which defines the measurement sample number, will be 

replaced by the time index only. 

2.5. Conclusions 

This chapter presents the GNSS applied to civil aviation. It presents the GNSS 

components studied in this thesis, in compliance with the EUROCAE on-going works 

[Mabilleau, 2007]. The signal processing within the civil aviation receivers is detailed and the 

corresponding measurement models (pseudoranges) are described as function of external 

perturbations in an aircraft environment. All the perturbations affecting the GNSS signals 

received onboard an aircraft during a phase of flight are also described and their impacts on 

the measurements are discussed. 

 

The involvement of each perturbation on the performances reached by a receiver 

located onboard a flying or landing aircraft is described. The resulting GNSS measurements 

processes to provide the aircraft protection levels are also described. These protection levels 

have to be compared to civil aviation requirements which are also recalled as function of the 

phase of flight of the aircraft [RTCA, 2006]. 

 

The future onboard GNSS combined receivers have to be compliant with the civil 

aviation requirements that are defined by means of performances specified in terms of 

integrity, continuity, availability and accuracy. The different means identified by the 

EUROCAE WG 62 to provide the required levels of performance during an aircraft flight are 

identified amongst the components (constellations, frequencies, augmentation systems) 

presented in this chapter and the different strategies for navigation solution and integrity 

monitoring will be presented in the next chapter (3). 
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Résumé 

Une architecture de récepteur combiné GPS + Galileo + systèmes d’augmentation est 

proposée dans le chapitre 3. Nous décrivons les modes opérationnels (nominal, alterné et 

dégradé) et identifions les différentes combinaisons les plus prometteuses d’un point de vue 

opérationnel et retenues par l’EUROCAE. L’architecture globale des futurs récepteurs 

combinés est basée sur deux fonctions principales, pour chaque mode opérationnel, qui sont 

la fonction de navigation qui fournit une position et une intégrité au système et une fonction 

de détection d’anomalies. Pour chaque mode, la fonction de navigation repose sur 

l’utilisation de combinaisons GNSS identifiées par l’EUROCAE comme nominales, alternées 

ou dégradées. Un système de commutation entre les modes opérationnels (ou au sein de 

combinaisons d’un même mode), permet d’utiliser les combinaisons GNSS disponibles les 

plus performantes en termes de précision, intégrité, continuité et disponibilité. Les 

exigences de l’aviation civile pour chaque phase de vol sont satisfaites en mode nominal ou 

alterné. En mode dégradé, une alerte est automatiquement envoyée au pilote. Dans ce cas, 

nous abordons la question du maintien des niveaux de performance et de reconfiguration du 

navigateur. S’il n’est pas possible de maintenir les performances permettant d’effectuer les 

opérations de vol, d’autres moyens que le GNSS peuvent alors être utilisés. 
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3. Combined use of GNSS components and receiver architecture 

The goal of this chapter is to describe the future civil aviation receiver global 

architecture. This architecture must comply with the civil aviation needs. So, in order to 

reach the ICAO requirements for each phase of flight, the most promising GNSS components 

combinations (in terms of performance) must be identified and used. This identification is 

made in [EUROCAE, 2007] and summarized in this chapter. Therefore, the global combined 

receiver architecture relies on these components combinations. 

As a consequence, this chapter first recalls the definitions of the modes of operation 

[EUROCAE, 2007] for each phase of flight addressed in this thesis dissertation. Secondly, the 

GNSS components combinations identified by the WG 62 are classified by modes of 

operations, according to the performances that can be reached. Thirdly, the combined 

receiver architecture is proposed, in coordination with the DTI. This architecture has been 

approved by the WG 62 during the 22nd meeting. 

3.1. Definition of modes of operation 

In the following, we provide the official definitions of the operation modes [EUROCAE, 

2007]. 

3.1.1.  Nominal mode 

A nominal mode is a mode of operation in which the receiver achieves the same level of 

performance using a pre-described, preferred combination of signals [EUROCAE, 2007]. 

3.1.2.  Alternate mode  

An alternative mode is a mode of operation in which the receiver achieves the same 

level of performance of the nominal mode using alternative means, or an augmentation. A 

receiver enters into an alternate mode when one or more of the signals of the nominal 

mode are not available at SIS level, but the remaining signals or augmentations can still meet 

the level of performance of the nominal mode [EUROCAE, 2007]. 

3.1.3.  Degraded mode 

A degraded mode is a mode of operation in which the receiver is unable to achieve the 

level of performance of the nominal mode. A receiver enters into a degraded mode when 

one or more of the signals of the nominal mode are not available at SIS level, and the 
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remaining signals or augmentations are insufficient to meet the level of performance of the 

nominal mode [EUROCAE, 2007].  

3.1.4.  Conclusion 

When a degradation occurs on one or more GNSS component, the performances 

reached for aircraft positioning and integrity monitoring can be lower than required by the 

ICAO to perform an operation. In this case, the combined receiver enters an alternate or a 

degraded mode. Then, the new mode of operation depends upon the fact the performances 

reached are sufficient or not to continue the operation. This implies the use of degradation 

detection functions to monitor the performances reached and thus the availability of the 

components.  

The corresponding degradation detection functions are defined in this chapter with the 

generic combined receiver architecture. Then, when the degradation is flagged, it is 

necessary to decide when the receiver enters an alternate or a degraded mode.  

When the receiver enters a degraded mode, an alert must be raised to flag the receiver 

incapability to provide the service required for the aircraft operations.  

Note that the detection functions are not only integrity monitoring functions. These 

functions must allow monitoring all the performances losses. For instance, a detection 

function can monitor interferences occurrence and impact on the aircraft positioning 

accuracy. 

 

An on-going development of a reference document called Concept of Operations 

(ConOps) [EUROCAE, 2008]
2
, is written by the WG 62 members. In this document, the 

combinations of GNSS components are classified by modes of operation defined previously. 

These modes of operation depend upon the level of performance reached by using some 

specific GNSS components, for a targeted phase of flight. The most promising GNSS 

components combinations that meet the ICAO requirement corresponding to a given phase 

of flight are proposed as nominal. The combinations that provide a sufficient level of 

performance to begin or continue an operation but with non-preferential means are 

classified as alternate. Finally, in case of loss of GNSS component, the remaining components 

that are not supposed to match all the performance criteria are classified as degraded. This 

work is exposed in [EUROCAE, 2007]
3
 and [EUROCAE, 2008]. These documents are based 

upon the EUROCAE WG 62 working assumptions. 

3.2. GNSS combinations identified by the EUROCAE WG 62 

An analysis of the performance reached by GNSS combinations was made upstream this 

thesis by the WG 62. The following table shows the identified combinations classified as a 

function of the operation modes and phases of flight by the WG 62 in [EUROCAE, 2008]. The 

GLONASS constellation is not considered. Indeed, first, the GLONASS MOPS does not exist 

                                                           
2 Note that this reference document is still under development, the proposed reference is the latest draft version 
3 Note that this is an interim version of MOPS Galileo 



         Chapter 3          Combined use of GNSS components and receivers architecture 

 50

anymore, secondly, GLONASS uses only FDMA signals and not CDMA, and thirdly, there is no 

SIS for civil aviation. Therefore, the EUROCAE WG62 focuses on GPS + Galileo + 

augmentation systems. Since this thesis follows the evolution of the EUROCAE works, it also 

focuses on GPS + Galileo + augmentation systems.   

 

 NOMINAL ALTERNATE DEGRADED 

En 

route 

to NPA 

• Galileo SoL 

• Galileo E1 E5b + GPS 

SBAS 

• GPS SBAS L1 L5 

• GPS single frequency + SBAS 

• Galileo single frequency + SBAS 

• Galileo single frequency + SoL 

• Combination of all available 

pseudoranges + RAIM 

• No integrity information 

APV I 

• Galileo SoL 

• Galileo E1 E5b + GPS 

SBAS 

• GPS SBAS L1 L5 

• GPS single frequency + SBAS 

• Galileo single frequency + SBAS 

• Galileo single frequency + SoL 

• Combination of all available 

pseudoranges + RAIM 

Table 3: Identified nominal, alternate and degraded modes for en route to NPA and APV I 

phases of flight [EUROCAE, 2008]. 

For the Galileo standalone receiver the nominal configuration is E1 + E5b with integrity 

provided by the Galileo SoL service (see Chapter 2). Note that the Galileo integrity 

information will be available on two signals navigation message: E1 and E5b I/NAV and on 

Galileo satellites in view. The use of Galileo provided integrity is the nominal mode of 

operation for En-Route down to APV. 

Concerning the GPS, the nominal configuration is the dual frequency L1 + L5 and the 

SBAS to provide the required integrity from En-Route down to APV. 

 

There are several possible configurations for the alternate and degraded modes. The 

alternate and degraded modes to be standardized and used are dependent upon the 

operational benefits obtained [EUROCAE, 2008]. 

 

There are no alternate modes to APV without augmentations. The alternate and 

degraded modes also include the use of the Galileo E5a signal which is likely to be processed 

by future receivers [EUROCAE, 2008]. 

 

The loss of one frequency implies to use the SBAS to provide the ionospheric corrections 

usually provided by dual frequency pseudorange measurements combinations as it is 

described in Chapter 6. 

 

The Receiver Autonomous Integrity Monitoring (RAIM) with a fault detection and 

exclusion (FDE) capability should also be used to supplement the primary integrity methods 

(SoL or SBAS). 

 

For En-Route down to NPA operations, the RAIM (+FDE) should be used to provide 

independent integrity monitoring of the navigation solution whenever SBAS or Galileo 

provided integrity is not available.  When Galileo provided integrity is available, the RAIM is 

not required [EUROCAE, 2008]. 
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In this report, only GPS SBAS L1/L5 is assumed and not Galileo integrated into an SBAS 

(e.g. EGNOS). 

Galileo Integrity Channel (GIC) is considered in this thesis as there is no specific 

mismatch between GIC and civil aviation.  

 

3.2.1. Conclusion 

A preliminary theoretical study was conducted by the WG 62 and assumptions on 

potential promising GNSS components combinations are made, in terms of conditions of 

computation of protection levels and integrity [EUROCAE, 2008]. Thus, the WG 62 identified 

the components combinations as a function of the performance level reached and classified 

these combinations as nominal, alternate and degraded means for en-route down to NPA 

and APV phases of flight. A civil aviation user benefits analysis is on-going within the WG 62 

and results in a reference document (ConOps, [EUROCAE, 2008]) which defines the criteria 

that are mandatory, essential or desirable for future combined receivers’ architecture. 

Because of a large number of possibilities including other systems like GLONASS, this 

thesis study is restricted to GPS + Galileo. Then scientific topics are declined from this 

assumption. 

3.3. Global civil aviation combined receivers architecture 

3.3.1. Introduction 

 

The goal of this section is to propose a combined receiver architecture, robust against all 

perturbations described in Chapter 2, with a low complexity and cost and which is compliant 

with the ICAO requirements for all the phases of flight mentioned in the previous section. 
 

To this end, different strategies have been proposed to define the combined GPS-Galileo 

receivers. From the operational needs identified by the WG 62, few configurations have 

been selected as mentioned in [Mabilleau, 2007]. An optimised solution in terms of 

complexity, robustness and performance for En Route down to APV I operations is proposed 

and based on a switching logic between dual frequency Galileo SoL and single or dual 

frequency GPS + SBAS.  

 

The use of the referred components is conditioned by their availability during the 

operation processed. As a consequence, the receiver global architecture will have to take 

into account the availability/unavailability of these components and to monitor the 

degradations that can lead to a loss of GNSS component capability to satisfy the ICAO 

requirements. In addition, in case of loss of a required component to meet the civil aviation 

requirement for the on-going operation, the receiver must be able to switch to another 
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component to maintain the level of performance imposed by the ICAO for the phase of 

flight. 

3.3.2. Global receiver switching architecture 

The following scheme represents the global receiver architecture we proposed to the 

WG 62, in coordination with the DTI. It takes into account the different modes of operation 

and underlines the link between them thanks to switches driven by detection functions and 

represented thanks to black arrows. As in table 3, the nominal mode of operation is 

represented thanks to a green box, alternate mode is represented thanks to an orange box 

and degraded mode is identified thanks to a red box. On this scheme, blue boxes correspond 

to functions included in the receiver. Each mode of operation is composed of two functions 

which are the navigation function and a detection function defined hereafter. 
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Figure 16: Switching between modes of operation 

3.4. The navigation function 

The navigation function ensures the provision of the best navigation solution and the 

corresponding integrity. In the nominal and alternate modes of operation, the navigation 

function provides outputs compliant with the ICAO requirements (performance criteria). 

3.5. The detection function 

The detection function allows to determine the components availability and to flag a 

loss or recovery of component used by the navigation function. Thus, when a component is 

flagged as unavailable, the receiver can then decide to initiate a switch or not towards other 

GNSS components combinations. 

 

Amongst the components combinations identified (as function of the operation modes), 

the receiver must be capable of switching to the best protection level provider (amongst 

GNSS components), which implies to always compare the protection levels provided by 

some GNSS components. Nevertheless, the criterion to initiate a switch must not be the 

lowest protection levels obtained, since, the receiver can switch for a short time to one 

GNSS component to another. This can imply a jump in the measurements during a short 

time. 

3.5.1. Detection algorithms and civil aviation requirements 

To initiate a switch between GNSS components combinations identified in this chapter, 

the levels of performance reached for each phase of flight obtained after a degradation have 

to be known and compared to the level of performance required for the current phase of 

flight. If one of the performance criteria is not reached, then, a switch is initiated. 

 

Therefore, it is necessary to determine the level of performance that can be reached 

when a component is lost. Then, if the current operation cannot continue or a new phase of 

flight cannot begin with the current GNSS components, a switch to other components 

combinations can be initiated. This switching is dependent upon the fact the level of 

performance is reached or not. The level of performance also determines which nominal, 

alternate or degraded GNSS components combinations that can be used. 

 

The detection algorithms have to be compliant with continuity and integrity 

requirements imposed for the current phase of flight. These requirements are synonymous 

with the false detection, missed detection and false alarm probabilities. These probabilities 

are defined hereafter. 
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The false detection probability (PFD) is the probability that the detection algorithm flags 

an event while nothing occurs. 

 

The false alarm probability (PFA) is the probability that the detection algorithm flags an 

event and raises an alarm while nothing occurs. The false alarm rate imposed by the 

operation targeted is the parameter that transcribes the continuity requirements and is 

recalled for NPA and APV phases of flight in Chapter 2, section 2.2.2.2. The false alarm 

probability is synonymous with loss of continuity. 

 

The missed detection probability (PMD) is the probability that the detection algorithm 

does not flag an event (loss of component) whereas this event occurs.  

 

The detection algorithms mentioned here are not built for integrity monitoring but to 

detect losses of GNSS components capability to provide, when combined with other 

components, the level of performance required by the ICAO for a targeted phase of flight. 

3.5.2. Conclusion 

As a conclusion, the detection function must be compliant with the ICAO requirements 

in terms of integrity and continuity by satisfying missed detection and false alarm 

probabilities. The detection function is composed of a detection algorithm which indicates a 

loss or recovery of a given GNSS component. A loss of component is flagged by the detection 

function when the required level of performance to meet ICAO requirements is not reached 

for a targeted phase of flight. Then, the unavailable GNSS components are flagged by the 

detection function and the receiver can then decide to initiate or not a switch to other GNSS 

components combinations identified by modes of operation in Table 3. 

 

As a consequence, it can be noticed that the detection algorithms allow monitoring each 

GNSS component availability. Indeed, it allows monitoring the percentage of time the 

navigation system is capable of providing the required function and performance of the 

intended phase of flight. A flag of loss or recovery of component is linked to the 

performances reached thanks to this component. For instance, while using GPS SBAS L1/L5 

combination, during APV I, if the SBAS is not able to provide integrity compliant with the 

ICAO requirements, then, a detection algorithm must flag a loss of the SBAS component 

availability. The receiver can then decide to switch to other available GNSS combinations, 

without SBAS. 

3.5.3. Detection function and performance levels  

The following scheme represents the links between the four performance criteria 

depicted in [Chatre, 2003] and described in Chapter 2, section 2.2.2. The arrows show that 

certain performance criteria are dependent upon the others, for instance, the availability of 

GNSS components is dependent upon the accuracy of the measurements they provide. 

Indeed, a too large error on the pseudorange values can induce a large bias in the aircraft 

positioning and a resulting protection level value which may be not compliant with the ICAO 
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requirements to perform the current phase of flight. The broken arrow shows that continuity 

limits the risk of losing a component unexpectedly. 

 

 
Figure 17: Links between accuracy, integrity, continuity and availability of GNSS components 

[Chatre, 2003] 

 

The accuracy is the basis of the presented pyramid. The loss of pseudoranges accuracy 

due to the phenomena described in Chapter 2 (pseudorange measurement model), the bad 

geometry of satellites from the onboard receiver point of view and the ephemeris error are 

the three main causes of loss of the accuracy performance level needed to perform a 

targeted phase of flight. 

The availability is at the top of the pyramid, which signifies that all the other 

performance criteria (accuracy, integrity and continuity) loss have a direct consequence on 

the availability performance loss for a given GNSS component. Thus, a GNSS component is 

unavailable when at less one of the accuracy, integrity and continuity performance levels it 

provides is not compliant with the ICAO requirements for a targeted phase of flight. That is 

why the detection function is synonymous with GNSS components availability monitoring. 

3.6. Conclusion 

As a conclusion, operational GNSS components have been identified by the WG 62 and 

classified by modes of operation for the en route down to the NPA and APV phases of flight. 

A global receiver architecture is proposed and described in 3.3.2, in coordination with DTI. 

This architecture relies on a switching logic strategy which was proposed to the Navigation 

System Panel (NSP) [Mabilleau, 2007]. The global architecture was approved by the WG 62. 

Two main kinds of functions are part of the presented modes of operation: the navigation 

and detection functions. It can be noticed that the detection function drives the switches 

between modes of operation and constitutes one of the main contributions of this thesis 

(see Chapters 5 and 6) to the WG 62 on-going works. Indeed, the detection function allows 

flagging the GNSS components availability/unavailability and thus, the availability of the 
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components combinations identified by the WG 62 (Table 3) as guidelines for future civil 

aviation combined receivers. 

 

The availability of the GNSS services (Chapter 2) is linked to the GNSS frequencies 

availability. For instance, considering the Galileo E1 + E5b signals, the availability of the SoL 

service is linked with the capability of the receiver to demodulate the integrity message 

carried by both the E1 and E5b signals and the availability of these signals.  

 

If one of the E1 and E5b signals is lost, due to a Radio Frequency Interference (RFI) 

(Chapter 5), the accuracy of the dual frequency measurements is not ensured because the 

ionospheric effect is not correctly removed. This problem is addressed in Chapter 6.  

 

If the aircraft is in En-Route down to NPA operations, the single frequency plus SoL 

solution can be used, since the whole integrity message is broadcasted by both the E1 and 

E5b signals (I/NAV). The receiver is therefore in an alternate mode.  

 

But, if the aircraft is in APV I phase of flight, the accuracy of the measurements is not 

sufficient to continue the current operation. An augmentation is thus required to provide 

the ionospheric code delay estimation (SBAS ionospheric grids) and the receiver is thus in an 

alternate mode of operation. As a consequence, the Galileo single frequency plus SoL 

solution is referred to an alternate mode during APV I. In the case the SBAS cannot be used, 

the receiver reverts to a degraded mode which is the Galileo single frequency mode of 

operation.  

 

The other main contribution is the study of the degraded mode of operation. In this 

case, the receiver raises an alert since, by definition, the required level of performance to 

operate a phase of flight is not reached. As a consequence, it is of interest to propose ways 

to maintain the required level of performance as long as possible after the switch to the 

degraded mode of operation. This is done in Chapter 6 for the particular case of single 

frequency ionospheric code delay estimation. 

 

If the level of performance cannot be maintained, another possibility is to stop using 

GNSS components for the aircraft operations, until the GNSS components needed to meet 

the ICAO requirements are available again. The pilot can then use other means to continue 

or begin a phase of flight, like INS. Nevertheless, the detection function must run during the 

degraded mode, even if no GNSS component is used. Indeed, in case of component 

recovery, the receiver can then choose to switch to another mode of operation, so as to 

provide a sufficient level of performance for the targeted phase of flight. 

 

The aircraft navigator is responsible for troubleshooting problems of the navigation 

equipment. In the case the level of performance cannot be maintained thanks to the GNSS 

components, the navigator must be reconfigurated so as to take into account other systems 

to perform the aircraft operations. Otherwise, the aircraft cannot achieve the current phase 

of flight or begin a new one. 
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Résumé 

Une architecture de récepteur combiné GPS + Galileo + systèmes d’augmentation est 

proposée. L’architecture globale des futurs récepteurs combinés est basée sur deux 

fonctions principales, pour chaque mode opérationnel, qui sont la fonction de navigation qui 

fournit une position et une intégrité au système et une fonction de détection d’anomalies. 

Pour chaque mode, la fonction de navigation repose sur l’utilisation de combinaisons GNSS 

identifiées par l’EUROCAE comme nominales, alternées ou dégradées. Un système de 

commutation entre les modes opérationnels (ou au sein de combinaisons d’un même 

mode), permettent d’utiliser les combinaisons GNSS disponibles les plus performantes en 

termes de précision, intégrité, continuité et disponibilité. Les exigences de l’aviation civile 

pour chaque phase de vol sont satisfaites en mode nominal ou alterné. En mode dégradé, 

une alerte est automatiquement envoyée au pilote.  

Le chapitre 4 présente les définitions des stratégies possibles : le mode nominal pour les 

phases de vol « En route » à « NPA », « APV I », le mode alterné, le mode dégradé, en accord 

avec le groupe de travail 62 de l’EUROCAE. 
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4. Detection of degradations and reconfiguration of the navigator in 
case of degraded mode 

4.1. Introduction 

As proposed in Chapter 3, the global combined receiver architecture relies upon a 

switching logic strategy. This switching strategy is driven by detection functions. 

 

In this chapter, the combined receiver switching architecture is discussed in details. A 

further description of the receiver architecture is proposed and the different scenarii that 

can happen during the en route down to APV I phases of flight are discussed.  

 

The mechanisms that allow switching from degraded modes to alternate modes, from 

degraded modes to nominal modes or from alternate modes to nominal modes were not 

addressed in this thesis. Nevertheless, this feature has to be taken into account in order to 

complete the receiver architecture. 

4.2. Strategy for each mode of operation 

4.2.1. Nominal mode strategy for en route down to NPA 

The following figure shows the nominal mode strategy for the en route down to NPA 

phases of flight. Two types of schemes are presented: the navigation function and the 

detection function. 

 
Figure 18: Navigation function for en-route down to NPA operations with nominal mode 
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• Galileo SoL;  

• Galileo E1 E5b + GPS SBAS;  

• GPS SBAS L1 L5.  

 

These combinations are identified in Table 3, Chapter 3. These component combinations 

are proposed by the WG 62 and justified in [EUROCAE, 2007]. 

 

During en-route down to NPA phases of flight, only the horizontal accuracy 

requirements are defined, ranging from 3.7 km to 220 meters (Table 1, Chapter 2). Vertical 

guidance is not required during en route down to NPA. Only horizontal protection levels are 

computed.   

 

Dual frequency receivers are expected to be compliant with accuracy requirements. 

Indeed, since the largest source of ranging error is the ionospheric code delay (Chapter 2), 

the nominal mode of operation relies on dual frequency measurements. The receiver must 

be capable of providing ionospheric corrections thanks to dual frequency measurements. 

Therefore, for accuracy purposes, nominal modes must be at least Galileo or GPS dual 

frequency components. On the one hand, the Galileo E1 (SoL or OS) plus E5b signals can be 

used in the ARNS bands. On the other hand, the GPS L1 C/A and L5 signals can be used in the 

ARNS bands. 

 

Since Galileo provides its own integrity information in the I/NAV navigation message, 

broadcasted on both the E1 SoL (OS) and E5b components, the E1 and E5b signals will be 

processed in the future combined receivers. Therefore, the Galileo E1 + E5b, with the 

integrity message is referred as Galileo SoL. If the integrity information is not available 

(impossibility to demodulate and read the correct I/NAV message or message unavailable), 

another nominal combination is the E1 + E5b + GPS SBAS when available. Indeed, the SBAS 

augmentation component will ensure the integrity performance. In the case of GPS L1 C/A + 

L5, the integrity is only ensured by the SBAS.  

 

The loss of one or more of these components leads to a loss of performance. Thus a 

switch to other means of navigation in the nominal mode or a switch to alternate or 

degraded modes is necessary to perform the current operation.  

 

The following figure presents: 

• The detection function: the inputs of the detection function allow defining the 

algorithms detection criteria. These criteria are then compared to detection 

thresholds compliant with civil aviation requirements. The detection function 

only provides flags of loss of signals, as it is depicted in Figure 19; 

• The event flagged by the detection function; 

• The switch to other GNSS combinations. 
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Figure 19: Detection function for en-route down to NPA operations with nominal mode 
 

As a conclusion, during en route down to NPA, the nominal GNSS combinations are 

Galileo SoL, Galileo E1/E5b + GPS SBAS or GPS SBAS L1/L5. The integrity is provided by SBAS 

or SoL. As it is depicted in Figure 19, a loss of one of these components may lead to a switch 

to other nominal combinations, alternate or degraded mode of operation. 

4.2.2. Alternate mode strategy for en route down to NPA 

Concerning the alternate mode for NPA, the navigation and integrity can be provided by 

using GPS SBAS single frequency, all available pseudoranges + RAIM, Galileo SoL single 

frequency, and Galileo + GPS SBAS single frequency. The following figure describes the 

navigation function during en route down to NPA. 
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Figure 20: Navigation function for en-route down to NPA operations with alternate mode 

 

Hereafter is represented the detection function. In the alternate mode of operation, the 

detection function can flag a loss or recovery of GNSS component. 

 
 

Figure 21: Detection function for en-route down to NPA operations with alternate mode 
 

4.2.3. Degraded mode strategy for en route down to NPA 

In case of degraded mode, as described in Figure 22, if the RAIM is not available, 

integrity is not provided and an alert is raised. The detection function is only used for 

components recovery. The navigation function provides a position estimate without 

integrity, with the available components. 
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Figure 22: Navigation function for en-route down to NPA operations with degraded mode 
 

For en route down to NPA, GPS or Galileo + RAIM is sufficient to provide the required 

integrity and accuracy. If the RAIM is not available, only a position estimation can be 

provided, but without integrity. In this last case, an alert is raised. Thus, as depicted in Figure 

23, the corresponding detection function is dedicated to components recovery flag and 

raises alerts when there is no recovery. 
 

                      
 

Figure 23: Detection function for en-route down to NPA operations with alternate mode 

4.2.4. Nominal mode strategy for APV I 

For APV operation, vertical guidance must be taken into account and vertical protection 

levels are computed. The following schemes describe the navigation function with horizontal 

and vertical inputs and also illustrate the detection algorithms.  

 

The starting point for nominal mode is the same than for NPA. The parameters to 

monitor with the detection function are the same than for NPA, only the detection 

thresholds can be different. 
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Figure 24: Navigation function for APV I operation with nominal mode 

 

 

 
 

Figure 25: Detection functions for APV I operation with nominal mode 
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The following figure illustrates the navigation and detection functions included in the 
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Figure 26: Navigation function for APV I operation with alternate mode 

 

 
 

Figure 27: Detection function for APV I operation with alternate mode 

4.2.6. Degraded mode strategy for APV I 

In Figure 28, the navigation function is presented in case of degraded mode, during 

APV I. 

 

 
 

Figure 28: Navigation function for APV I operations with degraded mode 
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In a degraded mode, the detection function operates as a restoring function, as it is the 

case for NPA. Indeed, the receiver looks for all available means that could be used after 

recovery. 

 

In Figure 29, the detection function is presented in case of degraded mode, during APV I. 
 

                 

Figure 29: Detection function for APV I operations with degraded mode 
 

The degraded mode of operation implies an alert to the pilot issued by the detection 

function. However, one must ask whether if it is possible to maintain sufficient levels of 

performance, compliant with ICAO requirements (Table 1) during a targeted phase of flight. 

If it is not the case, GNSS cannot be used and the pilot must use other means to achieve the 

current operation. To consider the above, the navigator reconfiguration in case of degraded 

mode is discussed in the next section. 
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When the level of performance required is not met during a phase of flight, the receiver 
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manage the remaining signals in order to perform the phase of flight. That is why, the main 

goal of this section is to discuss how to manage the remaining available components during 

a degraded mode to try to perform the phase of flight.  

 

For instance, it is of interest for civil aviation community to try to maintain the 

maximum level of performance that can be reached with the remaining available GNSS 

components, as long as possible after the receiver switched to a degraded mode. The 

receiver is thus reconfigured. 

 

The reconfiguration does not refer to switching between the different GNSS 
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and the means to maintain the best level of performance with the available components and 
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Chapter 6, a particular algorithm is used to bridge the gap in ionospheric code delay 

estimations between dual and single frequency modes. 

4.4. Conclusion 

Navigation and detection functions were described as a function of the operated phase 

of flight and the operating mode concerned. This is done according to the combinations 

identified by WG 62 (Table 3). The reconfiguration of the navigator in case of degraded 

mode was also discussed.  

 

In the following chapters, particular switch cases are studied. The interference detection 

is detailed. After a loss of frequency due to interference, ionospheric code delay estimation 

with one frequency is analyzed. The author’s choice to investigate these specific cases is 

justified in the next chapters and is function of the EUROCAE WG 62 needs. Accuracy, 

integrity, continuity and availability of several proposed detection and repair algorithms are 

discussed in details in Chapters 5 and 6.   
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Résumé 

Le chapitre 5 concerne la  détection d’interférence durant une phase de vol APV I. En 

effet, ce chapitre présente des techniques de détection d’interférence, en particulier des 

CW, sur les sorties de corrélateur. Nous utilisons pour la détection, de multiples sorties de 

corrélateurs. Nous détectons les interférences de puissance maximale autorisée par les 

récepteurs avioniques, les masques d’interférences étant spécifiés dans les MOPS EUROCAE. 

Un environnement synthétique d’un appareil en phase d’approche est simulé. A partir des 

sorties de corrélateurs, nous définissons des critères instantanés ou séquentiels permettant 

de détecter une anomalie sur les sorties de corrélateurs. En effet, comme nous le 

démontrons dans ce chapitre, une CW impactant le spectre des signaux GNSS (en particulier 

ici, L1 C/A et E1 OS), génère une sinusoïde sur les sorties de corrélateurs, laquelle est 

détectable et caractérisable par plusieurs algorithmes. Le premier critère que nous 

proposons est basé sur le calcul de la FFT des sorties de corrélateurs, la second critère est 

basé sur une estimation des paramètres d’un modèle autorégressif multi-canal, pour 

détecter la présence de CW de manière redondante sur toutes les sorties de corrélateur et 

en temporel. Nous déterminons les performances de tels algorithmes en termes de 

continuité et intégrité. Un algorithme de correction des sorties de corrélateurs, basé sur une 

estimation de Prony des paramètres de la CW à détecter (amplitude, fréquence) est aussi 

proposé afin de réparer les sorties de corrélateur. En cas de détection, les sorties de 

corrélateurs sont réparées et l’erreur de poursuite résiduelle est analysée. En cas de non 

détection, l’erreur de poursuite émanant de la CW est alors analysée. 
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5. Performance of Multi correlators GNSS Interference Detection 
and Repair Algorithms 

5.1. Introduction 

Amongst the most feared physical phenomena that can lead to combined receivers 

performance loss, the interferences are an important issue that is in the scope of the WG 62 

studies. From a signal processing point of view, the interferences affect signals reception at 

front end level and can lead to a loss of lock in tracking loops. 

 

GNSS interference environment includes pure carriers, narrow bands and pulsed 

interferences signals. 

 

Previous studies focused on pulsed interferences detection, for instance in [Raimondi, 

2006] or [Bastide1, 2004]. Some of these pulsed interferences are in the same band than the 

L5 and E5a signals. As a consequence, these studies are important for the WG 62 purposes. 

Since pulsed interferences were already studied, we decided to focus our study on pure 

carriers interferences impacts on GNSS signals processing. 

 

Future combined GNSS receivers will have to be robust against interferences with a 

certain power. Consequently, it is important to develop robust receivers for civil aviation 

community.  

 

Future civil aviation combined receivers will be composed of filters ([EUROCAE, 2007]), 

for resistance to jammers (RF and IF filters). The resulting interference threshold masks 

provide the characteristics of the interferences mitigation receiver capability.  

 

For civil aviation applications, interferences with power level below the interference 

masks defined in [EUROCAE, 2007], are expected to generate acceptable tracking errors so 

that it does not affect significantly the resulting pseudoranges and thus the navigation 

solution provided by the navigation function. 

 

In this study, it is shown that, even below the Radio Frequency Interference (RFI) masks, 

with low Doppler rate between the jammer and the incoming signal, the tracking errors 

induced by a Carrier Wave (CW) interference can be larger than expected in [EUROCAE, 

2007]. This is all the more important for highly restrictive approach phases of flight in terms 

of accuracy. That is why this study focuses on detection of CW during the APV I phase of 

flight. 

 

In addition, repair algorithms are proposed to remove the effects of interferences (at 

the correlators outputs level) to perform the receiver tracking process correctly. 

5.2.  Review of existing interference detection techniques 
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5.2.1. Detection techniques at the receiver front end level 

5.2.1.1.  Chi-square test at the ADC Level 

Analog to Digital Convertor (ADC) with supplementary bins, may be used to better 

represent the thermal noise Gaussian distribution through increased resolution. The ADC 

bins distribution is Gaussian and maintained constant, in the absence of any perturbation, as 

a result of the Automatic Gain Control (AGC) gain adaptation. Thus it is possible to 

implement a test on ADC bins distribution changes to detect interference. A straightforward 

approach is to use the Chi-Square test to decide if two sets of data are consistent. This 

method has been introduced in [Bastide1, 2004]. 

5.2.1.2.  Temporal blanker and FDIS 

The Temporal Blanker was the first pulsed interference mitigation technique proposed 

to solve the issue of pulsed interference present on the E5a/L5 ARNS band. An analog 

implementation of the temporal blanker was proposed: a circuitry detecting the beginning 

and the end of each pulse is implemented before the ADC [Raimondi, 2008]. 

 

As it is described in [Raimondi, 2008], the Frequency Domain Interference Suppressor 

(FDIS) algorithm consists in translating the input signal into the frequency domain using the 

FFT algorithm. Then, a detection/excision module detects and eliminates interferences, and 

the signal is calculated back in time domain using the inverse FFT. This processing is 

performed using the digitalized signal, at the ADC output. 

5.2.2. Interference detection within the tracking loops 

5.2.2.1.  Computation of  the Signal to Noise Ratio (SNR) 

Signal quality may be assessed by the Signal to Noise Ratio (SNR) estimate at the 

correlator outputs. This quantity is degraded by imperfect code and carrier tracking and may 

be directly related to the Bit Error Rate (BER). The receiver declares a signal is present or lost 

if its estimated SNR at the correlator outputs is respectively above or below a predefined 

threshold. Such a test on the estimated SNR may be combined with a detection algorithm so 

as to ensure an in-band interferer is really present. Such a detection algorithm is proposed in 

[Bastide1, 2004].  

5.2.2.2.  Detection at the correlators outputs 
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As it is mentioned in [Bastide2, 2001], CW interferences affect the code and carrier 

tracking correlator outputs
4
, studying the correlator distortions seems to be a good way to 

determine the presence of interferences and even to model it and remove its effects on 

tracking. 

5.3. GNSS signals studied 

The priority here is to be able to detect CW interfering with L1 C/A and E1 signals as it is 

mentioned in introduction. The CW interferences have different impacts on these two signals 

since they have different structures as it is mentioned in Chapter 2. 

A Binary Phase Shift Keying modulation is used for the L1 C/A signal. This base band 

signal can be defined as the product between a PRN code sequence represented by an NRZ 

wave form and a NRZ data sequence (navigation message). This base band is also used for 

other GNSS signals and can be reduced to a code sequence in case of pilot channel.  

A Binary Offset Carrier modulation is used for the Galileo signals since it allows moving 

signals energy away from the centre band and thus allows the use of a same frequency band 

for GPS and Galileo signals, like it is the case for the L1 and E1 signals. In addition, it offers a 

better resistance to noise and multipath because of its light frequency content, and a better 

robustness against interferences. For instance, the case of the already crowded L1 band is 

represented in the following figure.  

 

Figure 30: E1 PSD in an already crowded L1 frequency band 
 

       A BOC modulation is obtained by multiplying the NRZ spreading code by a subcarrier, 

which is a NRZ signal, equal to the sign of the sine or cosine waveform. BOC signals are 

commonly referred to BOC(p,q), where p is the subcarrier rate and q defines the spreading 

code rate as a multiplier of 1.023 MHz. The E1 OS signal has a data component (B) and a 

pilot component (C) as it is mentioned in chapter 2. It is modulated thanks to a CBOC [GSA, 

2008], which means that the data channel and the pilot channels are both composed of a  

BOC(1,1) component and a BOC(6,1) component. 

                                                           
4 The interference impact on tracking loops is studied in details in this chapter. It is shown that interferences 
distort the correlator outputs. 
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         The different modulation strategies between the L1 C/A and E1 OS signals have a direct 

impact on the signals spectrum and on the correlators outputs shape. Indeed, the 

waveforms are different for the two signals: the L1 C/A signal has rectangular waveforms 

which results in simple triangular correlation peaks, whereas, for the BOC signals, the code 

materialization is dependant upon the sub-carriers characteristics and the resulting 

correlation peaks are narrower and presents secondary peaks. This difference is presented in 

the following figures. As a consequence, the interference detection algorithms must take 

into account the shape of the correlation peaks and differ for the GPS L1 C/A and Galileo E1 

OS signals. 

 

The following figures present the resulting autocorrelation functions of the deterministic 

binary signal, without noise.  

 

 

Figure 31: BPSK waveform and corresponding autocorrelation function 

 

The figure below presents the autocorrelation of the deterministic signal, modulated by 

a sub-carrier. 

 

 

Figure 32: BOC (fs,fc) waveform and corresponding autocorrelation function 
 

Where: 

• Tc is the chip period in seconds with the corresponding fc frequency 

• fs is the subcarrier frequency  

• m(t) represents the binary signal materialization 

• Rect is the classical rectangular function 

• Tri is the classical triangular function 
 

In the example above, the modulation is a BOC(fs, fc) = BOC(1,1). 
 

        The Galileo E1 OS signal is not exactly a BOC signal but a CBOC one, which implies a 

slightly different shape of the correlator output. The L1 C/A BPSK, E1 OS CBOC and E1 BOC 
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correlator outputs are presented in the following figure. In the next sections, the assumption 

is that the E1 OS signal is BOC(1,1)-modulated only. As it is shown in the next figure, the 

correlator outputs differences between the BOC and CBOC are not significant enough for 

interference detection study.  

 

 

Figure 33: BPSK, BOC and CBOC correlation function 

5.3.1. Budget of signals power 

In Galileo MOPS ([EUROCAE, 2007]) and DO229 D ([RTCA, 2006]), the specifications for 

minimum and maximum received power at the antenna output are provided. In the Galileo 

signals case, only the pilot channel is taken into account. The system noise level is chosen 

equal to -201.5 or -202.5 dBW/Hz, depending upon the signal received and the correlators 

properties as described in [EUROCAE, 2007]. Noise resulting from IGNSS is when other 

satellites from the same constellation are taken into account. 
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 IGNSS 

ANTENNA 

LOSS OR GAIN 

(5° 

ELEVATION) 

IMPLEMENTATION 

LOSS 

RECEIVED 

POWER 

SYSTEM 

NOISE 
C/N0 

GPS L1 C/A  

minimum 

received 

power  

-201.4 

dBW/Hz 
Loss: 5.5 dB 2 dB - 158.5 dBW 

-201.5 to 

202.5 

dBW/Hz 

32.4 

to 

32.9 

dB 

Hz 

Galileo E1 

minimum 

received 

power 

-204.6 

dBW/Hz 
 Loss: 5.5 dB 2 dB - 158.5 dBW 

-201.5 

dBW/Hz 

34.8 

dB 

Hz 

GPS L1 C/A 

maximum 

received 

power 

Not 

considered 
Gain: - 5 dB 2 dB - 156 dBW 

- 202.5 

dBW/Hz 

49.5 

dB 

Hz 

Galileo E1 

maximum 

received 

power 

Not 

considered 
Gain: - 5 dB 2 dB - 152.5 dBW 

- 201.5 

dBW/Hz 

52 

dB 

Hz 

 

Table 4: Specified received power and carrier to noise ratios required at tracking level, 

[EUROCAE, 2007]. 
 

In the following table, we present the carrier to noise ratio values chosen for 

simulations, which are compliant with the bounds defined in [EUROCAE, 2007] and recalled 

in the previous table. 

  

 GPS L1 C/A GALILEO E1 

C/N0  39 dB Hz 35 dB Hz 

 

Table 5 : Carrier to noise ratios for GPS and Galileo signals used during simulations. 
 

5.4. Impact of CW interferences on signals processing 

5.4.1. Code spectrum lines correlated with interferences 

The spectral position of the interference in the code spectrum lines is analyzed for both 

GPS L1 C/A and Galileo E1 signals. In particular, the code spectrum lines with the highest 

amplitudes, have to be considered to protect the user against the most penalizing 

interference location within signals spectra. The highest amplitude code spectrum lines are 

called the “worst case” code spectrum lines in the following. Indeed, a CW interference at 

the same frequency than these code lines can generate a large loss of power. The correlators 

outputs can be modelled as a function of the useful signal plus the interference spectra as it 
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is described in the following. As a consequence, it is necessary to identify the worst case 

code spectrum lines. 

 

The number of spectral lines carrying the incoming signal power influences the weight of 

each line. Indeed, the more spectral lines are present, the more the total incoming signal 

power are divided out over these spectral lines. The spacing between two code spectrum 

lines is the code repetition frequency Rf . In the case of the GPS L1 C/A code for example, the 

number of code spectrum lines within the main lobe of the signal power spectrum density 

equals twice the code length. This means that a longer code has an increased number of 

lines which have a lower power. As a consequence, for the E1 OS signal, spectrum code lines 

are less powerful than the L1 C/A ones.  

 

The impact of a CW on the E1 and L1 C/A signals processing is dependent upon the 

useful signals spectra, but also the CW spectrum properties. First, in comparison with the L1 

C/A and E1 code spectrum lines spacing, a CW has a very narrow bandwidth and is only 

expected to strike a single code spectrum line. Secondly, since the impact of a CW on the 

receiver tracking loops is expected to increase with the impacted code spectrum line power, 

the Galileo E1 signal is expected to be more robust to CW interferences than the GPS L1 C/A 

signal. 

 

The following figures illustrate the GPS L1 C/A and Galileo E1 spectra shapes. 

 

 
Figure 34: GPS L1 C/A code spectrum 

 
Figure 35: Galileo E1OS code spectrum 

 

In the previous figures, Sm represents the signal modulation (one main centered lobe 

for the BPSK signal and two shifted main lobes for the BOC signal, due to the multiplication 

by subcarriers). The code materialization is Ss. Fc is the code frequency and Rf  is the 

separation between each spectral line of the incoming useful signal DSP:
CodeLength

fc
fR = . 

In the following, the worst case code spectrum lines are identified for both L1 C/A and 

E1 signals. 
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5.4.1.1.  Identified worst case code spectrum lines  

The worst line for GPS C/A comes from PRN 24 as it can be seen in Appendix C.2, Table 

18. Its frequency is 123 kHz and its magnitude is -21.26 dB (power of the line with regard to 

the total signal power). However, the frequency of this ray is almost two times lower than 

the PRN 6 227 kHz-line which has an amplitude of -21.29 dB. Therefore, the PRN 6 is chosen 

for simulations. For the E1 signal, the worst case code spectrum line is identified on PRN 38, 

located at 673.5 kHz with an amplitude of -28.81 dB (Galileo E1 OS ICD: [GSA, 2006]). 

 

5.4.1.2.  Position of the interference in the code spectrum 

 
An important parameter can influence the spectral position of the jammer: the Doppler 

shift between the interference and the received signal. In addition, the estimation of the 

probability of occurrence of a damaging CW is influenced by this Doppler effect. A damaging 

interference here implies a loss of tracking accuracy which entails an inadequate navigation 

solution for the targeted phase of flight. Indeed, the Doppler effect generate an additional 

error on the correlation between the incoming signal and the receiver local replica for 

tracking.  

5.4.2.   Model of the influence of interferences on the correlators outputs 

After being multiplied by DLL local code and PLL local carrier as described in Chapter 2, 

the signal is separated into two channels I and Q. The first one corresponds to the 

multiplication by the in-phase local estimated carrier and the second one the quadra-phase 

carrier.  

[Bastide2, 2001] and [Macabiau, 2002] provide a model of the impact of CW on the 

correlator outputs. A short mathematical description of this impact on GPS L1 C/A is 

provided in the following. We assume that the receiver will provide multiple correlators 

outputs (delayed or advanced with regard to the prompt correlator output). 

In presence of noise only, the multiple correlator outputs are modelled as:   

Þ IÀ =	A2 R �ε© − 	d� cos�εª� +	nxQÀ =	A2 R �ε© − 	d�sin	�εª� +	n¡ (75) 

 

Where:  

• à is the index of the replica 

• á is the materialized PRN code autocorrelation function,  

• Ais the magnitude of the received GNSS signal,  

• τε is the code tracking error, 
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• ³¯ is the carrier phase tracking error, 

• d is the delay between the n replica and the prompt, 

• In and Qn are additive correlator output noise. 

 

When a CW interferes with the locally generated signal, a sinusoid resulting from the 

correlation between the local code and the interference appears on the I and Q correlator 

channels. If that additional correlation product has a frequency greater than the PLL 

bandwidth PLL
LB , it is then filtered out. 

 

In the case where the GPS L1 C/A input signal is only affected by a CW interference and 

by noise, the sampled signal is expressed at the output of the RF front-end by [Bastide2, 

2001]:  

 V�k� = A	D�kT_ − 	τ�C�kT_ − 	τ� cos�2πfxkT_ − 	θ� +	AÙ cos32π	�fx + 	Δf�	kT_ −	θÙ4 + 	n�k� 
(76) 

 

Where: 

• A is the magnitude of the incoming signal  

• D and C are P/NRZ/L waveforms associated to navigation message and code (C/A for 

instance)  

• fI  is the final intermediate frequency   

• Ts is the sample period and Fs=1/Ts is the sampling frequency 

• θ  is the incoming signal carrier dephasing  

• τ  is the group propagation time of the signal  

• AJ is the amplitude of the CW jammer  

• ∆f is the frequency shift of the received jammer signal ,from ¬± after the HF  

• θJ  is the jammer shift  

• n is the additional noise  

 

Before integration, on the I and Q channels, V(k) is multiplied by a local replica of the in-

phase carrier on I and a quadra-phase carrier replica on Q. Then, these expressions are 

multiplied by the locally generated code as it is described in Chapter 2, equation (5):  
 �Vx�k� = V�k�cos32πfxkT_ − θ�4	C�kT_ − τ �V¡�k� = V�k�sin32πfxkT_ − θ�4	C�kT_ − τ � (77) 

 

  As described in [Bastide2, 2001], the outputs of the Integrate and Dump (I&D) filters are 

then:  

 

Ò I = âf D. R �ε©�cos�εª� +	 âãfä 	∑ cos32πΔfkT_ − θÙ +	θ�4	C�kT_ − τ � +	nx�äK&å���K&�äQ = âf D.R �ε©�sin�εª� −	 âãfä 	∑ sin32πΔfkT_ − θÙ +	θ�4	C�kT_ − τ � +	n¡�äK&å���K&�ä  (78) 

 

Where:  

• R is the autocorrelation function  

• ³¯ = 	Ú −	Ú� is the phase tracking error  
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• ³® = 	æ −	 æ̂ is the code tracking error  

• M is the number of summed samples by I&D  

• nI and nQ are the integration of the noise 

 

The second terms in the expressions of I and Q outputs after I&D are the 

intercorrelation between the jammer (J) and the incoming signal. These intercorrelation 

functions can be also expressed as: 

 

ÒRx�τ � = 	 âãfä 	∑ cos32πΔfkT_ − θÙ +	θ�4	C�kT_ − τ ��äK&å���K&�ä = âãf 	c�k�C �k − © '(�	R¡�τ � = 	 âãfä 	∑ sin32πΔfkT_ − θÙ +	θ�4	C�kT_ − τ � = 	âãf�äK&å���K&�ä s�k�	C �k − © '(�	(79) 

 

Where: c�k� = 		 &ä∑ cos32πΔfkT_ − θÙ +	θ�4åèℕ 	rect �å'(K'Î'ë �  s�k� = 	 &ä∑ sin32πΔfkT_ − θÙ +	θ�4åèℕ 	rect �å'(K'Î'ë �  
(80) 

 

Where: 

 

• C is the NRZ PRN code signal  

• °� is the centre of the summing window, T� = �i − 0.5�MT_  

• rect(x) is the rectangular window function  

• IT  is the integration period of the I&D filter, 
I

I T
f

1=   

• )(kc and )(ks  are windowed cosine and sine signals.  

 
 

In the GPS L1 C/A case, a CW interference would only cross one line because of its very 

low bandwidth (50 Hz) compared to the 1 kHz spacing between two lines. 

 

The expressions of the correlator outputs on the I and Q channels become:   
 I = âf D. R �ε©�cos�εª�  

+	âãf ívîvï _�~�ðåñîñï�ðåñîñï C0�k�í	_�~3ð�åòvîKvã�'ë4ð�åòvîKvã�'ë cos�2πk0fyτ  + 	φ� +	nx  (81) 

 Q = A2 D. R �ε©�sin�εª� 

+	âãf ívîvï _�~�ðåñîñï�ðåñîñï C0�k�í	_�~3ð�åòvîKvã�'ë4ð�åòvîKvã�'ë sin�2πk0fyτ  + 	φ� +	n¡  

(82) 

 
 

With: φ = 	2π�k0fy − fÙ� 'ëf −	3θÙ − θ4 + 	φ�k0�  (83) 
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Where: 

• A is the amplitude of the direct incoming signal, ôõ is the amplitude of the jammer 

• D  represents the incoming signal data value during the integration interval, 

• R  is the autocorrelation function of the spreading waveform, 

• τ̂  is the estimate of the incoming code delay, 

• Ú� is the estimate of the incoming phase, 

• τε  represents the code tracking error, 

• ³¯ represents the phase tracking error, 

• IT  is the integration time in seconds, 

• Rf  is the separation between each spectral line of the local useful signal DSP:

CodeLength

fc
fR = , where CodeLength is the PRN code length, 

• 0k  is chosen so that Rfk0  is the frequency of the useful signal spectral line closest to 

Jf , 

• In  and Qn  are the in-phase and quadra-phase correlator’s output Gaussian noise 

supposed uncorrelated and with a variance equal to 
IT

N

4
0 , and 

• 0C  is the discrete Fourier transform of the tracked PRN code.  

 

The same analysis can be made for the Galileo E1 signal. A sine wave appears on top of 

the correlation peak when a CW interference occurs. One can mention that the correlation 

peak has a different shape than in the case of GPS L1 C/A signal (two secondary peaks appear 

beside the main one which is narrower than for the GPS L1 case). 

 

As a conclusion, when a CW interferes with the incoming GNSS signal, the expressions of 

the I and Q channels correlator outputs are affected by additive sine waves. The 

demonstration provided here is valid for GPS L1 C/A signal but can be extended to other 

signals like Galileo E1 taking into account its characteristics developed in Chapter 2.  

 

In the following, we plot the correlator output affected or not by a CW. The x axis 

represents the correlators number (66 correlators are used), the y axis represents each 

correlator output value. The integration time is chosen equal to 20 ms. The CW frequency is 

227 kHz and the useful signal is the GPS L1 C/A one, generated with a power of -164 dBW.  
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Figure 36 : Simulated correlators outputs on the I GPS L1 C/A channel affected by CW 

interference. 

 

In the previous figure, it can be seen that the correlator outputs are affected by an 

additive sinusoidal term, which amplitude depends upon the amplitude of the code line hit 

by the CW and the power level of the CW interference. Obviously, this is also true for Galileo 

E1 signal processing. 

 

 The correlator output is thus of interest for interference detection. The carrier to noise 

ratio can be computed at the correlator outputs to detect the presence of an anomaly in the 

correlation amplitude with regard to background noise. Nevertheless, this estimation is not 

sufficient to identify the origin of the SNR. Indeed, CW interferences are not the sole reason 

of such an effect. For instance, multipath can also produce the same effect, as it is 

demonstrated in [Bastide2, 2001]. However, carrier to noise ratio is an indication of signals 

tracking degradation and of the impact of potential interferences on the I channel prompt 

correlator output, we propose the following estimation model:  � ×tò�¾|{{_|��}�� = &f	'÷ ��\~�x�²
_�À�x�   (84) 

Where : 

• TS is the sampling period in seconds 

• The mean and the standard deviation are estimated over 500 seconds of signal, 50 

Hz-sampled 
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Figure 37 : C/N0 estimated at the correlator output without CW, and with generated 

interfering CW, 200 seconds after the beginning of the simulation. 

 

 On the previous figure, carrier to noise ratio is estimated using prompt correlator output 

on the I channel. A -155 dBW interference is generated on L1 C/A 200 seconds after the 

beginning of the tracking process and it can be noticed a loss of 15 dB on the estimated 

carrier to noise ratio. 

 Before the CW generation, the estimated carrier to noise ratio is around 39 dBHz as 

mentioned in table 6. 

5.4.3.  Observed influence on tracking loops  

In order to observe the influence of CW interference on the tracking loops, a tracking 

simulator was used. Its starting point is the generated correlator outputs and the tracking 

settings used are summarized in the following table. The description of the discriminators 

and loop filters are presented in Chapter 2 as well as the L1 and E1 signals characteristics. 

 

 CHARACTERISTICS 

DLL 
1

st
 order, Bandwidth: 1 Hz, dot product discriminator 

aided by the PLL 

PLL 3
rd

 order, Bandwidth: 10 Hz, arctan discriminator 

Integration time 
GPS L1 C/A, data: 20 ms  

Galileo E1, data: 20 ms, pilot: 4 ms.  

Table 6 : Simulator tracking characteristics. 

  

Next figures show the impact of a -155 dBW CW interference on the tracking loops 

accuracy. The worst case GPS L1 C/A PRN 6 code line is impacted. The interference is 

generated 200 seconds after the beginning of the tracking process. A 100s Hatch filter, 

described in Chapter 2, is used to smooth raw code measurements. 

 

 

Figure 38 : Phase tracking error with a 10 Hz PLL bandwidth and a dot product discriminator 

on the left side and raw code tracking error using a 1Hz DLL bandwidth, with CW after 200 

seconds simulation, the Doppler shift rate equals 2 Hz/s. 
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It is clear that the interference occurrence produces large tracking errors on the PLL and 

DLL outputs. The mean code tracking error value is shifted to 20 meters. 

Due to the Doppler shift rate, after the CW occurrence (identified at time = 200 

seconds), the code and carrier tracking errors decrease. But it can be noticed that the code 

and phase tracking errors are large enough during a long time (hundred of seconds whereas 

the total aircraft approach time is 150 seconds) to induce large pseudoranges errors. The 

resulting pseudoranges errors are discussed later in this chapter. 

 The typical value for a phase loop bandwidth used for GPS L1 C/A code is 10 Hz. This 

value corresponds to the minimum probability of cycle slipping (see [Holmes, 1990] or 

Chapter 6 of this thesis). 

The impact of a CW on code tracking is restricted since a DLL bandwidth is more limited 

than a PLL one, the chosen value here is 1 Hz because the DLL is aided by the FLL. The impact 

of a CW on the tracking process is dependent upon the magnitude of the interference 

compared to the nearest code spectrum line, and its frequency. In addition, the 

characteristics of the local signal, as well as the amplitude of the Doppler shift between the 

interference and the amplitude of the CW-hit code spectrum line, the Doppler offset rate, 

the chip spacing and the DLL discriminator, determine the influence of the interference on 

code tracking.    

The impact of a CW on code tracking is dependent upon the magnitude of the 

interference. To observe this effect, the raw and smoothed maximum code tracking errors 

are recorded while generating correlators outputs affected by several CW interferences with 

varying magnitudes, from – 172 dBW to – 155 dBW (rejection mask defined in [EUROCAE, 

2007]). These maximum amplitudes of  the correlators outputs affected by CW signals are 

generated over 300 seconds of simulation of GPS L1 C/A signal tracking and with a 50 Hz 

sampling. The results are presented in the following figure. 

Note that during simulations, the tracking process is carried out over 500 seconds, the 

CW interference is generated 200 seconds after the beginning of this process. Indeed, since 

the smoothing filter time constant is 100 seconds, this setting allows the Hatch filter to 

smooth the first code measurements without perturbation. The tracking errors are 

consequently affected by the interference during 300 seconds. The approach duration is 150 

seconds (<300 seconds). The tracking process time is longer than the APV I duration, which 

lasts less than 150 seconds. For each CW amplitude, the maximum raw code tracking error 

standard deviation is plotted, over 300 seconds.  
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Figure 39 : Impact of the interference power on the code tracking loop accuracy, with the 

same tracking settings, fighting GPS L1 C/A PRN 6 worst code spectrum line. 

 

As a conclusion, a CW interference affects the two tracking loops and consequently 

affects the accuracy of the resulting pseudoranges, and thus, the navigation solution. It is 

consequently important to be able to detect these perturbations in compliance with APV I 

required accuracy. Since the two loops are affected, the code smoothing process is affected 

too and the higher the interference power, the higher the resulting pseudorange error as 

plotted in the previous figure. In the case the interference is not detected, it may generate a 

penalizing error during the APV I phase of flight without any flag. Indeed, the maximum raw 

code tracking error is over 70 meters. 

 

5.5. Elaboration of the interferences detection techniques 

5.5.1. Multi correlators detection algorithms 

GNSS receivers have several reception channels. Each of them specializes in tracking 

specific satellites. Each reception channel has at least two or three pairs of correlators (E, L, 

P) for both code and carrier phase tracking.  

A multi correlator receiver can compute much more correlator outputs in a same 

reception channel. If several correlators are available within a same channel, it is possible to 

observe the code autocorrelation value in several points spaced by a value denoted d. 

In the following, multiple correlators outputs are monitored to detect the presence of 

jammers. For instance, while observing the I channel GPS L1 C/A correlator outputs, 

distortions are used to detect and characterize the potential jamming signal. This algorithm 

is expected to improve future GNSS receivers robustness against interferences.  
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Figure 40 : Normalized GPS L1 C/A correlators outputs. 

5.5.2. Proposed detection techniques at the correlators outputs  

Two techniques are considered and presented below. They allow monitoring multiple 

correlator outputs. Their performances are discussed with regards to civil aviation 

requirements. In addition, their complexity is discussed and depends upon the number of 

correlators used for detection. 

 

The first proposed algorithm is based upon the calculation of the FFT of the correlator 

outputs, to detect the presence of a sine wave besides the correlation peak. The second 

algorithm is a multichannel AR algorithm used to model simultaneously all the correlators 

outputs. 

 

The objective is to find the most appropriate and promising technique making a trade 

off between complexity and reached performance. Indeed, detection algorithms with low 

complexity have to be implemented in order to have the simplest receiver architecture as 

possible. 

5.5.2.1. Computation of the FFT of the correlators outputs 

Multiple correlator outputs are monitored and the presence of interferences in the 

incoming signal is detected thanks to the computation of the Fourier transform of the 

correlators outputs [Bastide2, 2001]. If undesired carrier sine waves are present, peaks 

appear in the FFT of the correlator outputs. 

 

The maximum Fourier transform of the correlator outputs is compared to threshold. If a 

significant sine wave is present in the signal, the maximum Fourier transform of the signal is 

proportional to the magnitude of the wave, and, in the case the threshold is well chosen, this 

interference may be detected. 

 

A detection is declared when the following condition is reached [Bastide2, 2001]: 
 

Correlators 
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 ømax	_fourierinst−mean�maxfourier�østd�max fourier� ≥ threshold  

 
(85) 

Where : 

• 
instfouriermax_   is the maximum of the Fourier transform at a considered instant 

• )(max_ fouriermean  is the mean of maxima of the Fourier transforms during the 

training stage  

• )(max_ fourierstd  is the standard deviation of the maxima of the Fourier transforms 

during the training stage  

• threshold is the chosen threshold for detection  

 

The algorithm can be described in a few points:  

 

1. The mean and the standard deviation of the maximum of the FFT of the correlator outputs 

are calculated during a training stage, when no interference occurs. 

 

2. Then, the algorithm is launched to detect interferences. At each instant, the maximum of 

the FFT of the correlator outputs is calculated.   

 

3. Finally, the ratio defined the equation (85) is compared to a detection threshold. 

 

 This algorithm was already proposed by [Bastide2, 2001] for interference detection. 

Nevertheless, its performances were never evaluated for civil aviation compliance. 

Therefore, the performances assessment of this algorithm is an original contribution of this 

thesis. 

5.5.2.2. Multichannel Autoregressive model of correlator outputs 

This proposed algorithm is based on the detection of non regular time variation of the 

residuals of an AR model of the set of the correlation outputs. The residuals of the model are 

then monitored.  The correlator outputs are supposed to be affected by white Gaussian 

noise when no interference occurs. Interferences do not cause a constant additive jump on 

the correlator outputs but they create an additional time-varying error. If a CW interferes 

with the incoming signal, then the variance of the correlator outputs increases exactly when 

the interference occurs and varies abnormally during the period the signal is jammed, with a 

fading due to the Doppler offset variation existing between GNSS signal carrier and jammer. 

Time variations of each correlator output are modeled thanks to an AR filter and the 

residuals of the model are monitored. All available correlators are monitored simultaneously 

to take advantage of the link between their variations in presence of interference. A 

demonstration of the calculation of the AR parameters (a[k]) is provided in Appendix A.2. 

The residuals can be modelled as:  
 eItJ � 	xItJ −	xItJ1 � xItJ +	∑ aIkJxIt − kJ}å�&   (86) 

 
Where:  
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• t is the time index  

• e is the model error 

• x  is the observed sequence of correlator outputs 

• ][̂ tx  is the linear prediction estimate of the sample ][ tx  

• A is the AR coefficient matrix 

• p is the AR model order 

 

The major interest of this method is that x is a vector containing the sequence of all the 

correlators outputs. The multichannel AR model consequently takes into account the 

existing correlation between the correlators. Indeed, when no interference occurs, the 

correlators are affected by Gaussian white noise. When an interference occurs, the 

correlators are affected by sine waves as it is described in the next figure. 

 

In this study, a multichannel AR model is used to model the correlator outputs 

behaviour, the model parameters are estimated thanks to the technique presented in 

Appendix A.2. Indeed, in presence of jammer, all correlators are affected by sine waves as it 

is shown in the next figure. 

 
Figure 41 : Time variations of correlators for GPS L1 C/A signal affected by a  – 155 dBW CW 

interference on the PRN 6 worst case line (227 kHz), without Doppler shift. The variations at 

the top corresponding to a correlator near the peak (0.32 chip away), the bottom correlator 

variations corresponds to a correlator located 1.6 chip away from the peak. 

 

The main guideline of this detection algorithm is the following: 

 

1. A 3
rd

 order multichannel Auto Regressive model is used to monitor simultaneously all 

available correlator outputs (not equal to zero) at t, the following formula represents the ith 

element of the estimation vector:  
 xýItJþ �	�∑ a�kå�& IkJx�It � kJ (ith correlator)      (87) 

 

2. The multichannel AR model error is determined during a training stage (the index 0 

represents the error obtained during the training stage (that is to say without interference), 

for each component i:  
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e0� ItJ = 	 x0� ItJ −	x0ý ItJþ =	x0� ItJ + ∑ 	a0�kå�& IkJx0� It − kJ  (88) 

 

3. And then during test simulations, on studied samples and for each component, the error 

is:  
 e� ItJ = 	 x� ItJ −	xý ItJþ =	x� ItJ + ∑ 	a�kå�& IkJx� It − kJ  (89) 

 

4. The following detection criterion is finally calculated and compared to a threshold (E and 

E0 are the norm of the error vectors including all the available correlator outputs errors):  
 log �I�J

�òI�J  (90) 

 
 This algorithm is derived from the theory developed in [Marple, 1987]. To our 

knowledge, it has never been used for such an application. As a consequence, the 

application of this algorithm as well as its performances assessment are original 

contributions to the EUROCAE WG 62 works. 

5.6. Detection algorithms performances evaluation process 

In this section, the performance evaluation methodology used for the previously 

proposed detection algorithms, is proposed in a few steps: 

 

1. A detection criterion is defined from correlators output characteristics.  

2. The detection algorithm is launched using the detection criterion over non-jammed 

simulated measurements. Detection criterion parameters are set during a training 

stage without interference under APV phase of flight conditions (dynamics, 

multipath).  

3. Varying the criterion threshold, the APV continuity-compliant threshold is chosen when 

the false alarm rate is lower or equal to PFA (1.6 10
-5

 from ICAO continuity 

requirements for APV I [ICAO, 2002]).  

4. Then the PMD value is determined, generating interferences and using the defined 

criterion and threshold.  

5. The impact of non-detected interferences on tracking error at any time is then 

discussed.  

 

The obtained PMD value must be multiplied by the interference probability of 

occurrence to compare the performance obtained to the integrity risk allowed for APV. 

Nevertheless, this probability of occurrence is unknown, as a consequence, no assessment 

about the integrity risk induced by the interference can be made. 

5.7. Simulations assumptions 

5.7.1. Simulation of actual aircraft approach conditions  
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The interference detection algorithms are tested taking into account the aircraft 

environment and dynamics during APV I. Indeed, aircraft dynamics and multipath were 

generated at the correlators outputs level, in compliance with the APV I phase of flight. This 

is explained and detailed in the next paragraphs.  

5.7.1.1.  Aircraft dynamics  

 Aircraft dynamics is modelled as described in Appendix B.1, taking into account the 

maximum values of ground speed, acceleration and jerk of the aircraft for both normal and 

abnormal manoeuvres recalled in [EUROCAE, 2007] or [RTCA, 2006]. These values are 

recalled in Chapter 2, paragraph 2.4.7. 

 

5.7.1.2.   Doppler shift rate between aircraft, satellites in view and 
interference source  

 
The Doppler shift between the interference and the code spectrum lines is assumed to 

have a variation with time due to satellites and aircraft dynamics. The following figure shows 

an assumed satellite-aircraft-jammer configuration during the aircraft approach, near the 

airport, because the focus is given on the performances assessment of detection algorithms 

during APV I. The jammer is assumed located on the ground. 

              

 
Figure 42: Satellite-aircraft-jammer configuration 

 

The line of sight vector between each satellite and the aircraft antenna can be 

calculated thanks to the following ratio:  V��6~	|v	_�6�� =	− �|_(�����Î��K	�|_�Î�ï��ñ�‖�|_(�����Î��K	�|_�Î�ï��ñ�‖  (91) 

 

Where: 

• Pos_\������� is the satellite position in space in the local reference frame (3 by 1 

vector) 

• Pos\�{¾{\v� is the aircraft location vector in the same reference frame 

d1 

d2 

Ground 

Aircraft 

Airport 

Jammer 
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Therefore the radial velocity is provided by: 
     v{\À�\���\�������→â�{¾{\v�� =	 �Velocity_\������� − Velocity\�{¾{\v��. V��6~	|v	_�6��  (92) 

 

 

Where:  

• Velocity_\������� is the considered satellite velocity vector  

• Velocity\�{¾{\v� is the aircraft ground velocity vector 

 

If ‖Pos_\������� −	Pos\�{¾{\v�‖ denotes the distance between the receiver (aircraft GNSS 

antenna) and a satellite in meters, depending upon the satellite and receiver dynamics, with 

a linear variation, the distance between the satellite and the aircraft is then: 
 d& = ‖Pos_\������� −	Pos\�{¾{\v�‖ + v{\À�\���\�������→â�{¾{\v��. ∆t (93) 

 

Where: V{\À�\���\�������→â�{¾{\v�� is the radial initial speed between satellite and receiver.  

Identically, 
 df = 
Posc\���{ −	Pos\�{¾{\v�
 + v{\À�\��Ù\���{→â�{¾{\v��. ∆t (94) 

 

Where: 
Posc\���{ −	Pos\�{¾{\v�
	is the distance between the jammer and the receiver 

onboard the aircraft, and V{\À�\��Ù\���{→â�{¾{\v�� the corresponding radial velocity, 

depending upon the receiver dynamics.  

 

In the following, the index i = 1 if we consider the Doppler effect between the satellite 

and the aircraft and i=2 if we consider the Doppler effect between the jammer and the 

aircraft.   

 

Considering the GPS L1 C/A or the Galileo E1 signal, the signal phase can be described 

as: 
 φ�t� = 	2πft − 	θ�t� = 	2πft − 2πfτ� +	θ0 (95) 

 
Where:  

 

• f	is the transmitted signal carrier central frequency (L1 C/A or E1) 

• Ú��� is the phase offset due to the Doppler effect 

• 0θ is the phase initial offset 

• τ� =	 ÀÎ¾  is the time delay 

 

So the corresponding instantaneous frequency is provided by a first order derivative of 

the cosine phase: 
 f� = &fð À�À� = f − f	 &¾ À�ÀÎ�À�   (96) 
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Where:  

 

• f	is the signal carrier central frequency (L1 C/A or E1) 

• c  is the light speed equal to 299 792 458  m/s  

 

The Doppler shift frequency between the satellite and the aircraft or between the 

jammer and the aircraft is thus defined as:  

FÀ� =	−	 v¾ À�ÀÎ�À�   (97) 

 

 

Consequently: 

  f� = f +	FÀ� (98) 

 

 

Moreover, the carrier wavelength is related to the carrier frequency of the considered  

GNSS signal by:  
 � =	 Ë�  (99) 

 

 

So the corresponding Doppler frequency is:  
 FÀ� =	−	&Á À�ÀÎ�À�   (100) 

 

Finally, using (30) and (31):  
 

ÒFÀ& =	−f	 À©<À� = − ���ÅÎ���÷�����Î��→�Î�ï��ñ��Á 	
FÀf =	−f	 À©ÈÀ� = − ���ÅÎ���ã�))��→�Î�ï��ñ��Á 	   (101) 

 

 

The Doppler shift obtained with the transmitted frequency �& (can be replaced by E1), 

from one given satellite to the aircraft receiver is thus:  
 Dopp§<�÷�����Î��→�Îï��ñ�� =	−V{\À�\���\�������→â�¾{\v��. §<¾   (102) 

 
 

The same result is obtained for the Doppler shift between the jammer and the aircraft:  
 Dopp§<�ã�))��→�Î�ï��ñ�� =	−V{\À�\��Ù\���{→â�{¾{\v��. §<¾   (103) 

 
 

The following table shows the obtained Doppler shift rate through simulations, taking 

into account the GPS L1 C/A signal. The presented values are the maximum and minimum 

Doppler shift rate obtained, taking into account the whole GPS L1 C/A signal coming from 

the whole constellation (with Yuma ephemeris), during one day. The aircraft normal 
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maneuvers maximum acceleration and jerk defined in [RTCA, 2006] and recalled in Chapter 2 

(Table 2) were simulated to calculate the radial speed between the aircraft and a jammer 

located 8 kilometers away around the aircraft location.  

 

 MINIMUM MAXIMUM 

Doppler 

shift rate  
2.3 Hz/s 4.1 Hz/s 

 

Table 7 : Doppler shift rate values obtained through simulations. 

 

According to [Rollet, 2008], the resulting Doppler shift rate from satellites movement is 

between 2.9 and 3.1 Hz per second. The distance between the aircraft and the jammer is 

supposed negligible in comparison with the distance between each satellite and the aircraft. 

The radial speed between the aircraft and the jammer is supposed negligible compared to 

the radial speed between the aircraft and each satellite. As a consequence, the Doppler shift 

rate between the useful signal and the jammer can be approximated as the Doppler shift 

rate from satellites movement. 

During our simulations, the Doppler shift rate was set to 2 Hz per second. This means 

that when the interference affects one given code spectrum line, it stays a long time near 

this code spectrum line, which is damaging for code tracking and pseudoranges estimation. 

More precisely, during a whole aircraft approach, that is to say during 150 seconds ([RTCA, 

2006]), the interference can move 300 Hz around a code spectrum line impacted. We 

considered a worst case where the aircraft does not accelerate, since when the aircraft 

accelerates, the jammer sweep the band.  

This case is not representative of the actual aircraft dynamics because the jerk related to 

aircraft manoeuvers has not been taken into account, but it allows providing worst case 

simulation results. The actual aircraft dynamics would create a variable jerk in reality that 

could more probably improve the situation by increasing the satellite jammer aircraft shift 

rate, thus the situation described here is a worst case. 

5.7.1.3.  Multipath 

As it is described in Chapter 2, multipath have an influence on the correlators outputs 

and will unshape the outskirts of the correlation peak. 

Since the detection algorithms proposed are based upon the monitoring of the 

correlators outputs, it is necessary to take into account the impact of multipath on it. Indeed, 

due to multipath, a deformation of the correlation peak may be flagged instead of a CW 

while using one of the proposed interference detection criteria described in this chapter. 

 

The model used for multipath is the DLR aeronautical channel model proposed by 

[Lehner, 2007]. A 10 degree satellite elevation is chosen to perform simulations and the 

model is launched during the 500 seconds of tracking. This elevation corresponds to the 

elevation mask angle for future Galileo satellites provided by Galileo [EUROCAE, 2007]. It is 

higher than the GPS elevation mask angle which is 5° as mentioned in [RTCA, 2006]. See 

Appendix B.2 for a further description of the multipath model used for simulations. 
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The model used here simulates multipath on the Graz Airport (Austria) where empirical 

tests were conducted to set the model. It is obvious that multipath impact on the correlator 

outputs is dependent upon the targeted airport geometry but this is the only setting 

available for simulations. 

5.7.2. Generated signals power 

In the following table, we present the carrier to noise ratio values chosen for 

simulations, which are compliant with the bounds defined in [EUROCAE, 2007]: 

 

 GPS L1 C/A GALILEO E1 

C/N0  39 dB Hz 35 dB Hz 

 

Table 8 : Carrier to noise ratios for GPS and Galileo signals used during simulations. 

5.7.3. Receiver settings 

5.7.3.1. Tracking loops 

The following table recalls the simulation assumptions concerning the tracking loops 

settings: 

 

 

 CHARACTERISTICS 

DLL 
1

st
 order, Bandwidth: 1 Hz, dot product discriminator 

aided by the PLL 

PLL 3
rd

 order, Bandwidth: 10 Hz, arctan discriminator 

Integration time 
GPS L1 C/A, data: 20 ms  

Galileo E1, data: 20 ms, pilot: 4 ms.  

Table 9 : Simulator tracking characteristics. 
 

5.7.3.2. Multiple correlators settings 

Multiple correlator outputs are generated for both GPS L1 C/A and Galileo E1 signals on 

the I and Q channels. The number of correlators, their spacing and span is dependent upon 

the signal processed since BPSK and BOC signals do not present the same correlation shape. 

 

The correlators spacing d and the correlators window size around the main peak for 

both GPS and Galileo signals have to be set. For GPS L1 C/A, with a classical BPSK (1) 

modulation, the maximum CW frequency is 1.023 MHz, which corresponds to the main lobe 
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of the signal spectrum, where the highest amplitude spectrum lines are located (see 

Appendix C.2). The problem of detection out of this lobe is thus not addressed here. The 

larger the delay range used for correlators, the better the detection of a CW. Indeed, the 

variations of a sinusoid are visible on a larger delay window in this case. So low frequency 

CWs can be detected and estimated more easily than if the delay range is restricted. The 

maximum CW frequency is set to fCW = 1.023 MHz to take into account the worst case C/A 

code spectrum lines within the main signal spectrum lobe. In simulations, the total number 

of correlators used is 2*34 =68. The chip-spacing is 0.32. 

 

The impact of CW on the correlator outputs for GPS L1 C/A and Galileo E1 signals has 

the same shape, that is to say a sine wave appears in the autocorrelation.  

 

Galileo E1 code spectrum is different than GPS L1 C/A spectrum (two main lobes 

between -2 MHz and 2 MHz appear in the code spectrum whose lines are 250 Hz-spaced 

[GSA, 2008], if the primary code only is considered and not the secondary one). The worst 

PRN code lines are located on the main lobes of the spectrum, the CW frequency is fCW = 2 

MHz. The total number of correlators is 2*36 =72. The chip-spacing is 0.125. 
 

5.8. Simulation results 

5.8.1. Obtained PMD and undetected errors induced in pseudoranges 
measurements by using the first FFT-based algorithm 

      The PMD is calculated as the following ratio: the number of tests where the detection 

criterion is under the pre-defined threshold over the total number of tests conducted with 

the interference injected.  

 

The obtained PMD value for the worst case CW power (one jammer at -155 dBW) impacting 

the GPS L1 C/A signal on the worst case PRN 6 code spectrum line (227 kHz), is 6.7 10
-5

 using 

the snapshot FFT algorithm. On the next figures are represented the maximum raw and 
smoothed code tracking error values generated by undetected CW. The smoothed code 

error never exceeds 15 meters in the GPS L1 C/A case. 
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Figure 43 : Amplitude of maximum tracking error as a function of interference power 

resulting from non-detected CW on the GPS  

L1 C/A code, PRN 6 (227 kHz), the useful signal power is -158.5 dBW. 
 

 
 

Figure 44 : Amplitude of maximum tracking errors as a function of interference power 

resulting from non-detected CW on the GPS L1 C/A code, PRN 2, the useful signal power is -

158.5 dBW. 
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Figure 45 : Amplitude of maximum tracking errors as a function of interference power 

resulting from non-detected CW on the GPS L1 C/A code, PRN 10, the power of the useful 

signal is -158.5 dBW. 

 

The obtained PMD value for the worst case CW impacting the Galileo E1 signal is 10
-5

. 

Hereafter is represented the maximum raw and smoothed code tracking errors obtained for 

undetected CW. The smoothed error never exceeds 1.5 meters as it can be observed in the 

following figure. 

                                     

 
 

Figure 46 : Amplitude of maximum tracking errors as a function of interference power 

resulting from non-detected CW on the Galileo E1 code, PRN 38, the power of the useful 

signal is -160 dBW. 

 

The obtained missed detection probability is weighted by the probability of having each 

error amplitude amongst all experienced amplitudes and represented in the next Figure 47. 

The results are represented over 3 10
6
 tests of the resulting raw tracking errors distribution. 

These results have been obtained for GPS L1 C/A PRN 6 highest code spectrum line impacted 

by a -155 dBW CW interference.  
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As the algorithm missed detection probability is low, the number of examples of 

tracking errors obtained during missed detection is low in our simulation results (only 200 

values). As a consequence, the following results have to be taken with care. The maximum 

tracking errors are obtained amongst the available measurements.   

 
Figure 47 :  Obtained missed detection classified by resulting raw tracking errors for GPS L1 

C/A PRN 6 highest code spectrum line impacted by one -155 dBW CW interference. 
 

With a larger number of tests, it would be interesting in future works to plot the distribution 

of the tracking errors resulting from the non-detected CW. 

5.8.2. Obtained PMD by using the second AR-based algorithm 

The PMD obtained for the worst case CW amplitude using the multichannel AR model is 

comparable to the PMD obtained thanks to the FFT algorithm. Indeed, when the GPS L1 C/A 

PRN 6 worst code spectrum line is impacted by a -155 dBW CW, the multichannel AR 

detection algorithm PMD is 10
-5

. 

5.9. Discussion about the obtained results  

A first remark is that if one wants to implement the FFT detection technique or the AR 

one within future receivers, the detection criteria parameters and thresholds under actual 

normal aircraft conditions of dynamics and multipath have to be previously saved. 

 

As shown in the figure 40, the impact of jammers on the correlator outputs differs with 

the amplitude of the interference. Indeed, the larger the amplitude of the interference, the 

larger the amplitude of the sine wave. The two techniques have different approaches, 

considering the instantaneous behaviour of the correlators’ outputs in the Fourier domain or 

considering the time evolution of these ones. 
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It seems that for Galileo signal case (PRN 38), the maximum smoothed error generated 

by an undetected interference is smaller than for GPS L1 C/A, this is due to the fact Galileo 

code spectrum lines have a  lower amplitude than GPS L1 C/A ones. Indeed, the maximum 

amplitude code spectrum lines identified for the GPS L1 C/A signal are between -25 dB and -

21 dB, whereas for the Galileo E1 OS signal, they are included between -32 dB and -28 dB. In 

particular, the worst case spectrum line of the L1 C/A signal is -21.29 dB whereas it is -28.81 

for the E1 signal (see the appendix C.2 for all amplitude values). 

 

It can be also clearly seen that the impact of CW on the raw pseudorange errors in terms 

of worst case code lines is larger than for other lines as PRN 10 worst case code line for 

instance. 

 

With a larger number of tests, it will be interesting for future works, to plot the 

distribution of the tracking errors resulting from the non-detected CW.  

5.10. Conclusion and future works on interference detection 

In our simulations, worst cases in terms of interference power: -155 dBW CW and code 

spectrum lines impacted were considered: -21.29 dB PRN 6 line for the C/A signal and -28.81 

dBW PRN 38 for the E1 OS signal.  

 

Each CW interference is generated using a Doppler variation rate (between code lines 

and interference) of 2Hz/s for each 300 seconds tracking trial. So, interference does not 

permanently strike exactly the worst spectrum lines. 

  

Two algorithms are proposed: a snapshot one (FFT) and an AR model-based one. Such 

detection algorithms are expected to alleviate and complete the detection made by RAIM-

type algorithms in the case where CW interferences hit PRN code spectrum lines. The 

obtained PMD are between 6 10
-5

 and 10
-5

 for the worst case -155 dBW CW. These results 

concern the worst case GPS L1 C/A PRN 6 and Galileo E1 PRN 38 code spectrum lines using 

each of the two proposed detection algorithms. 

 

The resulting maximum error on smoothed pseudoranges when such a CW is not 

detected, is 15 meters for GPS L1 C/A and 1 meter for Galileo E1. For the sake of comparison, 

in presence of a -155 dBW CW, without any detection algorithm, the maximum smoothed 

tracking error obtained during simulations is near 30 meters when tracking the L1 C/A signal. 

The presented techniques are consequently useful when an interference occurs during 

approach phases of flight like APV because, it will allow detecting a degradation due to a CW 

with a low PMD (integrity) and in case of failure in the detection, the resulting error is not 

expected to exceed 1 meter while using Galileo E1 for positioning as shown by simulations. 

 

In this study, the delay for interference detection was not evaluated.  

 

The minimum number of correlators required to obtain the same performances was not 

evaluated and should be evaluated to reduce further the algorithms complexity. 
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5.10.1.   Discussion about the proposed algorithms and civil aviation requirements  

Civil aviation requirements for APV I phase of flight in terms of accuracy and integrity 

are recalled in Chapter 2, Table 1. TTA which stands for Time To Alert, is the maximum 

allowable time interval between system performance ceasing to meet operational 

performance limits and the appropriate integrity monitoring subsystem providing an alert. It 

is important to obtain a low time of detection with regards to TTA to maintain integrity. The 

two proposed detection algorithms latency durations are much lower than the APV I time to 

alert which is 10 seconds, as the FFT algorithm is snapshot and the AR algorithm only 

requires 3 time samples, 20 ms-spaced and a maximum time of latency lower than one 

second. 

 

The PMD value obtained during our simulations must be multiplied by the interference 

probability of occurrence to evaluate the corresponding integrity risk requirement. 

Unfortunately, the probability of occurrence of interferences cannot be estimated to our 

knowledge. It is consequently not possible to evaluate the integrity risk. The obtained missed 

detection probabilities must be weighted by the probability for a CW to hit a given worst 

case code line, so this decreases the risk induced by CW in terms of integrity. 

 

The proposed algorithms, elaborated here for interference detection, are expected to 

alleviate the burden of RAIM-type algorithms. As a consequence, future works can consist in 

taking into account both detection capability within tracking loops using the proposed 

techniques and the RAIM capability to detect failures due to interferences. 

 

For future civil aviation combined receivers, the FFT-based detection technique seems 

to be the best algorithm to choose. Indeed, it provides slightly worse results than the AR 

technique in terms of missed detection probability, but it is the simplest solution. Therefore, 

we recommend the FFT algorithm as detection mean for future receivers. The FFT solution 

could be implemented in hardware or software parts of the receiver. 
 

When a detection is made and when there is an impact on the performances, it is 

possible to characterize the interferences with a Prony-like model for instance and thus to 

clean out the correlator outputs from the interference.  

 

After detection, the next step consists in two options:  

• initializing a switch to other GNSS components within the same mode of 

operation or to another mode to perform the current phase of flight;  

• or removing the incoming interference to continue using the affected GNSS 

component. 

5.11. Use of a model to characterize each interference  

It is of interest to know the performance of a repair algorithm: that is to say an 

algorithm which cleans out the correlators outputs, when the interference is flagged. As a 

consequence, a preliminary study of an estimation and repair algorithm is provided in the 
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following. It seems this algorithm provides promising results as it can be seen in the 

following.  

 

In order to repair the correlators outputs, interferences characteristics have to be 

determined. Parametric models allow representing physical phenomena like CW interfering 

signals. Such models provide, with a small number of parameters, the main characteristics of 

a CW. In the following, a third order Prony model ([Castanié, 2003]) is used to characterize 

the CW interferences. This model is described in Appendix A.3. 

 

 The results are presented in the following and concern the estimation and correlators 

output repair when a CW hits the identified worst case GPS L1 C/A PRN 6 code spectrum 

line, located at 227 kHz. In the following figure, the estimation of the CW frequency (227 

kHz) is represented over 100 tests, thanks to the Prony model. The obtained estimations are 

between 226.84 kHz and 227 kHz. The obtained resolution of the algorithm is consequently 

better than 200 Hz.  

 

Figure 48 : Estimation of a -155 dBW CW frequency impacting GPS L1 C/A PRN 6 (227 kHz) 

using a third order Prony model on 68 correlators outputs. 

 

The CW frequency estimation is acceptable as it can be seen in the previous figure. 

Indeed, over 100 tests, the frequency estimation error never exceeds 160 Hz. The tests are 

made here for GPS L1 C/A signal. The spacing between two code spectrum lines is 1 kHz. For 

Galileo E1 signal, the spacing between two lines is 250 Hz.  

 

But the most important result is the resulting tracking error after clean out of the 

correlators outputs. Indeed, it can be noticed in the following figure that this algorithm can 

provide significant improvement in tracking robustness and avoid a loss of tracking lock. 

Simulations show that the standard deviation of the code tracking error (always for GPS PRN 

6), is reduced from 80 meters (in red) to 6 meters (in blue) in this case as it can be seen in 

the next figure. 
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Figure 49 : Raw code tracking error with and without one -155 dBW CW interference 

estimation and correction, the impacted code spectrum line is the PRN 6 (227 KHz) of the L1 

C/A signal. 

 

The raw and smoothed pseudoranges, before and after correction are provided in the 

following table, over 4000 samples, that is to say during 80 seconds:  

 

 ESTIMATED STATISTICS VALUE WITHOUT 

CORRECTION 

VALUE WITH 

CORRECTION 

Raw code tracking 

error 

Mean 19.9 m -9 10-3 m 

Standard deviation 10.5 m 1.9 m 

Smoothed code 

tracking error 

Mean 13.7 m 3 10-2 m 

Standard deviation 5.3 m 4 10-2 m 

 

Table 10: Raw and smoothed code tracking error with and without interference removal at 

the correlator output level, over 80 seconds (4000 samples). 
 

Note that the smoothing filter used here is the one presented in Chapter 2, 2.3.2.1. 
 

5.12. Conclusion  

This study focuses on CW interference detection because this kind of interference can 

stay a long time near high amplitude code spectrum lines and can thus generate damaging 

code tracking errors which can result in a biased navigation solution during APV I. Indeed, 

high level interference, at the limit of the interference rejection masks defined in [EUROCAE, 

2007] and recalled in this chapter, can stay a sufficiently long time near high amplitude GPS 

L1 C/A or Galileo E1 code spectrum lines to generate large code tracking errors. This is due to 

low Doppler shift rate between interference and code spectrum lines. Nevertheless, the 

hypotheses of having such interferences are related to the worst cases that can occur in civil 

aviation applications, the probability of having such CW near the rejection mask is expected 

to be low.  

 

Two detection algorithms are proposed here and are expected to alleviate and complete 

the detection made by RAIM-type algorithms. The obtained PMD are 10
-5

 using the AR 



         Chapter 5     Performance of Multi correlators GNSS Interference Detection and Repair Algorithms 

 104

algorithm and 6.67 10
-5

 using the FFT one, for the worst case generated CW (-155 dBW). 

These results concern GPS L1 C/A PRN 6 and Galileo E1 PRN 38 worst case code spectrum 

lines. 

  

The resulting maximum error on smoothed pseudoranges when the algorithms do not 

detect the CW, is 15 meters for GPS L1 C/A and 1 meter for Galileo E1. 

 

The presented techniques are consequently useful when an interference occurs during 

approach phases of flight like APV I, because they allow detecting degradation due to a CW 

with a low PMD (integrity), and, in case of failure in the CW detection, the resulting error due 

to the CW, does not exceed 1 meter on Galileo E1 OS code-carrier smoothed pseudorange. 

These results show that the threat due to the interferences is eliminated at the input of 

RAIM detection algorithms.  

 

The strategies proposed in Chapter 4 include a switch after interference detection. In 

case of interference detection on GPS L1 C/A or Galileo E1, the receiver can switch to single 

frequency alternate or degraded modes identified in Chapter 3. When a detection is made 

and when there is an impact on performances, it is possible to repair the correlator outputs 

thanks to the characterization of the interferences affecting GPS L1 C/A and Galileo E1 

signals. In this chapter, a 3
rd

 order Prony model is proposed for CW characterisation in order 

to clean out the correlator outputs. The repair algorithm provides good results as the 

maximum code tracking error on GPS L1 C/A processing, is reduced from 80 meters to 6 

meters as shown in the figure 49. Thus, the receiver can continue using GPS L1 C/A or Galileo 

E1 when a damaging CW occurs and affects these GNSS components. Indeed, it is 

demonstrated that the proposed correlators outputs repair algorithm can maintain the level 

of performance reached when no CW occurs, in terms of tracking accuracy during APV I.  

5.12.1. Scenarii with regard to the combined receiver architecture  

According to the schemes described in Chapter 4, the interference detection function 

presented here relies on the monitoring of the correlators outputs. The detection is based 

on the FFT or AR detection criteria defined in this chapter. If a significant loss of performance 

(not sufficient to perform a targeted phase of flight, APV I for instance) results from the 

interference occurrence, then, the monitored GNSS component is declared lost 

(unavailable). The receiver can then switch to other available GNSS components 

combinations within modes of operations described in the following figure. 
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Figure 50: Interference detection function based on correlators outputs monitoring 

 

Another solution can consist in estimating the interference characteristics. The 

correlators outputs can be repaired after the interference detection. Thus, a correct digital 

signal processing can be performed to provide accurate tracking loops outputs and 

pseudoranges measurements. A technique to model the interferences at the correlators 

outputs, based on a Prony model, was presented in this chapter and showed encouraging 

results. After correction, the resulting errors due to a CW on tracking outputs are negligible.  

 

      As it is described in Chapter 2, if no interference occurs, the most contributing error in 

pseudoranges is the error due to the ionosphere, if left uncorrected. As mentioned in 

Chapter 2, this error is well determined thanks to a combination of pseudoranges at two 

different frequencies to provide a composite ionospheric-free pseudorange.  

 

In case of loss of dual frequency measurements for instance, when the aircraft crosses a 

Radio Frequency Interference (RFI) area, the receiver must revert to a single frequency mode 

(alternate or degraded as mentioned in Chapter 3) and ionospheric code delay is not yet 

provided as in a nominal dual frequency mode. Other alternatives to estimate ionospheric 

code delay are SBAS ionospheric grids, TEC estimation models, which input parameters are 

broadcasted by the remaining GPS or Galileo signal, and code minus carrier measurements 

as described in the next chapter. However, these techniques do not allow reaching the 

performances required by the ICAO for restrictive approach phases of flight. The receiver 

cannot rely on these techniques in case of single frequency mode. Indeed, most of them are 

not accurate enough or do not comply with integrity requirements. That is why, single 

frequency ionospheric code delay estimation techniques are discussed, studied and 

improved in the next chapter. New algorithms are proposed and their capabilities are 

evaluated in terms of continuity, integrity, accuracy and availability. 
 

Correlator 
outputs 

Criteria:  
FFT detection 
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AR detection 

criterion 

DETECTION FUNCTION 

Loss of E1 OS 

Loss of L1 C/A 

Loss of L1 C/A 
+ E1 OS 

Switch to other 
nominal mode: 
GPS L1 L5 + 
GPS SBAS 

Switch to other 
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Galileo SoL or 

Galileo E1 OS + 
E5b + GPS SBAS 

SWITCH EVENT FLAGGED BY THE 
DETECTION FUNCTION 
DUE TO A SIGNIFICANT 
LOSS OF PERFORMANCE 

DETECTION OF 
INTERFERENCES WITH 

CRITERIA 

PARAMETERS 
TO MONITOR 

Switch to an 
alternate mode or 
degraded mode if 

SBAS not 
available 
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Chapter 6 

Ionospheric code delay estimation in case of single 
frequency degraded mode  
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Résumé 

Le chapitre 6 concerne l’estimation de l’erreur ionosphérique en mode dégradé mono 

fréquence. En effet, dans ce chapitre est abordée la problématique du maintien des niveaux 

de performance lors d’un passage en mode dégradé en APV I. Pour cela, nous étudions 

d’abord tous les algorithmes monofréquence permettant d’estimer l’erreur ionosphérique 

sur les mesures de pseudodistances et comparons leurs performances en termes de 

précision. Nous dressons de plus un bilan des avantages et inconvénients liés à chaque 

algorithme. Nous retenons finalement la technique de divergence code-porteuse, 

prometteuse en précision, mais sujette à des perturbations de type sauts de cycles dans les 

mesures de phase de la porteuse du signal traité. En cela, nous décidons d’investiguer  

différentes techniques de détection de sauts de cycles et nous évaluons leurs performances 

pour satisfaire les exigences de l’aviation civile en termes d’intégrité et de continuité. Ainsi, 

nous déterminons le plus petit biais détectable sur les mesures de pseudodistance, dans un 

environnement hypothétique le plus contraignant possible. Ce biais se répercutant sur les 

mesures de pseudodistances, il est nécessaire d’évaluer l’impact d’un tel biais dans 

l’estimation de position de l’avion (à l’intérieur d’un cylindre de protection). Pour cela, nous 

décidons de projeter l’erreur obtenue sur le plan horizontal de l’appareil en approche, ainsi 

que sur l’axe vertical, de manière à comparer les valeurs obtenues aux limites d’alerte 

définies par l’aviation civile pour l’APV I. Ainsi, lorsque les résultats obtenus sont en deçà des 

limites d’alerte, l’algorithme considère que les mesures sont disponibles (avec ou sans saut 

de cycle). Ce procédé est utilisé pour les constellations GPS et Galileo. En ce qui concerne la 

précision des mesures, les paramètres de la technique de divergence code porteuse (erreur 

ionosphérique et ambiguités de porteuse) sont estimés à l’aide d’un filtre de Kalman, 

initialisé en mode bifréquence (nominal), c’est-à-dire, avant dégradation. Ceci, afin de créer 

un pont de passage entre mode nominal et mode dégradé, ce qui permet de maintenir le 

niveau de performance en précision, le plus longtemps possible après la dégradation 

conduisant au mode opérationnel dégradé. 
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6. Ionospheric code delay estimation in case of single frequency 
degraded mode 

6.1.  Introduction  

The ionosphere is a dispersive medium that can strongly affect GPS and Galileo signals. It 

is the larger source of ranging error, if left uncorrected. In addition, this perturbation is 

difficult to model and thus difficult to predict. Indeed, it is dependent upon the signal path 

from the satellite to the aircraft and the ionization of the atmosphere as it is described in 

Chapter 2.   

 

A multi-frequency receiver can identify and correct errors induced by the ionosphere. 

Indeed, two pseudorange measurements on two different frequencies enable to determine 

precisely the ionospheric code delay. However, if affected by a Radio Frequency Interference 

(RFI), a receiver can lose one or more frequencies leading to the use of only one frequency 

to estimate the ionospheric code delay.  Therefore, it is identified by [NATS, 2003] and 

[Shau-Shiun Jan, 2003] as an important task to investigate techniques aimed at sustaining 

multi-frequency performance when a multi-constellation receiver installed onboard an 

aircraft is suddenly affected by RFI, during critical phases of flight.  

 

When only one frequency is available, one way to use single frequency measurements is 

to use code and carrier phase measurements to deduce ionospheric code delay from the 

dispersive behavior of the medium and the derived properties on electromagnetic waves as 

described in Chapter 2 and depicted in Figure 14. This method is called code-carrier 

divergence technique.  

 

In the case of a loss of all GNSS components but one frequency, the technique analyzed 

is the code-carrier divergence technique, consisting in computing the difference between 

the signal code and carrier phase measurements. This difference is twice the ionospheric 

delay plus the carrier phase ambiguity plus errors, from which the ionospheric code delay 

can be extracted. If a cycle slip occurs on phase measurements, the integer ambiguity 

appearing as a constant offset in the code-carrier difference can cause this technique not to 

be accurate enough to meet APV I requirements. That is why, it is necessary to be able to 

detect cycle slips. The cycle slip detection algorithm used must be compliant with APV I 

integrity and continuity requirements.  

 

A Kalman filter can also be used to estimate ionospheric code delay and ambiguities of 

all satellites in view as mentioned in [Lestarquit, 1997]. This Kalman filter can be initialized in 

the dual frequency mode, and left running when only one frequency is left. 

 

Another way to estimate ionosphere thanks to only one frequency, is to use the 

broadcasted parameters provided in GPS and Galileo messages for ionosphere modeling to 

calculate the Total Electronic Content (TEC) defined in Chapter 2. But this technique has 

strong accuracy limitations as described in [NATS, 2003].  

 



        Chapter 6   Ionospheric code delay estimation in case of single frequency degraded mode 

 110

Another solution can consist in using other available GNSS components such as SBAS as 

it is proposed in [Shau-Shiun Jan, 2003]. Indeed, through a ionospheric threat model 

technique described in [Shau-Shiun Jan, 2003], the receiver can use a ionospheric grid that 

can provide an estimation of a bound on the corresponding error, depending upon the 

aircraft position around the reference geoid. However, this system is only regional as 

depicted in figure 1. The SBAS coverage is not sufficient to protect the user everywhere on 

the Earth. Furthermore, the case when an aircraft flies in border line of the SBAS coverage 

has to be studied in details to know the availability of the component. In addition, this 

system is not robust against ionosphere irregularities generated by storms. Indeed, magnetic 

storms are characterized by abnormal variations in the magnetic field of the Earth. It causes 

free electrons distributions to be disturbed (mostly in F layer as described in Chapter 2, 

paragraph 2.4.1). The use of a storm detector is consequently required as mentioned in 

[Shau-Shiun Jan, 2003]. 

 

In this chapter, the problem of maintaining dual frequency measurements performances 

is addressed without use of SBAS. The use of SBAS corrections has already been studied in 

[Shau-Shiun Jan, 2003]. 

 

Several configurations can be considered due to a loss of frequency after an RFI 

crossing. For example, for a dual frequency GPS L1 C/A / L5 receiver, the loss of L1 tracking 

due to a CW implies the use of the remaining L5 frequency. The same remark can be made 

for the Galileo E1 and E5 signals.  

 

As mentioned in Chapter 3, a single frequency GNSS combination is classified as an 

alternate mode of operation if an augmentation is used for en route down to NPA. It is the 

case of GPS or Galileo single frequency plus GPS SBAS, Galileo single frequency plus SoL 

combinations (integrity carried by both E5b and E1).  

 

In the APV I case, only the combinations using SBAS are expected to allow reaching a 

sufficient level of performance. Galileo single frequency plus SoL is classified as a degraded 

mode of operation. In that way, the study conducted and described in this chapter concerns 

this degraded combination (even if actual measurements used to analyze the performances 

of the algorithms proposed are only GPS measurements).  

 

The case when GPS single frequency is used in standalone mode, without SBAS, is not 

considered by the WG 62.  

 

This chapter can be viewed as a study aimed at maintaining the nominal modes level of 

performance during degraded modes. The cycle slip detection algorithm can also be viewed 

as detection mean useful to detect anomalies in carrier phase measurements in nominal 

modes of operation. Indeed, in dual frequency modes of operation, phase measurements 

are used to smooth code measurements and cycle slips affect carrier phase measurements. 

6.2.  Dual frequency ionospheric code delay estimation  
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So as to get rid of ionospheric effect on pseudoranges measurements, a combination of 

dual frequency measurements is used. Indeed, for future civil aviation GNSS receivers 

complying with EUROCAE requirements, dual frequency measurements are combined into a 

single composite measurement called the “ionospheric-free” measurement, corrected from 

ionospheric code delay. This can be done by using future GPS or Galileo signals.  

 

In a nominal mode of operation (see section 3.1.1), the pseudorange measurements that 

are available to the aircraft receiver are the GPS L1, GPS L5, Galileo L1, Galileo E5a, Galileo 

E5b code and phase measurements. These frequencies can be combined to build 

ionospheric-free measurements.  

 

For two frequencies, the ionospheric-free measurements are expressed thanks to: 

 P = 	 v<Èv<ÈKvÈÈ P& − vÈÈv<ÈKvÈÈ Pf  (104) 

 ϕ = 	 v<Èv<ÈKvÈÈ ϕ& − vÈÈv<ÈKvÈÈ ϕf  (105) 

Where:  

• f1 and f2 are two different signals central frequencies 

• P1 and P2 are the corresponding code pseudorange measurements 

• Φ 1 and Φ 2 are the carrier phase measurements 

• P is the code  “ionospheric-free” pseudorange measurement 

• Φ is the carrier phase “ionospheric-free” measurement 

 

A demonstration of the ionospheric-free estimation model is provided in Appendix B.3.  

6.2.1.  Application to future GNSS signals 

Only the combined E1/E5b ionospheric-free measurements are protected by the Galileo 

ground integrity information. Therefore, from GPS L1/L5, and from Galileo E1/E5b, two 

distinct ionospheric-free code-carrier measurements can be built.  

 

 This is based on: P§&K§��k� = 	 v�<Èv�<È Kv��È P§&�k� − v��Èv��È Kv�<È P§��k�  (GPS) (106) 

 Pz&Kz�A�k� = 	 v�<Èv�<È Kv���È Pz&�k� − v���Èv���È Kv�<È Pz�A�k�   (Galileo)     (107) 

 

 ϕ§&K§��k� = 	 v�<Èv�<È Kv��È ϕ§&�k� − v��Èv��È Kv�<È ϕ§��k� (GPS) (108) 

 ϕz&Kz�A�k� = 	 v�<Èv�<È Kv���È ϕz&�k� − v���Èv���È Kv�<È ϕz�A�k�   (Galileo) (109) 
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 With: v�<Èv�<È Kv��È ≈ 2.261   
v��Èv��È Kv�<È 	≈ 	−1.261   

v�<Èv�<È Kv���È 	≈ 2.422    
v���Èv���È Kv�<È 	≈ 	−1.422 

 

 These values show that the weighting factor applied to GPS L5 or Galileo E5b is half the 

weighting factor applied to L1 or E1. More precisely, it is 55% for GPS and 58% for Galileo. 

 The statistics of the combined composite ionospheric-free measurements are related to 

the quality of the resulting position estimation. The standard deviation of the error affecting 

the smoothed composite ionospheric-free measurements can be modeled as: 

 

 σ§&K§� =	�¼ v�<Èv�<È Kv��È ½f σ§&f + ¼ v��Èv��È Kv�<È ½f σ§�f 	 = 	g2.261fσ§&f + 1.261fσ§�f 	 (110) 

 

σz&Kz�A =	�j fz&ffz&f − fz�Af lf σz&f + j fz�Affz�Af − fz&f lf σz�Af 	 = 	�2.261fσz&f + 1.261fσz�Af 	 (111) 

 

 Ionospheric-free measurements affected by multipath are shown in [Eissfeller, 2005]. 

Due to the high chipping rate of 10.23 MHz used for the GPS L5 and Galileo E5b signals, 

noise and multipath errors are statistically higher for the measurements from higher central 

frequencies like GPS L1 or Galileo E1 signals than for GPS L5 or Galileo E5b. Therefore, the 

ionospheric-free measurements are more affected by the noise and multipath errors on 

L1/E1 than on L5/E5b. Indeed, the error induced by multipath affects each code and carrier 

phase measurement on GPS L1, GPS L5, Galileo E1, and Galileo E5b. The impact of multipath 

propagation is different on code tracking and on carrier tracking; it is also dependent upon 

the signals processed and the modulations. The effect of noise and multipath on the 

previously mentioned signals is mainly due to thermal noise, antenna design and obstacles 

encountered around the antenna. However, the perturbations on the measurements are 

different because of the design of PRN codes which differ from one signal to another one. 

Similarly, if advanced code and carrier phase tracking techniques are used, the carrier phase 

measurements can benefit from the signal structure adopted for GPS L5 and Galileo E5b 

[Bastide1, 2004], and noise and multipath errors are also reduced for these two frequencies 

compared to GPS L1 or Galileo L1 phase measurements. 

6.2.2. Conclusion  

Smoothed ionospheric-free range measurements are used for civil aircraft operations. 

However, in case of loss of one frequency due to radiofrequency interference (RFI) for 

instance, another way to estimate ionospheric code delay must be used. Models are also 

proposed to estimate the ionospheric code delay, like the Klobuchar model described latter 

in this chapter. They could be used in case of loss of dual frequency estimations, but, as it is 
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described in the next paragraphs, the accuracy of these models is not sufficient for some civil 

aviation operations, for instance during APV I.  

6.3. Estimation of the ionospheric code delay thanks to estimation 
models 

6.3.1. GPS Klobuchar model 

The first existing model described in this dissertation is proposed by Klobuchar and the 

corresponding algorithm is detailed in [Parkinson, 1996]. The input parameters of this model 

are provided by the GPS satellites signals navigation message. It is a single layer model. 

Indeed, the TEC is supposed to be concentrated in an infinitely thin layer at an altitude of 

350 km. Since the electronic content depends upon the solar activity (Chapter 2), the 

ionospheric code delay is chosen constant and equal to 5 ns during the nights. During the 

days, a cosine function models this delay; it is a function of the receiver position.  

 
Figure 51: Klobuchar function: evolution of single atmospheric layer located at 350 km high 

 

This cosine function provides the ionospheric code delay due to the signal propagation 

through the ionosphere, along the satellite to receiver path. It is described by [Parkinson, 

1996]: 

 T = Ob	 ¶�×�â¾|_3fð��K��4� º			  
 

(112) 

 

Where:  

• �� is the night offset which corresponds to the error related to the TEC estimation 

without sunlight 

• ô is the amplitude of the error 

• � is the current time (sec) 

• � is the origin phase  

• �� is the obliquity factor, equal to the ratio between the vertical TEC and the slant 

TEC (that is to say for a satellite elevation different of 90°, from the receiver point of 

view) 
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The carried information in GPS L1 C/A navigation message is divided into two sets of 

parameters which are the coefficients of the third order development of the amplitude and 

period of the model presented above respectively:  

 A ≈ ∑ a�	φk��0    (113) 

 P ≈ ∑ b�	φk��0    
 

(114) 

 

Where   is the geomagnetic latitude of the aircraft (receiver), in semi-circles (rad/pi). 

6.3.2. Galileo NeQuick model 

Another model is the NeQuick one which was proposed more recently and which 

parameters will be broadcasted in the Galileo signals navigation message. It is a multilayer 

model. The electronic content estimation is provided by an Epstein estimator [Garcia, 2002] 

of the number of electron in each layer defined in Chapter 2. The Epstein estimator is 

provided by the following formula:   

 

 Nz}_���~�h, h�\=, N�\=, B� = 	 �	t)�!¼&��=}�"#	")�!$ �½È exp ��K	�)�!% �  (115) 

 

Where:  

• ℎ is the altitude of the layer (which can vary along time, for instance this altitude 

differs between nights and days) 

• ℎ'()  is the maximum altitude of the layer 

• * is the characteristic of the layer [Garcia, 2002] 

• +'() is the maximum number of electrons in the layer 

 

The NeQuick model relies on the estimation of the number of electrons contained 

within the layers E and F (detailed in two sub layers F1 and F2) described in Chapter 2, 

paragraph 2.4.1. Therefore, the Epstein formulation is used for each representative layer:  

 Nz�h� = 	 �	t)�!�j&��=}¼"#	")�!�$� ½lÈ exp ��K	�)�!�%� �  
(116) 

 N,&�h� = 	 �	t)�!-<j&��=}¼"#	")�!-<$-< ½lÈ exp ��K	�)�!-<%-< �  
(117) 

 N,f�h� = 	 �	t)�!-Èj&��=}¼"#	")�!-È$-È ½lÈ exp ��K	�)�!-È%-È �  
(118) 
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Then, the estimation of the total number of electrons is provided by the sum of each 

layer electronic content:  

 N�h� = 	Nz�h� +	N,&�h� +	N,f�h� (119) 

 

A complete description of this model is provided in [Garcia, 2002]. The future Galileo 

signals navigation messages will provide three parameters 0a , 1a , 2a which are the 

coefficients of the effective ionisation level parameter [Radicella, 2003]. These parameters 

represent the maximum number of electrons in each layer between each satellite in view 

and the aircraft.    

 

In the following figure, an estimation of the TEC, provided by the NeQuick model is 

represented as a function of the altitude. The TEC can be then converted into an ionospheric 

code delay as it is described in Chapter 2, taking into account, the emitted signal carrier 

frequency. 

 

 
Figure 52: Variations of the electronic density estimated with the NeQuick model as a 

function of the altitude at the zenith of Toulouse (position: latitude: 43.56475924°N, 

longitude: 1.48171036°E, altitude: 203.845 m). 

6.3.3. Advantages and drawbacks of the estimation models 

The Klobuchar model provides a good estimate of the attributes of the actual 

ionospheric code delay, but in general, tends to underestimate the ionospheric delay as 

depicted in [NATS, 2003]. Indeed, this model has wide limitations for civil aviation 

applications. Indeed, this algorithm is only optimized for middle latitudes user aircraft 

locations. As a consequence, it does not represent properly the behavior of the ionosphere 

all over the world. It can only correct 50% of the global ionospheric code delay.  

 

The NeQuick model will be the standard ionospheric model for single frequency Galileo 

receivers. However, even if the estimations provided by this model are better than for GPS 

model (80% of the global ionosphere error), for accuracy purposes, this one cannot be used 

in single frequency modes of operation for civil aviation as it is described in [NATS, 2004]. 
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Both of the above models represent the standard single frequency ionospheric delay 

estimation algorithm for GPS and Galileo respectively. [Belabbas, 2005] compares the 

models by using two statistical figures: the mean and the variance of the residuals of the 

ionospheric code delay estimations. It shows the distribution of residual errors of Klobuchar 

and NeQuick models. Since the NeQuick model takes into account seasonal effects and is 

based on multiple layers TEC estimations, this one has a residual error distribution closer to 

a Gaussian distribution than Klobuchar residual error.  

 

Furthermore, the presented models cannot represent the behavior of the ionosphere 

during important deviations from its average behavior (geomagnetic storms). 

 

As a conclusion, neither the Klobuchar nor the NeQuick model represents the true 

ionospheric delay. As a consequence, these models cannot be used to support APV I 

operations as it is described in [NATS, 2003]. The following table summarizes the two models 

main characteristics.  

 

 KLOBUCHAR MODEL NEQUICK MODEL 

Model type Single layer model Multiple layer model 

Percentage of ionospheric error 

estimated over the world 

during one year 

50% of the error estimated  80% of the error estimated 

Constellation concerned GPS Galileo 

Accuracy Long term (> 1 year) Seasonal (4 months) 

Seasonal variations No Yes 

Spatial variations Medium Good except near the Equator 

Complexity Simple cosine function: low 

complexity 

Epstein formulation of different 

layers and seasonal variations, 

sunspots number: high 

complexity 

 

Table 11: Comparison between Klobuchar and NeQuick models [Belabbas, 2005] and [NATS, 

2003]. 

 

In the case of loss of one frequency, an estimation of the ionospheric delay can be 

provided by the Klobuchar model for GPS or the NeQuick one for Galileo. But, the use of 

these models implies the use of large 
UEREσ  values that do not allow supporting flight 

operations that require vertical protection levels computation. Another way to compute 

ionospheric code delay is the use of SBAS ionospheric grids but these one are not available 

everywhere as depicted in Figure 1. 

 

In the following, the Code Minus Carrier (CMC) divergence technique is described. The 

advantage of this technique is that it does not need an ionospheric model but rather uses 

code and carrier phase measurements.  

 



        Chapter 6   Ionospheric code delay estimation in case of single frequency degraded mode 

 117

6.4.  Single frequency Code Minus Carrier divergence technique to 
estimate ionospheric code delay 

6.4.1. Method  

After a loss of several frequencies leading to a single frequency degraded mode, resulting 

from a perturbation like an interference, a receiver may only be able to use code and carrier 

phase pseudoranges from only one carrier frequency. To estimate the ionospheric code 

delay, the difference between code and carrier phase measurements can provide good 

measurements. This is modelled as: 

  P= − ϕ= = 2	I= − N=λ= +	w= +	v= (120) 

   
Where: 

• P is the code pseudorange measurement in meters 

• φ  is the phase measurement in meters 

• I  is the ionospheric delay in meters 

• N  is the integer ambiguity 

• λ  is the carrier wavelength in meters 

• w is the code multipath and noise error 

• v  is the phase multipath and noise error 

• x denotes the used carrier frequency 

6.4.2. Accuracy of the method  

The difference between code delay and phase advance provides us twice the shift caused 

by the propagation of the electromagnetic waves through the ionosphere. The ionospheric 

delay can therefore be extracted from this difference assuming the ambiguity N is known 

and constant. This is the so-called code minus carrier divergence technique (CMC). 

 

A comparison between single and dual frequency estimations of the ionospheric delay 

was made in [NATS, 2003] for a user located at Gatwick and Swanwick (UK). It appears that 

code carrier technique has a high level of performance in terms of accuracy. The resulting 

standard deviation for dual frequency estimations is compared to the resulting code carrier 

standard deviation and reported in the following table. 

 

IONOSPHERIC ESTIMATION 

TECHNIQUE 

GATWICK (UK) SWANWICK (UK) 

/0&K0f_Ë12µ 0.93 m 0.65 m /0&K0f_Ë(33�µ3 0.41 m  0.33 m /Ë12µ_Ë(33�µ3 0.39 m 0.38 m 

Table 12: Comparison between dual and single frequency ionosphere estimation standard 

deviations at Gatwick and Swanwick (UK), [NATS, 2003]. 
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In this study, only raw code and carrier phase measurements are used for simulations to 

estimate ionospheric code delay. This delay is extracted from code minus carrier, provided 

no cycle slip occurs.   

6.4.3. Cycle slips 

Carrier phase measurements are taken from the carrier phase lock loop. The capability 

of this loop to closely track the evolution of the GNSS signals carrier phase conditions the 

quality of the carrier phase measurements. Without external perturbations like dynamics of 

the receiver, multipath or interferences, this tracking loop is able to quickly follow the 

evolutions of the carrier phase when the elevation angle is above the mask angles.  

 

However, in case of perturbations, the loop may lose lock from one instant to another 

for a certain time and then re-acquire the signal and lock around a new stability point of the 

carrier phase loop, as it is described in details in [Kaplan, 1996]. This phenomenon is called 

“cycle slip” or “phase slip”. In particular, cycle slips occur when the signal is blocked by an 

obstacle, when dynamics of the receiver are too high for the tracking loop to follow or 

during ionospheric scintillations. 

 

A third order phase tracking loop is robust against many kinds of dynamics for instance 

for pedestrian or car applications when jerk values are not too high. For civil aviation 

operations, maximum dynamics values provided by [EUROCAE, 2007] must be taken into 

account. With normal aircraft manoeuvres, such a tracking loop is able to follow the signal 

carrier phase evolution as it is shown in chapter 5 and Appendix B.1.  

 

A cycle slip produces a jump in carrier phase measurements that can be modelled like a 

sudden change in the ambiguity of the affected satellite signal phase. Consequently, this 

phenomenon may have a disastrous effect on carrier phase measurements and can lead to a 

loss of performance in terms of accuracy as well as in terms of integrity since it can generate 

large errors in carrier phase measurements, with a certain probability of occurrence.  
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Figure 53: L1slant ionospheric delay estimated thanks to the CMC technique, for a receiver 

located at ENAC, Toulouse, France, on 14/03/2006.  A cycle slip occurs for a low elevation 

angle of about 20 degrees, which may correspond to a multipath. 

 

Figure 53 shows the estimation of ionospheric code delay using CMC estimation on L1 

C/A. It can be noticed that a cycle slip occurs for a low elevation angle. It can also be noticed 

that the estimation is dependent upon the satellite elevation. 

6.4.3.1.  Cycle slip occurrence rate  

The focus is given here on the estimation of the occurrence of cycle slips in the carrier 

phase measurements provided by the receiver. The probability of occurrence of a cycle slip 

during a given time period t∆  is ([Holmes, 1990]):  

 P|¾¾ = 1 − exp �−	4�'5 �  
(121) 

 

 

Where T is the cycle slip mean time. 

 

Therefore, the probability of having K cycle slips during t∆  is:  

 P|¾¾�6, Δ�� = 	 �	4�'5 �7 �=}�K	8�95 �7!   (122) 

 

The cycle slip mean time is calculated by using the following formula: 

 

                       	T5 = ðfØ�; tanh ¼fð;<=È ½ >I0f ¼ &<=È½ + 2∑ �−1�~ xBÈj <?=È l
&�	jB?=È@ lÈÏ~�& A  (123) 

 
Where:  

• 
nI  are Bessel functions of order n. See [Holmes, 1990] for a complete demonstration. 

γ  represents the tracking error of the phase linked to the receiver dynamics (rad), 

correlated with the aircraft dynamics.  

• LW  is the PLL one-sided loop bandwidth in Hz. 

• φσ
 is the phase loop noise, its value depends on the type of loop employed:  

• For a Costas loop :  

 

σ� =	�Ø�BCò j1 +	 &f BCò'ël  (124) 

 

 

• For a classical PLL,  
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σ� =	�Ø�BCò   (125) 

 
Where: 

• 0NC is the carrier to noise density ratio 

• IT  is the coherent integration time  

• LW  is the PLL one-sided loop bandwidth 

 

We can note that φσ  does not depend on the integration time for a classical PLL.  

According to [Holmes, 1990], the maximum value of γ  (D'()) depends on the maximum 

expected aircraft jerk maxj
 in g/s and the PLL one sided loop bandwidth in Hz. According to 

RTCA, 2006], for precision approach, the maximum expected jerk for normal manoeuvres is 

0.25g/s and 0.74g/s for abnormal manoeuvres. The corresponding D'()values are 2.7 and 

7.9 degrees respectively for a 10 Hz PLL loop bandwidth.  

 

The cycle slip rate is then defined as the inverse of the cycle slip mean timeT . 

       

The probabilities of occurrence of cycle slips using a Costas loop and a classical PLL are 

compared hereafter. These probabilities are estimated for the GPS L1 C/A signal, with carrier 

to noise ratios respectively equal to 30 dB Hz and 40 dB Hz. The results are presented in 

Figure 55. 

 

 
Figure 54: Cycle slip occurrence probability using different phase tracking loops for maximum 

normal dynamics, calculated for 1 second, with a 20 ms integration time for GPS L1 C/A, Coh 

stands for coherent and corresponds to a classical PLL. 
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Figure 55: Cycle slip occurrence probability using different phase tracking loops for maximum 

normal dynamics on the left side and abnormal aircraft dynamics on the right side, 

calculated for 1 second, with a 4 ms integration time for GPS L1 C/A, Coh stands for coherent 

and corresponds to a classical PLL. 

 

Note that future Galileo E1, E5a and E5b will include both data and pilot (dataless) 

channels as it is described in chapter 2.  

On the data channel, the presence of data is responsible of 180 degrees phase shifts 

during the tracking process. Costas loops are designed for data channel processing.  

 

Concerning the pilot channel, no navigation data will modulate the incoming signal, a 

traditional PLL can hence be employed. In this case, the value of /E will not vary as a 

function of integration time in the probability of occurrence computation.  

 

Otherwise, it can be clearly seen that the optimal loop bandwidth is around 10 Hz for 

both normal and abnormal cases. This is the value chosen for simulations all along this 

thesis.  

 

As it is mentioned in chapter 3, this thesis focuses on the APV I phase of flight. As a 

consequence, since a total approach mean time is 150 seconds ([RTCA, 2006]), the 

probability of occurrence is calculated for a whole approach time. The results are provided 

for each signal from maximum normal aircraft dynamics to maximum abnormal dynamics 

defined in [EUROCAE, 2007], through the jerk variation.    

 

In Table 13, this probability of occurrence of cycle slip is calculated for different signals 

and integration times, for a Costas loop.  
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SIGNAL IT  

PROBABILITY OF OCCURRENCE 

WITHIN 150 SECONDS 

Normal 

manœuvres 

Abnormal 

manoeuvres 

GPS L1 C/A or 

Galileo E1  

4 ms 1.0 10-3 9.2 10-2 

10 ms 7.5 10-4 6.1 10-2 

20 ms 4.7 10-4 3.8 10-2 

GPS L5 or Galileo 

E5a 

4 ms 9.1 10-4 9.0 10-2 

10 ms 6.8 10-4 6.0 10-3 

20 ms 2.4 10-4 3.4 10-2 

Galileo E5b 

4 ms 9.1 10-4 9.0 10-2 

10 ms 6.9 10-4 6.0 10-3 

20 ms 2.4 10-4 3.4 10-2 

 

Table 13: Probability of cycle slip occurrence for a Costas PLL, with 10 Hz bandwidth and 

coherent integration time TI. 

 

As a conclusion, the probability of a cycle slip occurrence is not negligible for civil 

aviation purposes. 

6.4.3.2.  Cycle slip and integrity for APV 

Integrity risks induced by cycle slips are integrity risks allocated to the manufacturer 

since cycle slips are due to the difficulty of the receiver to closely track the evolution of 

signals carrier phase with the phase tracking loop. The corresponding requirement in terms 

of integrity risk is 10
-7

.  

 

     As it can clearly be seen in 6.4.3.1, cycle slip occurrence probability is low, even taking 

into account maximum normal aircraft dynamics. Therefore, to test detection algorithms 

capability (missed detection probability, false alarm rate), it is needed to have a large 

number of measurements. Only a few cycle slips can be experienced while using actual 

onboard GPS measurements. In addition, the amplitude of these cycle slips cannot be 

mastered. Another possibility may be to use actual measurements from data collection with 

a static receiver. But on one hand, these measurements do not match with actual aircraft 

conditions (and in particular with APV I conditions), as the dynamics are low, so the cycle slip 

probability is low. And, multipath components do not comply with aircraft approach 

conditions. On the other hand, the set of experienced cycle slips may not contain a good 

cycle slip amplitude range to test the detection algorithms capability. As a consequence, the 

best solution to test the next proposed algorithms is to generate pseudoranges and to 

generate cycle slips with known magnitudes.  

 

The cycle slip occurrence probability can be estimated as it is described in 6.4.3.1. 

However, the probability of having a cycle slip over a given period of time with a given 

amplitude cannot be estimated since cycle slip amplitudes do not follow a well-known 

statistical law. As it is described in the next paragraphs, the approach for estimating the 

detection algorithms capability is first to determine a detection threshold compliant with the 
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false alarm rate imposed by the targeted phase of flight (APV I) for continuity requirement. 

Then, with regard to this threshold, the missed detection probability of the algorithms is 

determined. Finally, by multiplying this probability by the probability of occurrence of cycle 

slip, the resulting product probability can be compared to the integrity risk to know if the 

algorithms are compliant or not with ICAO integrity requirement for APV I. This is done for 

varying cycle slip amplitudes, and the minimum amplitude that allows reaching the integrity 

requirement is then recorded for each detection algorithm. This provides its capability to 

detect small cycle slips in compliance with continuity and integrity requirements for the 

targeted phase of flight. 

6.4.3.3.  Cycle slip detection methods  

Different cycle slip detection methods can be proposed. One method consists in 

calculating the derivatives of carrier phase measurements. In theory, for high aircraft 

dynamics, and for detection threshold setting, a third order derivative of carrier phase is 

needed, which implies a heavy detection algorithm in term of calculation time cost.  

 

Another method can consist in comparing raw and phase-smoothed code 

measurements (Hatch filter). The difference between raw and smoothed measurements is 

not expected to exceed a certain threshold which can be determined in compliance with 

continuity requirements for APV I. This technique has been tested and the results are 

discussed as a conclusion and it seems not to be the most promising technique.  

 

A third technique is the monitoring of carrier phase measurements using Doppler 

predicted phase as described in next paragraph. This technique has a low complexity and is 

robust against high aircraft dynamics, which is of interest for civil aviation community.  In 

addition, this technique seems to provide promising performances as it is described in the 

following.  

 

The scope of this study is not to repair the impact of cycle slips on the measurements 

but to be able to detect it to comply with ICAO integrity requirements for APV I.  

6.4.3.3.1.  Cycle slip detection using Doppler measurements 

This algorithm is based on a prediction of future phase measurements with Doppler 

measurements:  ϕH�t� = 	ϕ�t − Δt� +	FÀ�t − Δt�. Δt (126) 

 

Where:  

• FÀ is the Doppler frequency  

• t∆ is the time delay between the previous and the current measurement  

• ϕ is the carrier phase measurement (in meters) 

• ϕH  is the estimated carrier phase measurement (in meters) 
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Then the difference between phase measurements and predicted phase measurements 

is compared to a threshold which has to be fixed:  

 øϕH�t� − 	ϕ�t�ø > °ℎGHÐℎPI� (127) 

 

The choice of a threshold is a function of false alarm probability with regards to APV 

phase of flight requirement and depends on the receiver dynamics.  

6.4.3.4.  Smallest detectable cycle slip 

We launch simulations to determine the smallest detectable bias with the required PMD, 

to determine the performance of some cycle slip detection algorithms. 

 

Different magnitudes of cycle slips must be simulated, and we have to compute non-

detection probability and to determine whether the obtained values are acceptable as a 

function of the magnitude of cycle slips.  

6.4.3.4.1.  Measurements simulator 

Due to the low probability of cycle slipping, the number of actual available 

measurements is too low to assess the performances of our algorithms. As a consequence, 

the measurements are generated taking into account the aircraft dynamics:   

 P�t� = 	ρ0 + v. t + 9.81	a. tf2 + 9.81	j. tk6 + c�∆tu − ∆ti� + c3I6i + τi4 + Dmulti + ni (128) 

 ϕ�t� = 	ρ0 + v. t + 9.81	a. �Èf + 9.81	j. �JK + c3∆t� − ∆t�4 + c3Ip� + τ�4 +	Φ����� +	N�λ� +	n�  
(129) 

 

Where: 

• φ  is the phase measurement in meters 

• P is the code pseudorange measurement in meters 

• 0ρ  is a typical constant range (for instance 20200 km for GPS satellites and 23258 km for 

Galileo, but this distance depends on the satellites orbitography) 

• v  is the range rate, taken here to be 800 + 70 m/s (worst case range rate due to satellite 

and aircraft movement during an approach). 

• a  is the acceleration.  

• j  is the jerk.  

• c3∆t� − ∆t�4	is the clock bias generated as a function of the clock imperfections described 

in [Winkel, 2003]. 

 

6.4.3.4.1.1.   Doppler 



        Chapter 6   Ionospheric code delay estimation in case of single frequency degraded mode 

 125

The Doppler measurements are generated as a first order derivative of the previously 

defined phase except that the additive noise is provided by Gaussian random values 

multiplied by a FLL sigma value defined in [Kaplan, 1996] instead of a PLL sigma value: 

  

σ,§§ =	 &fð'ë�L	Ø�BCò j1 +	 &'ë BCòl (Hz)    (130) 

 

6.4.3.4.1.2.  Clock bias 

      In a real world, GNSS relies on accurate time to provide accurate measurements to civil 

aviation users. However, the satellites and receiver oscillators are not perfect and the 

imperfections must be taken into account. Actually, the satellites and receiver times must be 

as close as possible to the reference time (i.e. GPS or Galileo time) or the offset to this 

reference must be evaluated.  

 

As it is described in [Julien, 2005], the oscillator timing error is linked to the oscillator 

deviation from its original frequency. It is called the oscillator frequency noise. It can be 

modelled thanks to three main components which are a random walk, white frequency noise 

and Flicker as described in [Winkel, 2003]. These components are evaluated by Winkel and 

can be used to characterize five different types of oscillators: Quartz, TCXO (Temperature 

Compensated Crystal Oscillator), OCXO (Oven Controlled Crystal Oscillator), Rubidium and 

Caesium. The three components have different effects on the Allan variance of the oscillator 

as depicted in [Winkel, 2003]. The Allan variance represents half the root mean square of the 

timing error and is given by: 

 

                                     σâ��\~f �Δt� = 	 �òf	4� + 	2. hK& + fðÈk Δt. hKf  
(131) 

 

The set of parameters h0 (seconds), h-1, and h-2 (Hz), determines the categories of 

oscillators. These parameters are provided in [Winkel, 2003] and their values are recalled in 

the following table:  

 

 H0 (SEC) H-1 H-2 (HZ) 

Quartz 2 10-19 7 10-21 2 10-20 

TCXO 10-21 10-20 2 10-20 

OCXO 8 10-20 2 10-21 4 10-23 

Rubidium 2 10-20 7 10-24 10-29 

Caesium 10-19 10-25 2 10-23 

 

Table 14: Oscillators characteristics, [Winkel, 2003].
  

Pseudoranges are simulated by using a TCXO for the generation of the clock error 

through differential equations as described in [Winkel, 2003].  
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6.4.3.4.1.3.   Multipath 

The multipath error for code measurements is generated by drawing successive 

independent Gaussian random values with a standard deviation corresponding to the worst 

case value at 5° elevation (for Galileo, this value of mask angle is 10 degrees), so our choice 

for simulations corresponds to a worst case for both GPS and Galileo constellations using 

[SARPs, 2006] formula:  

 

                                               σ�����}\�� = 0.13 + 0.53	exp �− z&0� (m) (132) 

 

Where: E is the elevation angle of the considered satellite in view (deg). 

 

The maximum carrier phase multipath error due to one reflected signal does not exceed 

one quarter of a carrier cycle. Indeed, the quarter wavelength corresponds to the phase 

tracking error due to a 
2

π
 reflected path, if we suppose there is only one signal replica with a 

magnitude of 1. The corresponding chosen sigma value is set to this maximum of a quarter 

wavelength. 

6.4.3.4.1.4.  Troposphere 

The troposphere effect is generated by drawing successive independent Gaussian 

random values with standard deviations obtained thanks to the model defined in [RTCA, 

2006]:  

 

                                                      σ�{|}|_}��{� =	 0.&f∗0.00&g0.00f00&�_�~�z�² (m) (133) 

 

with an elevation angle E of 5 degrees (assuming a minimum mask angle for a GPS 

satellite orbitography). 

6.4.3.4.1.5.   Ionosphere 

The ionosphere impact is generated by drawing successive independent Gaussian 

random values. The ionospheric code delay is generated by using a standard deviation value 

of 0.83 meter. The standard deviation value on carrier phase measurements is set to 0.23 

meter to comply with the values obtained in [Shau-Shiun Jan, 2003]. 

6.4.3.4.1.6.   Noise 

The noise is generated by drawing successive independant Gaussian values with the 

standard deviation of the tracking error due to noise (PLL and DLL), defined in [Julien, 2004]. 
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6.4.3.4.2. Estimation of the smallest detectable cycle slip with the 
proposed detection algorithm 

The methodology used to determine the smallest detectable bias with the proposed 

detection algorithm can be summarized in a few steps:  

 

1. The pseudoranges and Doppler measurements are generated without cycle slips. The 

detection criterion is compared to varying thresholds. For each threshold, the false alarm 

rate of the algorithm is recorded. When the false alarm rate imposed for APV I is reached, 

the corresponding threshold is kept in memory as the detection threshold.  

 

2. Then, the pseudoranges and Doppler measurements are generated again with varying 

cycle slip amplitudes. The missed detection probability is estimated for each cycle slip 

amplitude.  

 

3. The integrity risk due to cycle slip can be expressed as the product of the algorithm missed 

detection probability by the cycle slip probability of occurrence. A theoretical missed 

detection probability is estimated by dividing the integrity risk by the obtained cycle slip 

probabilities. The integration time is set to 4 ms to take into account a pilot channel 

(dataless). The PMD is estimated for maximum normal and abnormal aircraft dynamics. 

Indeed, the maximum cycle slip occurrence rate is bounded to 10
-3

 for normal aircraft 

dynamics and 10
-1

 for abnormal aircraft dynamics. The integrity risk is not only allocated to 

cycle slips, this risk is due to manufacturing
5
 as seems to indicate [RTCA, 2006]. The integrity 

risk is chosen equal to 10
-8

 (lower than the actual value since this part of the integrity tree is 

not only allocated to cycle slips). Therefore, the required missed detection probabilities for 

integrity compliance are respectively 10
-5

 for the normal manoeuvre case and 10
-6 

for the 

abnormal manoeuvre case. 

 

4. The experienced missed detection probabilities are compared to the theoretically derived 

ones for normal (10
-5

) and abnormal dynamics (10
-6

). Once the experienced missed detection 

probability is lower than the theoretical PMD value, the cycle slip amplitude corresponding to 

the obtained PMD is then recorded as the minimum detectable bias.  

 

Figure 56 shows the obtained PFA as a function of the generated cycle slip amplitude in 

meters.  

                                                           
5 Note that this risk can be viewed as a SIS integrity risk (2*10-7), but these results were proposed to the 
EUROCAE WG 62 which decided to consider this risk as a manufacturer one. 
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Figure 56: Probability of False Alarm obtained through simulations as a function of detection 

thresholds for both maximum normal and abnormal manoeuvres (step 1). 

 

The previous figure is obtained by simulating varying detection thresholds. The false 

alarm rate values are recorded and compared to the required PFA from the APV I continuity 

requirements (step 1). In this simulation, no cycle slip is generated to obtain the false alarm 

rates. In this figure, it can be noticed that the threshold is between 5.4 and 5.5 meters for 

both the maximum normal and abnormal aircraft dynamics. 

 

For APV I, the maximum integrity risk equals 10
-7

 per approach. As the integrity risk is not 

only allocated to cycle slips, we choose to overbound the required probability of missed 

detection of the cycle slip detection algorithm with a value of 10
-5

 for normal manoeuvres 

and 10
-6

 for the abnormal case.  

Indeed, since the maximum cycle slip probability of occurrence is 10
-3

 for normal 

dynamics, the corresponding integrity risk allocated to cycle slips is 10
-5

 * 10
-3

 = 10
-8

<10
-7

. 

For the abnormal case, the integrity risk is supposed allocated to cycle slips only. The risk 

must be weighted by the probability to have abnormal manoeuvres. In this case, the 

maximum probability of occurrence is 10
-1

, the integrity risk is consequently 10
-1

 * 10
-6

 = 10
-

7
. 

Now we have to determine the smallest detectable cycle slip with this required PMD. 

These values are represented respectively in green and red in the following figure. 
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Figure 57: Probability of Missed Detection of the cycle slip detection algorithm with regards 

to integrity requirements for APV, obtained by simulating different cycle slip amplitudes 

(bias), the PMD are recorded for each cycle slip amplitude and compared to theoretical PMD 

values for both normal and abnormal aircraft manoeuvres (step 2). 

 
As it can be seen in Figure 57, the smallest detectable cycle slip with Doppler-based 

detection algorithm, has an amplitude of 13 meters for normal dynamics and 16 meters for 

abnormal manoeuvres, choosing a maximum jerk for these two cases. 

 
It is understood that the normal (resp. abnormal) aircraft manoeuvres correspond to the 

maximum dynamics values defined in [EUROCAE, 2007] or [RTCA, 2006]. As a consequence, 

the results obtained allow protecting the user against all kinds of aircraft dynamics.  

 

The tests to determine the minimum detectable bias were made using 10
5
 samples. 

 

It is important to notice that for simulations, assumptions on pseudoranges take into 

account the worst case values. More precisely, multipaths are generated by assuming the 

corresponding satellite in view has the lowest elevation angle (equal to the mask angle), 

ionosphere and troposphere errors are generated by multiplying theoretical maximum 

standard deviation values by successive independent Gaussian random values rather than 

taking into account the actual correlation of this error along a satellite course for instance. 

Indeed, the generated values are not used for accurate estimation of ionosphere error, but 

for cycle slip detection over a sufficient number of tests.  

 

These smallest detectable cycle slips imply a bias on position error depending on 

geometry. Since integrity requirements are expressed in the position domain, we need to 

switch from the pseudorange domain to the position domain. The availability of protection 

against cycle slip compatible with APV depends on geometry and must be computed at 

every second. This is described in the next paragraph. 
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6.4.3.4.3. Cycle slip detection availability calculation 

Tests are made over Europe for both GPS and Galileo constellations, considering the 

worst-positioned satellites. 

 

As it is described in details in [Macabiau2, 2005], the assumption is that the receiver 

makes n pseudorange measurements collected in a vector noted Y. The measurement vector 

Y and the state vector X composed of positions coordinates and clock bias are related by:  

 Y = g�X� + 	E (134) 

 
 

E  is the measurement error, due to multipath, noise, possible cycle slips, atmospheric 

effects and satellite clock residuals. [ ]TbzyxX =  is composed of positions coordinates 

(x, y and z) and clock bias b. 

 

Let us describe the least squares navigation solution. 

If 0X̂  is an initial estimate of X , then X can be noted: 

 X = 	X01 + 	ΔX (135) 

 

The measurement model can be rewritten as:  

 Y = g3X01 + 	ΔX4 + 	E (136) 

 

This expression may be linearized around 0X̂ , the estimate of X :   

 Y = g3X014 + 5657 3X014ΔX		 + 	E
       

(137) 

 

Where:  

 

5657 3X014 = G =	 9::
;56<5= 3X014 56<5> 3X014⋮ ⋮ 56<5@ 3X014 56<5A 3X014⋮ ⋮56B5= 3X014 56B5> 3X014 56B5@ 3X014 56B5A 3X014CDD

E		(138) 

 

The linearized model can then be rewritten as:   

 Y − 	g3X014 = G	ΔX		 + 	E
   

 (139) 

 ΔY = G	ΔX		 + 	E (140) 

 
 ΔY = 	Y − 	g3X014 (141) 
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is the deviation between measurements and noiseless predicted measurements if position 

and clock delay were 0X̂ .  

From this linear relationship between Y∆ and X∆ , we deduce the least squares 

estimate of X∆ :   

 ΔXH = IG'GJK&G'	ΔY (142) 

 

And 
 XH = 	X01 + 	ΔXH 

 

(143) 

 

The residual Y∆ considering X̂  may be expressed as:  

 ∆Y = Y − g3XH4 = 	g�X� − 	g3XH4 + 	E (144) 

 ∆Y = 	g3X01 + ∆X4 − 	g3X01 + ∆XH4 + 	E (145) 

 

 As described in [Macabiau2, 2005], the previous expression is linearized: 

 Y − g3XH4 ≈ G∆X − G∆XH + 	E = G�∆X − ∆X�1 + 	E (146) 

 
 

However, ∆XH = IG'GJK&G'+Y − g3X014, (147) 

 

 

Therefore:  ∆XH = IG'GJK&G'IG∆X + EJ (148) 

 

Which is equivalent to:  

 ∆XH = ∆X + IG'GJK&G'E (149) 

 
 ∆XH − ∆X =	 IG'GJK&G'E (150) 

 

If the pseudo inverse matrix is denoted:  

 A =	 IG'GJK&G' (151) 

 

Then: 

 −∆X + ∆XH = AE (152) 

 
 

The difference between X and its estimate is thus described as a function of the 

measurement error E. 
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The horizontal and vertical projections factors of the previous relation are estimated by 

using the following equations:  

 

ÒH�i� = 	�A&�f + Af�f 	H�\= =	max��H�i��		 (153) 

                                                                                                                                                                                                                                      M V�i� = 	Ak�V�\= =	max��V�i�� (154) 

 

for ni K1= . where n is the number of raws of the matrix A. 

 

The relationship between the aircraft position error and the measurement error can be 

drawn horizontally and vertically thanks to the following figure. The minimum detectable 

bias due to cycle slips can be then projected on the horizontal plane and on the vertical axis 

to compare the impact of the bias induced by cycle slip detection capability in the position 

domain to the alert limits imposed for the APV I phase of flight (table 1). 

 

                                    
Figure 58: Computed position error for all satellites in view. 

 

  

As we can see in Figure 58, the more important the geometrical factor is, the higher the 

position error. The maximum geometrical factor is considered in the following so as to study 

the worst satellite position case. 

 

The horizontal impact of the undetected bias induced by a cycle slip is thus modelled by:  

 H��}\¾� =	H�\=	. bias (155) 

 

A similar relationship can be used to define the vertical one: 

 V��}\¾� =	V�\=	. bias (156) 
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maxH  and maxV  are the horizontal and vertical projection factors that induce the 

maximum position errors in horizontal and vertical planes respectively, considering all the 

satellites in view. 

maxH ( maxV ) is the horizontal (vertical) value of the position error induced by the largest 

undetectable cycle slip on the worst case satellite.  

 

 

 

When the computed impacts ( impactH , impactV ) are above alert limits (horizontally and 

vertically), the CMC + detection algorithm is declared unavailable. When these impacts are 

under or equal to alert limits, it is declared available. 

 

The code minus carrier divergence (CMC) technique alone does not satisfy integrity 

requirements for the APV I phase of flight. Indeed, carrier phase measurements can be 

affected by cycle slips with a certain probability of occurrence. As a consequence, the cycle 

slip detection algorithm is required. The availability of this algorithm (and therefore the 

availability of the CMC measurements to estimate the ionospheric delay to correct the 

pseudorange measurements and finally to calculate the protection levels) is evaluated in the 

following paragraphs.   

6.4.3.4.4. Maps of availability of cycle slip detection algorithm for GPS and 
Galileo constellations  

The following maps are drawn for the APV I phase of flight. The availability maps of 

detection algorithms over Europe for normal maximum dynamics are drawn. Simulations are 

made over 24 hours for GPS and over 10 days for Galileo. These plots show that using GPS or 

Galileo constellations in standalone mode, the availability of cycle slip Fault Detection (FD) 

function is not sufficient for normal aircraft dynamics when using only detection based on 

Doppler measurements. It is also consequently the case for abnormal dynamics, but during 

abnormal manoeuvres, the accuracy of the measurements is not required as it is specified in 

[RTCA, 2006]. 
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Figure 59: Availability of proposed cycle slip detection algorithm over Europe considering GPS 

constellation only and normal aircraft dynamics, for APV 1 alert limits. 

 
Figure 60: Availability of proposed cycle slip detection algorithm over Europe 

considering Galileo constellation only and normal aircraft dynamics for APV 1 alert limits. 

 

As it can be seen in Figure 59, for GPS, a maximum value of 100% availability is reached 

but only in Northern Europe. The minimum value obtained is 97.1%. The mean value is 

99.5%. This means that single frequency GPS measurements corrected from ionospheric 

delay through CMC technique plus cycle slip detection cannot be used in standalone mode, 

as the minimum required continuity value during APV I phase of flight is 99.99%. 
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As seen in Figure 60, for the Galileo constellation, assuming normal dynamics, the results 

obtained show that availability is sufficient over a large part of Europe but not enough over 

Norway for instance. The minimum availability is 97.8%, the mean value is 99.63% and the 

maximum is 100%.  

 

Note that, this lack of availability for GPS and Galileo single frequency ionospheric 

correction plus cycle slip detection is mainly due to the largest impact of the bias on the 

vertical axis. This is due to the fact that the geometrical factor TT GGG 1)( −  is larger on the 

vertical axis than on the horizontal plane. 

 

Recall that the bias included in the availability computation is calculated for the higher 

value of dynamics. That is to say, the availability is calculated for maximum jerks and 

accelerations of an aircraft in a normal dynamics case. We thus considered the least 

favourable case for each calculation of availability. 

 

The availability of this detection algorithm is not so low for each constellation. Indeed, 

the risk induced by cycle slips affecting single frequency ionospheric delay estimate must be 

weighted by the unavailability of dual frequency ionospheric code delay estimation. More 

precisely, it must be weighted by the probability of falling into single frequency mode 

(degraded), for instance, after a RFI area crossing, as described in equations written in 

Erreur ! Source du renvoi introuvable.. 

6.5. Ionospheric delay estimation using Kalman filter on CMC 
observables 

6.5.1. Filter settings and characteristics 

As proposed in [Euler, 1991], a classical Kalman filter is used in order to evaluate the 

ionospheric code delay and to follow the evolution of ambiguities of all satellites in view. The 

observation and state propagation models are described in the following. The acquisition 

and loss of each satellite are taken into account in the estimation algorithm by updating the 

states according to the different satellites in view. When a cycle slip occurs, the ambiguity on 

the corresponding phase measurement is affected by a jump.  

 

The ambiguity of each satellite carrier phase measurement of a same constellation is 

estimated thanks to the filter and is taken into account in the state vector. Each ambiguity is 

not expected to vary along each corresponding satellite course.  

 

As a consequence, the state vector is defined in the following:   

 X = 	 �I0 N& … N~�' (157) 

 

The filter is initialized thanks to dual frequency ionospheric delay estimation. Indeed, in 

reality, the filter will not have to run before loss of frequency, only dual frequency 

ionospheric delay estimation must be kept in memory, for each satellite in view. In case of 
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loss of frequency, this value is then used to initialize the states of the Kalman filter. Each 

state is thus initialized as described in the following.  

 

0I is the ionospheric delay at the Ionospheric Pierce Point (IPP), it is calculated as:  

 

I0 =	∑ IåObåtA__\�å�&Nb_sat  
(158) 

 

Where:  

• satNb _  is the number of satellites in view 

• kOb is the obliquity factor corresponding to the k
th

 satellite in view 

• kI is the slant ionospheric estimation provided by the CMC technique and considering 

the k
th

 satellite in view 

 

The ionospheric delay (I) at the zenith of the aircraft antenna can be then deduced by 

removing the ionospheric delay variations modeled by spatial gradients (A, B) around the IPP 

location, from the ionospheric delay (I0) obtained at the IPP. As it is modelled in [Lestarquit, 

1997], the ionospheric delay is:  

 I = 	I0 − A ∗ ∆lat − B ∗ ∆lon (159) 

Where:  

• ∆lat (in degrees) is the coordinate of the subionospheric IPP along an axis that points to 

the North direction 

• A is the linear gradient constant along the South-North axis 

• ∆lon (in dergrees) is the coordinate of the subionospheric IPP along an axis that points 

to the East direction 

• B is the linear gradient constant along the West-East axis 
 

In order to test the ionospheric code delay estimation algorithm performances, the 

spatial gradients A and B can be set to 0 as it is mentioned in [Lestarquit, 1997]. In that way, 

we consider only a uniform ionospheric model. 

 N& … N~ are the carrier phase measurements ambiguities of all the acquired n satellites 

in view. 

 

The initial ambiguity for each satellite in view is derived from the difference between 

dual frequency and single frequency code minus carrier estimations. The mean of this 

difference over the first measurements is used as initial value for each satellite in view. 

 

The obliquity factor, which is a ratio between slant and vertical electronic content at an 

ionospheric pierce point, depends upon the transmitting satellite elevation. It is a function of 

elevation of each considered satellite in view [RTCA, 2006]: 
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Ob =	 Ä1 −	¼ R�R� + 	h cos	�E�½fÉK&f
 (160) 

 

Where: eR  is the Earth equatorial radius, h the altitude of the ionospheric pierce point (350 

km) and E the elevation angle at the ionospheric pierce point (thin shell model) as it is 

described in chapter 2.  

 
 

Figure 61: Obliquity factor as a function of the elevation in degrees 

 

      Here, for a position of a space vehicle at the zenith of the IPP, the obliquity factor equals 

1, its values are 3 for GPS mask angle (5 degrees) and 2.7 for Galileo mask angle (10 

degrees). 

 

The Kalman filter provides real time estimation of the ionospheric delay thanks to 

measurements from all satellites in view and of ambiguities for these satellites for the same 

frequency. The relationship between observation vector Y and state vector X at the instant t 

is assumed to be: 

 Y� =	H�X� +	V�	 (161) 

 

Where:  

• tY is the observation vector, composed of the difference between code and carrier phase 

measurements for all satellites in view. Note that the obliquity factor is multiplied by two 

in the algorithm for the construction of the matrix H so as to obtain two times the 

ionospheric code delay for each satellite. The measurements used are the raw code and 

carrier phase measurements, the code measurements are not smoothed. 

• tV is the observation noise 

• tH is the observation matrix  
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H� =	O Ob&P 1⋮ ⋮ … 0⋱ ⋮ObtA__\�P 0 … 1Q	 (162) 

Where :  Ob�P = 2 ∗ Ob�, i = 1,… , Nb_sat 
 

 
The local model states are considered constant between measurements periods, except 

the ionospheric delay that is affected by the West-East gradient [Lestarquit, 2007]. 

Nevertheless, we consider that the parameter B (linear gradient constant along the West-

East axis) is equal to zero in the model. 

 

The covariances are propagated according to the Kalman equations. 

 

An extensive study of the state noise covariance values has already been performed in 

[Lestarquit, 1997]. In this study, the same values are used and recalled in the following. 

 

W is the state noise process. It is used here to model random fluctuations in linear 

prediction model imperfections. The covariance matrix of W is Q:  

 

Q =
dR
e¼ 5Δt3600½f 00 10K�

… 0… 0⋮ ⋮0 0 ⋱ ⋮… 10K�hS
i	 (163) 

 

11Q is in m². Note that the covariance matrix assumes correlation time of ionospheric which 

corresponds to the nominal behaviour of the ionosphere, in case of ionospheric 

scintillations, this model must not be applied. 

 

The covariance matrix of the measurement noise V is: 

 

R = 3.5²	
dR
e¼Ob&Δt ½f … 0⋮ ⋱ ⋮0 … ¼ObtA__\�Δt ½fhS

i	 (164) 

 
Where t∆ is the measurement interval, 3.5 is a multiplicative empirical term used in 

[Lestarquit, 1997]. The measurement rate is one second. When the receiver loses track of 

one satellite signal, its corresponding state in the state vector of the Kalman filter is 

suppressed, its ambiguity is not kept in memory. 

  

As proposed, the code minus carrier calculation is based on raw measurements and 

thus, the remaining noise and multipath components still affect the measurements. It is 

consequently of interest to discuss the sensitivity of the filter to multipath. During 

calculation of raw code minus carrier, multipath effects on both code and carrier phase 

measurements are accumulated as these effects are not the same on code and on carrier 
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phase. It must be noticed that the multipath and noise on the carrier phase measurements 

are lower than on the code measurements. As a consequence, the multipath and noise on 

code measurements dominate the resulting errors in the CMC estimations. However, as this 

study focuses on APV phases of flight, the multipath are not strong and their impact on the 

filter is not expected to be significant. 

6.5.2. Receiver  ionospheric error estimation 

6.5.2.1.  Validation with actual  measurements: GPS L1 C/A 

Code and carrier phase measurements on GPS L1 and L2 signals were collected during a 

flight around Toulouse-Blagnac airport (France), which path is drawn in the following figures.  

 

 
 

Figure 62: Aircraft path, data collected from Airbus campaign, zoom on the Blagnac Airport 

(Toulouse, France), ©Airbus. 
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Figure 63: Aircraft path, data collected from Airbus campaign around Blagnac Airport 

(Toulouse, France), ©Airbus. 

 

Dual frequency measurements were collected during these flights around Blagnac airport 

(France), on both GPS L1 C/A and L2. The objectives of having such measurements are 

multiple. First, it is convenient to test the algorithm on real measurements during aircraft 

flight to experience aircraft approaches with actual conditions. Indeed, aircraft dynamics and 

multipaths allow testing the filter robustness against these types of perturbations during 

APV and even during other phases of flight. Secondly, even if the goal is to estimate single 

frequency ionospheric delay, a dual frequency basis is necessary to compare the 

performances of the estimation algorithm. As a consequence, dual frequency measurements 

are needed. Nevertheless, these measurements are carried out on L1/L2. The dual frequency 

measurements in nominal modes will be on L1/L5 for GPS and E1/E5a or E1/E5b for Galileo. 

Since L5 is still not available at the time of the data collection, this study will be based on 

L1/L2 frequency measurements. Pegasus software (Eurocontrol) is used to process the 

collected data. 

 

 
Figure 64: Eurocontrol Pegasus Software 

 

Dual and single frequency ionospheric delays are calculated for all satellites in view over 

the data file. The scenario presented here is the loss of GPS L2 leading to single GPS L1 C/A 

frequency mode.  

 

The Airbus collect was made during 2h20, the measurements available are provided 

each 0.2 second. In the following, all figures are plotted as a function of the number of 

samples, where 5 samples are available each second. The total number of time samples is 

42000.    

Note that the number of satellites tracked varies along time as it is presented in next 

paragraph. 

The minimum number of satellites tracked equals 7 for short periods of time that can be 

identified in Figure 65. This graph allows identifying the onset or the loss of satellites from 

the receiver point of view.  
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Figure 65: Number of satellites tracked as a function of time samples 

 

 
 

Figure 66: GPS L1 C/A code measurements for all tracked satellites over the entire file 

 

 
 

Figure 67: GPS L2 code measurements for all tracked satellites over the entire file 
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Figure 68: GPS L1 C/A carrier phase measurements for all tracked satellites 

 

The abrupt changes that appear in code and phase measurements are clock shifts or 

losses of satellites (they are correlated with the number of tracked satellites and can be 

observed for both frequencies and on code and carrier phase measurements). 

6.5.3. Kalman filter estimation in single frequency mode 

Before presenting the Kalman filter estimations of the ionospheric code delay, we 

present the ionospheric code delay obtained thanks to the classical dual frequency method 

for each satellite. The results are plotted hereafter during the data collection onboard the 

Airbus aircraft. 

 
Figure 69: Ionospheric code delay estimated thanks to dual frequency measurements during 

the aircraft flight, the presented results are weighted by the obliquity factors. 
 

In Figure 70, the mean dual frequency estimation of zenith ionospheric code delay for all 

tracked satellites is plotted in green. The red curve represents the Kalman estimation as 

described in the previous section. This estimation concerns the mean ionospheric code delay 

taking into account all the satellites in view (if acquired). The filter is initialized with dual 
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frequency measurements. Indeed, it is assumed that the loss of frequency occurs after the 

filter has started. 

 

 
Figure 70: Ionospheric code delay estimated by the Kalman filter (in red) versus mean dual 

frequency estimation over all the acquired satellites (in green). 

 

The accuracy of the filter is evaluated by comparing the mean and the standard 

deviations (STD) of dual and single frequency estimations over all the available 

measurements. 

 

 Nsample 

Mean vertical ionospheric delay over all tracked satellites 

measurements 

Mean  Standard deviation (STD)  

Dual frequency  3 104 11.09 m 3.31 m 

Single frequency  3 104 10.89 m 1.49 m 

Table 15: Mean and STD of dual and single frequency estimations of mean ionospheric code 

delay over all the tracked satellites. 

 

Note that the figures presented in this table are obtained by processing GPS L1 C/A 

measurements in single frequency mode and thanks to L1 C/A + L2 measurements in dual 

frequency mode.  
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Some cycle slips were experienced during the data collection; these cycle slips can be 

identified thanks to the Kalman filter innovations. An example of significant cycle slip in the 

measurements is plotted in the figure below. 

 

 
 

Figure 71: Innovation plotted for the SV 7. 

6.6. Conclusion and future works  

The performances of an algorithm capable of estimating single frequency ionospheric 

code delay have been estimated for civil aviation application.  

 

Two parameters are taken into account for the accuracy: the mean and the standard 

deviation of the ionospheric code delay estimation error (and other percentiles in case of 

satellites loss or acquisition). It appears from this processing of the 2h20 data set that the 

estimation provided by the Kalman filter can allow keeping the accuracy of dual frequency 

estimations after a loss of frequency, with the cycle slip detector described in this chapter, 

to ensure the integrity required for APV I. 

 

Thus, if cycle slips are detected, integrity is maintained as mentioned in [Ouzeau2, 2006]. 

But in this study, only a few significant cycle slips were experienced. Further investigations 

can estimate the filter resistance to cycle slips, with varying amplitudes. 

 

Other types of algorithms may be used to detect cycle slips, like comparing raw and 

smoothed code measurements using the Hatch filter described in chapter 2 or using a 

Generalized Likelihood Ratio test (GLR) at the output of the Kalman filter which estimates 

the ambiguities of all tracked satellites.  

 

The same performance analysis was conducted while comparing the Hatch filter inputs 

and outputs to detect cycle slips. It appears that the minimum detectable bias induced by 

cycle slips in normal aircraft dynamics conditions is 14.8 meters, slightly higher than the 

minimum bias obtained while using Doppler measurements (13 meters).  
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Concerning the GLR algorithm at the output of the Kalman filter, it is expected to have a 

much higher complexity than the two other detection algorithms. The actual performances 

of this algorithm in terms of cycle slip amplitude estimation must be evaluated through 

intensive future tests. 

 

Ionospheric scintillations are not addressed in this study. However, it would be 

interesting to evaluate the behavior of the Kalman filter under ionospheric scintillations for 

further investigations, since the time constant for the ionospheric state is 3600 seconds as 

described in the equation (163). 

 

The Kalman filter can be initialized thanks to SBAS dual frequency data, but simulations 

must be launched to evaluate the performances of the algorithm in this case. 
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Chapter 7 
 
 

Conclusion and future works 

7. Conclusion and future works 

7.1. Global goals and combined receiver architecture 

 

In this thesis, some key elements of the architecture of future combined receivers are 

proposed and discussed. A switching-based strategy between nominal, alternate and 

degraded modes of operation is described. The switching strategy depends on the targeted 

operation. In this thesis, in particular, we focused on the APV I phase of flight. 

 

When a degradation occurs on one ore more GNSS components, the performances 

reached may be not sufficient to perform a phase of flight. This implies the use of 

degradation detection functions to monitor the performances reached and thus, the 

availability of the GNSS components. Degradation detection algorithms also allow to initiate 

a switch between modes of operation. 

 

The detection functions are not only integrity monitoring functions. These functions 

must allow monitoring all the performances losses. 

 

Another important point discussed in this thesis work, is how to maintain as long as 

possible the performance level required during degraded modes of operation.   

 

In the following paragraphs, conclusions and way forward for future investigations are 

provided.  

7.2. Interference threat 

7.2.1. Interference detection for integrity and continuity 

Amongst the perturbations that can lead to a loss of performance, interference is one of 

the most feared events. It can affect simultaneously several GNSS signals (GPS L1 C/A and 

Galileo E1 for instance) and can generate large tracking errors. As described in chapter 5 the 

interference can lead to pseudoranges measurements errors. In this study, we focus on the 

CW detection. Indeed, a CW can stay a long time near high-power code spectrum lines due 
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to low Doppler shit rate between the interference and the GNSS signals (2 Hz/s), leading to 

abnormal code tracking errors as described in chapter 5. 

  

The impact of CW on GPS L1 C/A and Galileo E1 is studied in details in chapter 5. The 

maximum amplitude code spectrum lines within main lobes of GPS L1 C/A and Galileo E1 

spectra are located respectively on PRN 6, 227 kHz and PRN 38, 673.5 kHz.  

 

In [EUROCAE, 2007], the maximum CW power with proposed receiver design is -155 

dBW. Under maximum aircraft dynamics conditions defined in [EUROCAE, 2007], the raw 

code tracking error can reach 50 meters and 22 meters after 100 s carrier smoothing as 

depicted in Erreur ! Source du renvoi introuvable..  
 

Two interference detection algorithms are proposed and based on multi correlator 

outputs monitoring: on the one hand, calculating the FFT of the correlators outputs on the I 

channel; on the other hand, by comparing the residuals of multichannel autoregressive 

model of all correlators outputs time variations. The FFT algorithm provides a missed 

detection probability of 6.7 10
-5

 when generating correlators outputs affected by CW 

interferences and impacting the GPS L1 C/A PRN 6. The resulting maximum tracking error is 

15 meters when the interference is not detected, after carrier-smoothing. In the case of 

Galileo E1 PRN 38, the obtained missed detection probability is 10
-5

. The resulting maximum 

smoothed tracking error is 1 meter. The multichannels AR algorithm provides a missed 

detection probability of 10
-5

 for both GPS L1 C/A and Galileo E1 worst code spectrum lines 

impacted.  

 

As a trade-off must be made between detection algorithms complexity and the 

detection capability, the minimum number of useful correlators used without loss of 

detection capability can be evaluated in future studies for manufacturing. Between the two 

detection methods, the FFT algorithm is a simple one, which is easy to be implemented with 

low cost. The resulting missed detection probability was evaluated in this study, however a 

final discussion about the algorithm capability compared to required integrity cannot be 

made for a targeted phase of flight, and in particular for APV I. In fact, to compare the 

obtained results to the ICAO specifications about integrity risk, the obtained missed 

detection probabilities must be multiplied by the CW probability of occurrence and the 

probability of hitting one given code spectrum line to cause large tracking errors. The 

probability of occurrence of interferences cannot be evaluated precisely when the potential 

jammers locations, powers, etc are not known. 

7.2.2.  Interference removal for accuracy 

Two options can then be considered when a CW is detected. As proposed in chapters 3 

and 4, the receiver can switch to another available GNSS component to continue the current 

operation. Another solution can consist in estimating the CW characteristics and removing 

the interference effects from the correlators outputs. A 3
rd

 order Prony model is thus 

proposed in chapter 5 and it results in our simulations that the interference impact on code 

tracking is completely removed as depicted in Erreur ! Source du renvoi introuvable.. The 

accuracy is consequently maintained when a CW occurs, by using this algorithm.   
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7.2.3.  Recommendations and future works on 
interference threat 

Future works may consist in studying other interference detection algorithms and other 

types of interferences. Some types of interferences like wide band or pulsed ones for 

instance, are not studied here. Other detection algorithms must be proposed to take into 

account these interferences. The actual performances of these algorithms must be assessed 

and compared to civil aviation requirements.  

7.3. Single frequency degraded mode  

7.3.1. Ionospheric code delay estimation for accuracy 

After a loss of one frequency due to interferences for instance, ionospheric delay cannot 

be estimated through dual frequency measurements. This particular case is also addressed 

in this study. Indeed, the resulting position estimation is not accurate enough to provide 

aircraft position during critical phases of flight in particular. A Code Minus Carrier Kalman-

aided algorithm is proposed to estimate the ionospheric code delay. The performances of 

such algorithm are tested through simulations and also validated thanks to actual aircraft 

measurements. The integrity is maintained with the help of a cycle slip detection algorithm.   

7.3.2.  Cycle slip detection for integrity 

For cycle slip detection, some algorithms are proposed in this study and the one using 

Doppler measurements seems to be adequate. Indeed, the minimum detectable bias 

amplitude obtained is 13 meters while simulating normal aircraft dynamics and 16 meters 

for abnormal aircraft dynamics. The difference between these results is only 3 meters, which 

indicates that the detection algorithm is robust against high aircraft dynamics. In addition, 

these results were obtained while generating pseudoranges with unfavorable conditions: 

minimum satellite elevation angle (5 degrees), low carrier to noise ratio (30 dB Hz), and 

maximum dynamics values as described in chapter 6.  

 

The cycle slip detection technique is interesting since detection can be made on single 

frequency raw measurements. It can protect the user against cycle slip integrity risk. On the 

one hand, it improves the code carrier smoothing with a 100 seconds Hatch filter. On the 

other hand, in case of single frequency mode, it can allow the user to maintain integrity 

while estimating ionospheric code delay with CMC divergence technique for instance as 

proposed in chapter 6. Nevertheless, Doppler measurements must be available for the 

receiver to use this technique.  

7.3.3.  Availability of the algorithm 
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In case of single frequency mode, the availability of the cycle slip detection technique is 

evaluated over Europe and is not complying with the requirements for APV I as depicted 

Figure 59 and Figure 60. However, the obtained results are dependent upon the fact that 

simulated pseudoranges are generated with the worst conditions (multipath, atmosphere, 

dynamics, satellite position…). In addition, the probability of falling into a single frequency 

mode due to aircraft RFI crossing for instance, reduces the corresponding integrity risk and 

thus augments the availability of the algorithm. The probability of losing all but one 

frequency is expected to be very low as mentioned in [RTCA, 2006]. 

7.3.4.  Recommendations and future works for single 
frequency ionospheric delay estimation 

  

Further investigations may consider the dynamics parameters in the Kalman states to 

take into account the high aircraft dynamics that can generate frequent cycle slips in carrier 

phase measurements ([Holmes, 1990]). If dynamics parameters are added, the number of 

states increases. A trade-off must be made between the filter robustness, the impact of 

aircraft high dynamics and the number of states.  

 

The ambiguities are also estimated thanks to the Kalman filter. The estimations can be 

used by a GLR algorithm to monitor cycle slips and estimate cycle slips amplitudes. Further 

works may consist in studying the impact of the improvements of these estimations on the 

resulting pseudoranges accuracy, if these estimations are used to repair the measurements 

in case of cycle slip occurrence. In addition, the amplitudes of cycle slips can also be 

estimated thanks to the code carrier smoothing or the Doppler measurements. 

7.4. Recommendations and future works 

Even if the major risks leading to GNSS components performances degradations are 

addressed in this study, other phenomena deserve to be studied in details, like multipath 

during final approaches, with different airport environments.  

 

This thesis work focuses only on the approach phases of flight. The objective of such a 

study is to converge towards a final architecture of receiver for each aircraft operation. The 

switch between components must be driven by monitoring algorithms with low costs and 

good capabilities. The goal is not to over-equip future combined receivers but to minimize 

the risks induced for each configuration.  

 

The navigator reconfiguration should also be further discussed in case of degraded 

mode. Indeed, the possibility to maintain the level of performance in terms of continuity, 

integrity, accuracy and availability for APV I operations is discussed in this thesis for both 

interferences and ionosphere perturbations. But, EUROCAE WG 62 must decide if it is 

preferable to use algorithms to maintain the required level of performance during degraded 

modes of operation or not.  
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The detection algorithms proposed in this thesis focus on interferences (CW) and cycle 

slips detection. It is of interest to combine them with RAIM-type algorithms in future 

investigations to evaluate precisely the performance of the combined algorithms for using in 

civil aviation.  

 

This thesis focuses on the detection function and not on the navigation function. 

However, future works may include a complete simulator of protection levels computation, 

by taking into account all components described in Chapter 2 and the architectures 

presented in Chapters 3 and 4.   
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________________________________________________________________________________ 

Appendix A: Mathematical models 
________________________________________________________________________________ 

Appendix A.1: ARMA model 
 

We assume that a sampled stationary random signal x(n) can be modeled as the output of a 

numerical ARMA (Auto-Regressive Moving Average) filter F(z), excited by a centered white noise 

e(n): 

F�z� = 	∑ 	bå 	ZKåUå�0 	∑ 	aå 	ZKå}å�0 with	a0 = 1	 (165) 

 

We assume that the expectation (	  ) of the noise is:  

 Ie�n�J 	= 	0 (166) 
 

And: Ie�n�e∗�n − k�J 	= 		σ�fVWX (167) 
 

Where: 

• σ�f is the noise variance (power)  

• VWX = Y 1	à¬	´ = Z0	P�ℎHG[àÐH 

 

The signal x can be written by means of an ARMA(p,q) model: 

 x�n� = 	−∑ 	aå 	x�n − k� + ∑ 	bå 	e�n − k�Uå�0}å�&   (168) 

 

• The order of the AR model is p and corresponds to the \aå ]å�&,…,}coefficients. 

• The order of the MA model is q and corresponds to the \bå ]å�0,…,Ucoefficients. 

The goal of the ARMA model is to determine the p+q \aå ]å�&,…,} and \bå ]å�0,…,U coefficients 

plus the input noise power. 

 

The Auto-Regressive (AR) and Moving Average (MA) models are particular cases of an ARMA 

model: 

• The AR model is:  

x�n� = 	−∑ 	aå 	x�n − k� + e�n�}å�&   (169) 

The transfer function is: 

F�z� = 	 1	1 +	∑ 	aå 	ZKå}å�& 	 (170) 

 

 The estimation of the modeled signal is: x  �n� = 	−∑ 	aå 	x�n − k�}å�&   (171) 
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 Therefore, e(n) is: e�n� = x�n� −	x  �n�  (172) 
 

• The MA model is:  

x�n� = 	∑ 	bå 	e�n − k�Uå�0   (173) 

  

The AR model coefficients can be linearly solved, whereas the MA model induces non 

linearity. The AR model is widely used and we only use this model in this thesis for interference 

detection at the correlators’ outputs. Since the detection is made over all the available correlators, 

we decided to use a multichannel version of this algorithm to take advantage of the existing 

correlation between the correlators’ outputs time variations in presence of CW. This multichannel 

version of the AR model is presented in the next appendix.  

 

AR coefficients estimation 
 

Several methods to estimate the AR coefficients are described in the literature, for instance in 

[Castanié, 2003]. For instance, the AR parameters can be found by minimizing the following 

criterion (quadratic prediction error): 

 E = ∑ |e�n�|f~ = ∑ |x�n� − x �n�|f~ = ∑ øx�n� + ∑ aåx�n − k�}å�& øf~   (174) 

 E = ∑ ø∑ aåx�n − k�}å�0 øf~   (175) 

 

In order to find the AR coefficients that minimize the criterion, the most popular techniques 

are based on Yule-Walker equations solving. We do not describe these techniques here, since our 

goal is to propose a multichannel resolution described in the next appendix.  
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Appendix A.2: Multichannel Autoregressive model 

 
In the following, h is the filter model, x is the filter output, e represents the filter input.  is the 

classical mathematical expectation. _ represents a block matrix. 

 

In this appendix, we describe how the multichannel AR coefficients are calculated, on the 

basis of the theory developed in [Marple, 1987]. 

 

Multichannel AR model 
 

A multichannel AR(p) model is almost like a classical AR model described in [Castanié, 2003]. 

The main difference is that it represents the output of a multichannel filter which inputs are noise 

processes.  

 

The objective here is to determine the coefficients which define the model filter. The 

assumption here is that the signal is the result of a stationary random input white noise process 

filtered by a filter H on several channels. Each channel corresponds to a correlator output in our 

application. 

 

The problem is to determine the filter coefficients that model as accurately as possible the 

correlator outputs behaviour. To this end, we select the AR estimates that induce the minimum 

norm of the estimation error: 
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Where: ][̂][][ nxnxne −=    (177) is the estimation error 

aRa

pr

r

aa

pr

r

rE H

xx

xx

H

T

xx

xx

xx
*

*

][

]1[

][

]1[

]0[ +
















+
















+= MM

   

(178) 

Where r is a correlation matrix (relative to the model order) and a represents the AR 

coefficients, R is the global correlation matrix. 

This expression of the error E depends upon the AR coefficients, and as a consequence, the 

best estimation of these coefficients is provided by minimizing the error, i.e. finding minE , solving 

the following equation:  
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aRr
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(179) 

 

Proof:  
 

The estimation of x is provided by:  

 

][...][][̂ 11 nxanxanx mp++=
   

(180) 

 

eaxx =− ˆ    (181) 
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As it can be seen, only the second term of the previous expression is dependent upon the AR 

coefficients. Since R2 = �_�1_ − _�1_1 `�H
 �_�1 _1�-1

 �_�1 _ − _�1_1 `� (the second term) is 

positive, it has to be minimized as a function of a. 

 

As a consequence, a must verify the following conditions:  

 

axxxx HH ˆˆˆ =    (186) 

 

From (*), and the previous condition, E becomes:  

 

axxxxeeE HHH ˆmin −==    (187) 

In other words:  
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Estimation of the AR coefficients of the multichannel model 
 

If a block column vector of multichannel data vectors is defined as:  
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(189) 

 

where p is the order of the AR model, the stationary m-channel AR process (with model 

coefficients represented by A) may be expressed as the block vector inner product:  

 

)()( nEAnerr pp
f

p =
   

(190) 

 

Similarly, the following product is defined with backward coefficients [Marple, 1987]:  

 

)()( nECnerr pp
b
p =

   
(191) 
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Where:  

( )ICpCC p )1()( L=  is built in the same way than A. 

 

It describes respectively the forward and backward linear prediction error (f and b 

superscripts).   

 

Indeed, in the single channel AR model case, the Hermitian Toepliz structure of the correlation 

matrix is sufficient to ensure the conjugate relationship between the A and C coefficients:

)()( * kcka pp ≠ , but it is not the case for the multichannel model [Marple, 1987]. 

 

In the theory developed in [Marple, 1987], in order to estimate the A and C coefficients, the 

linear prediction errors are multiplied by the Hermitian transpose of )(nE p  and the expectation of 

the obtained expression is calculated:  

 

)]()([ nEnerr H
p

f
p = )]()([ nEnEA H

ppp = pA )]()([ nEnE H
pp = pA  pR

   
(192) 

 

Where: pR  is defined as the block matrix:  
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)]()([ nEnerr H
p

f
p

= n
kδ ωP    

(194) is the model noise power P multiplied by VWX = Y 1	à¬	´ = Z0	P�ℎHG[àÐH. 
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pA  pR = ( )00 L
f

pP
   

(196) 

With:  

=f
pP )]()([ nerrnerr fH

p
f

p = ωP    
(197) 

And similarly:  

 

pC  pR = ( )b
pP00 L

   
(198) 

 

 
The resolution of the two framed equations should be made using the following methodology.  

 

We define the (p+1)-block Toepliz matrix:  
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Where:  

( ))1()1(1 +=+ pRRr EEEEp L
   

(200) 

( ))1())1((1 −+−=+ EEEEp RpRs L
   

(201) 
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In this way, the AR coefficients are calculated in a recursive manner:  

 

( ) ( )11 000 ++ ∆= p
f

ppp PRA L
   

(202) 

 

( ) ( )b
pppp PRC 000 11 L++ ∇=

   
(203) 

 

With:  
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(204) 
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H
ppEEpEEp rCkpRkCpR

1
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(205) 

 

The update of the AR coefficients is then ensured by:  

 

( ) ( )pppp CpAAA 0)1(0 11 ++= ++
   

(206) 

( ) ( )0)1(0 11 pppp ApCCC ++= ++
   

(207) 

 

Therefore, the coefficients of the linear prediction filter for k from 1 to p can be derived: 

 

)1()1()()()( 111 kpCpAkAkAkA ppppp −++++= +++    
(208) 

)1()1()()()( 111 kpApCkCkCkC ppppp −++++= +++    
(209) 

 

And:  

 
1

11 )()1( −
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(210) 

1
11 )()1( −

++ −∇=+ f
ppp PpC

   
(211) 

 

The noise prediction error covariance is given by:  

 

111 )1( +++ ∇++= pp
f

p
f

p pAPP
   

(212) 

111 )1( +++ ∇++= pp
b
p

b
p pCPP

   
(213) 

 

And:  
f

ppp
f

p PpCpAIP ))1()1(( 111 ++−= +++    
(214) 

b
ppp

b
p PpApCIP ))1()1(( 111 ++−= +++    

(215) 

 

The normalized cross-correlation is defined by:  

 
Hb

p
fb

p
f

pp PPP −−
+ =Λ ))(()( 2/112/1

1    
(216) 

 

as mentioned in [Marple, 1987]. 

 

One can also deduce:  
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(217) 
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(218) 

 

Conclusion: 
 

The application of this model is made on the correlators’ outputs as it is described in Chapter 

5. The model errors are then compared to determine if jammers are present or not in the signal. 

Each channel corresponds to a correlator output. Without interference, the correlator outputs are 

only affected by noise. In presence of jammer, and in particular, in presence of a CW, all the 

correlators’ outputs present sine waves. By comparing the model error e in the case when no 

interference occurs (during a training stage) by the error when an interference occurs, it is 

possible to detect the presence of the jammer in the signal. Indeed, the correlators’ outputs are 

correlated when an interference (CW) occurs whereas it is not the case in presence of noise only.  

 

The multichannel AR model is an extension of the classical model. In our application, it takes 

into account multiple correlator outputs. Therefore, it takes advantage of the existing correlation 

between the outputs in presence of interference. 
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Appendix A.3: Prony model 
 

We assume that the discrete interfering signal x(n) that has to be modeled, can be written 

like [Castanié, 2003]:  

 x�n� = 	∑ 	βå 	Zå~ + e�n�}å�&   (219) 

 

With :  

• βå = Aåecªb              

 

• kA  is the amplitude of the k
th

  mode 

 

•  kθ  is the phase in radian 

 

• Zå = e�cb�	cfðvb�'     

 

• kα  is the damping coefficient  

 

• kf  is the frequency in Hertz 

 

• T is the sampling period in seconds 

 

• p  is the model order, for a real signal, the order must be even, 

whereas for a complex signal, the order can be odd or even. In our 

case, the signal (I+Q correlators outputs) is complex and the CW 

affects both the I and Q correlator outputs.  

 

• )(ne  corresponds to the model error 

 

 

 

The Prony model is an ARMA(p,p) model with bå =	aå ,∀	k	 ∈ 	 I|0; p|J. 
 x�n� = 	−∑ 	aå 	x�n − k� + ∑ 	aå 	e�n − k�}å�0}å�&   (220) 

 

Proof: 
 
If we note the model estimation:  

 

	x �n� = 	� 	βå 	Zå~
}

å�&  (221) 

 

We can deduce: 

 ∑ 	aå 	x �n − k�}å�0 =	∑ 	β�}��& ∑ 	aå 	Z�~Kå}å�0  = ∑ 	β�Z�~}��& ∑ 	aå 	Z�Kå}å�0  (222) 
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�	aå 	x �n − k�}
å�0 =	 � 	β�

}
��& 	Z�~ A�	Z��	 (223) 

 

Where: 

 

A(Z) = ∑ 	aå ZKå	}å�0 = ∏ �1 −}å�& ZK&Zå �	 (224) 

 	Z� 	is defined as a root of A(Z), ∀	m	 ∈ 	 I|0; p|J, we have: 

 

�	aå 	x �n − k�}
å�0 =	 � 	β�

}
��& 	Z�~ A3	Z�4 = 0	 (225) 

 

Therefore: 

 ∑ 	aå 	x �n − k�}å�0 = 	x�n� +	∑ 	aå 	x�n − k� − ∑ 	aå 	e�n − k�}å�0}å�& = 0  (226) 

 

QED. 

 

The error criterion to minimize is [Castanié, 2003] (extended Prony model): 

 &tK}∑ |E�n�|²	tK&~�} =	 &tK}∑ øx�n� + ∑ 	aå 	x�n − k�}å�& ø²	tK&~�}   (227) 

 

Where: 

 

• N is the number of samples 

 

The damping and frequency coefficients are determined thanks to the following relationships: gW = �~	�hb �
i   (228) 

 

¬W = (�(Xjë)�jb �î��jb �lfki   
(229) 

 

The l k coefficients are provided by the following least square solution: 

 l = �����K&��m (230) 
 

Where: 

l = Õl&⋮lÊÖ (231) 

 

m = O _�0�⋮_�´ − 1�Q (232) 
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� = n 1 1o& of … 1… oÊ⋮ ⋮o&�K& of�K& ⋱ ⋮oÊ�K&p (233) 

 

V is a N by p Van der Monde matrix. 

 

The amplitudes and phases of the modes k, are respectively: ôW = |lW|  (234) 
 ÚW = `�`´ jIm�lå �Re�lå �l (235) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



Appendix A 

174 
 

 

Appendix A.4: Probability of interference occurrence 

 

As it is described in Chapter 5, the interference detection algorithms can reach sufficient 

performances in terms of continuity. The obtained results in terms of PMD cannot be discussed with 

regard to the integrity risk required during APV I because the probability of occurrence of 

interferences cannot be calculated or estimated precisely. Nevertheless, a theoretical derivation of 

the interference probabilities of occurrence is provided hereafter.  

 

The probability of interference occurrence depends upon the frequency band of the signals. A 

frequency is said lost when the signals in the corresponding frequency band cannot be processed 

with the civil aviation required performances.  

 

If H1 denotes the event that no signal can be tracked within the corresponding frequency band 

Bi (in our case Li or Ei), the probability that tracking is impossible is noted: P(H1|Bi). The opposite 

hypothesis, within the same band, is H0, no interference occurs or, more precisely, no interference 

causes the loss of signal tracking receiver capability within this band. The probability of having 

such an event is thus noted: P(H0|Bi).   

 

In a first theoretical approach, it can be assumed that tracking thresholds (different for each 

signal as justified in [Bastide1, 2004]) are the same for all the considered bands and that the 

number of potential interferers is not dependent upon the frequency band. In other words, each 

band has the same probability to be impacted by a jammer, that is: P�H&|B�� = 	P3H&øBc4, for i 

and j that indicate different frequency bands.  

 

As proposed in [Issler, 2004], one can then derive the following relationships:  
 P�H0|B�� = 1 − 	P�H&|B�� = 	P3H0øBc4 = 1 − 	P3H&øBc4 = 1 − p&� (236) 

 P3H&øB�,H&øBc4 = P�H&|B��² = p&�f  (237) 

 
 

The events �H&|B�� and 3�&øBc4	can be supposed completely independent. Thus, in this case, 

the probability of jamming of Bi whereas Bj is not jammed is:  
 P3H&øB�, H0|Bc4 = P�H&|B��. P3H0øBc4 = P�H&|B��. I1 − P�H&|B��J (238) 

 

Another hypothesis that can be made is that GNSS frequencies have a low probability to be 

jammed: q&� 	≪ 1 

Therefore:  
 P3H&|B�, H0|Bc4 = 	p&� −	p&�f #p&� (239) 

 

In this thesis, the baseline is GPS L1 and L5 and Galileo E1, E5a and E5b signals. In the 

following, standalone GPS L1/L5 and Galileo E1/E5a/E5b are considered. Indeed, the theoretical 

values of the probabilities of loss of one frequency for dual and triple frequency users will be 

provided.  
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The probability to lose the dual frequency navigation in dual frequency GPS (this study do not 

rely on L2C) is provided by:  
 P3H&øL&�|_�~6��4 = 	P�H&|L&, H0|L�� + 	P�H0|L&, H&|L�� + 	P�H&|L&, H&|L�� (240) 

 = 2	p&�	�1 −	p&�� +	p&�f = 2	p&� −	p&�f 	#	2	p&� (241) 

 

 

      As described in [Issler, 2004], the probability of simultaneous loss of two frequencies in two 

different bands is negligible.  

 

      In the case of Galileo E1/E5a/E5b, the probability to have a single frequency mode can be 

described by:  

 P3H&øE&�\A|_�~6��4= 	P3H&øE&,H&øE�\, H0øE�A4 + 	P3H&øE&,H0øE�\, H&øE�A4+ 	P3H0øE&,H&øE�\, H&øE�A4 + 	P3H&øE&,H&øE�\, H&øE�A4 

(242) 

 = P�H&|E&�P�H&|E�\�I1 − 	P�H&|E�A�J+ 	P�H&|E�A�P�H&|E�\�I1 − 	P�H&|E&�J+ 	P�H&|E&�P�H&|E�A�I1 − 	P�H&|E�\�J+ 	P�H&|E&�P�H&|E�\�P�H&|E�A� 

(243) 

 = 3	p&�\Af �1 − p&�\A� +	p&�\Ak = 	3	p&�\Af − 	2	p&�\Ak 	#	3	p&�\Af 	= 3 p15ab ² (244) 

 

      As for GPS L1/L5, the simultaneous total loss of the three E1, E5a, E5b frequencies is negligible.
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________________________________________________________________________________ 

 

Appendix B: Aircraft environment  
________________________________________________________________________________ 

 

Appendix B.1: Model of aircraft dynamics  
 

Introduction 

To comply with actual aircraft conditions, the embedded combined receiver is supposed to be 

affected by dynamics that depends on the aircraft manoeuvres. The maximum dynamics 

parameters are provided in [RTCA, 2002] for normal and abnormal aircraft manoeuvres (see 

Chapter 2). According to these figures, the aircraft dynamics are simulated during our tests, in 

Chapter 5, by using the following model. 

Principle of the model 

At the output of the correlator, the non-filtered DCO command voltage Vp is computed. This 

function depends on the type of discriminator used. In the case of a classical arctangent 

discriminator:  V��k� = 	arctan �¡�å�x�å��   (245) 

 

A third-order 10 Hz PLL was used in the following simulations. It is characterised by the 

coefficients K1, K2 and K3 which are defined in [Stephens, 1993] from the product between the 

PLL filter bandwidth and the time of integration.  

The filtered command voltage Vec is thus defined as following:  

 V�¾�k + 1�T� = K&. V��k� + Kf ∑ V��i� +	Kk ∑ ∑ V��j��c�&å��&å��&    (246) 

 

Finally, the estimated phase at the next instant is provided by:  θ��k + 1� = 	K}�\_�. V�¾�k + 1� +	θ��Z�	   (247) 

And the next tracking error is: εª =	θ��k + 1� − θ�k + 1�   (248) 

 With: θ�k + 1� = 2πfτ�k + 1�   (249) 

The range is assumed to have the following variation:  τ�k + 1� = 	 a0 + a&. tå�& + \Èf . tå�&f + \J
K
. tå�&k 	   (250) 

0a , 
1a , 

2a , 
3a being the dynamics parameters corresponding respectively to the position of the 

aircraft, its ground speed, acceleration and jerk. The variations of the acceleration and jerk as a 

function of time are represented in the following figures. 
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Figure 72 : Dynamics generation according to the acceleration and jerk values (divided by the 

speed of light)   

 

The receiver outputs the raw code and phase tracking errors τε  and ϕε . The 100 seconds 

code-carrier smoothed pseudorange is computed. 

The code tracking loop is a 1 Hz first order DLL pushed by the PLL.  

The filtered command voltage Vcc is defined by:  

V¾¾�k 	 1� � 	K&. V��k� 		V�¾�k 	 1�. vïv    (251) 

Finally, the time delay then becomes: 

τ �k 	 1� � 	K¾|À�. V¾¾�k 	 1� 		τ �k�   (252) 
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 And the tracking error: ε© =	τ �k + 1� − 	τ�k + 1�   (253) 

Where: 

• τ�k + 1� = 	 a0 +	a&. tå�& + \Èf . tå�&f + \J
K
. tå�&k 	 

• K¾|À� = 'B'÷
 

 is the DCO coefficient of the DLL. 

In this way, the receiver outputs the raw code and phase tracking errors τε  and θε , 100 seconds 

smoothed pseudorange is then estimated with the error on the smoothed pseudorange. 
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Appendix B.2: Multipath generation 

 

Introduction 
 

This appendix is dedicated to the multipath generation during the simulations presented in 

Chapter 5. Indeed, to comply with actual aircraft conditions, the interference detection algorithms 

were tested by generating interferences obviously, but also multipath. Indeed, since multipath are 

faded replica of the incoming useful LOS signal, it can affect the correlators outputs (secondary 

peaks). The model used for simulations is the aeronautical DLR model presented hereafter. 

 

The aeronautical DLR model 
 

For an in-flight aircraft, it has been demonstrated in [Steingass, 2004] that the wings reflection 

power level is very low and that the probability of occurrence of such a reflection is extremely low, 

so it is not considered in the model. Only the fuselage and ground reflections are taken into 

account.  

As shown in [Steingass, 2004], a quite strong reflection close to the direct signal was 

identified, when analyzing the impulse response of the high resolution aeronautical channel 

model. It is one to two nanoseconds delayed from the direct path. This reflection has been 

identified and located near the antenna, on the aircraft fuselage. It was called fuselage echo. The 

power of this echo is estimated to -14.2 dB. Consequently, the multipath model will be composed 

of a ground reflection, a fuselage reflection and echo. 

 

Fuselage: 
 

It was noticed by the DLR that the fuselage echo is approximated very well by an exponential 

function:
fb

proc ebkdBP 3.)( 2+= . The DLR decided to filter out White Gaussian Noise with a 

transfer function filter equal to the fuselage power spectrum, this transfer function will be noticed 

h. 

 

 
Figure 73: Multipath aircraft fuselage 

 
Ground: 
 

2.87 m 

0.05 m 

Direct path 

Reflected path 
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Assuming a Gauss distributed ground reflection amplitude with zero mean, the spectrum of 

the ground reflection is modelled by:



















⋅⋅=
−

2

2

2
)( log20 σ

f

dBGr ekP  with a standard deviation of 3.8 

Hz. The ground echo delay is depending on satellite elevation and aircraft altitude as 

demonstrated below: 

If we consider d1 and d2 the distances shown on the figure hereafter, the delay of the ground 

reflection is provided geometrically by: )sin(221 θhdd =− . 

 

 

 

 

                                
Figure 74: Multipath ground reflection 

 

The correlator outputs depend on the multipath parameters: 

• α1, α2, α3 are respectively the relative amplitudes of the ground echo, the fuselage 

refracted signal and the fuselage reflected signal. 

• Δτ1, Δτ2, Δτ3 are the code delays of the ground echo, the fuselage refracted signal and the 

fuselage reflected signal. 

• Δθ 1, Δθ 2, Δθ 3 are the phase shifts of the ground echo, the fuselage refracted signal and 

the fuselage reflected signal. 

 

 

Expressions used when deriving the code and phase tracking error envelopes are only valid if 

the multipath parameters do not vary very fast compared to the tracking loops bandwidth. 

 

The correlator outputs with multipath are provided for PLL by:  

 I�k� = 	A2 . D�k�. R�ε©�. cos�³¯� +A	.α&2 	. D�k�. R�ε© + 	Δτ&�. cos�³¯ + 	vÚ&� +A	.αf2 	. D�k�. R�ε© + 	Δτf�. cos�³¯ + 	vÚf�		 +A	. cJf 	 . D�k�. R�ε© + 	Δτk�. cos�³¯ + 	vÚk�	   (254) 

 

d2 

  d1 
h 

θ 

Direct path 

Reflected 
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Q�k� = 	A2 . D�k�. R�ε©�. sin�³¯� +A	.α&2 	. D�k�. R�ε© + 	Δτ&�. sin�³¯ + 	vÚ&� +A	.αf2 	. D�k�. R�ε© + 	Δτf�. sin�³¯ + 	vÚf�		 +A	. cJf 	 . D�k�. R�ε© + 	Δτk�. sin�³¯ + 	vÚk�	   (255) 

 

And for the DLL, the correlator outputs are:  

 I�k� = 	R�ε©�. cos�εª� + α&. R�ε© + 	Δτ&�. cos�εª + 	Δθ&� + αf. R�ε© + 	Δτf�. cos�εª + 	Δθf� 		+αk. R�ε© + 	Δτk�. cos�εª + 	Δθk�	   (256) 

 Q�k� = 	R�ε©�. sin�εª� + α&. R�ε© + 	Δτ&�. sin�εª + 	Δθ&� + αf. R�ε© + 	Δτf�. sin�εª + 	Δθf� 		+αk. R�ε© + 	Δτk�. sin�εª + 	Δθk�   (257) 

 

 

In [Steingass, 2004], the approach is divided into three different zones of altitude (high, mid 

and low altitude) in order to characterize the ground reflection which is characterized in each zone 

by a Markov state model. The Markov model described here is specific at Graz airport. 

 

The multipaths were generated using a DLR model based on a measurement campaign taking 

into account ground and fuselage reflections. Let us describe in a few paragraphs the model in the 

following.  

 

The model is composed of a direct path, plus a refractive component on this direct path, plus 

a strong echo on the fuselage changing very slowly and a quickly changing ground echo. The 

estimated parameters to inject in correlator outputs computation are the time delay, reflection 

power amplitude and phase of the signal replicas. Time delay and reflection power of each ray is 

determined from the measurement campaign.  

 

Each approach is divided into three different zones: high, mid and low altitudes. The ground 

reflection is thus characterized by a Markov state in each zone. This Markov model is specific to 

one given airport (Graz) and must be changed for further studies.  

 

The Markov parameters are power values, the transition matrix containing the probability of 

changing from each power state determined for each altitude region independently: 

 

MarcovProbs = {[0.9866 0.0087 0.0047 0 ; ... 

0.6087 0.3043 0.0870 0 ; ... 

0.2143 0.3571 0.4286 0 ; ... 

0.3333 0.3333 0.3334 0 ] ... 

,... 

[0.9842 0.0130 0.0028 0 ; ... 

0.6667 0.2222 0.0889 0.0222; ... 

0.0667 0.1167 0.5000 0.3166; ... 

0 0 0.3279 0.6721] ... 

,... 

[0.9645 0.0310 0.0045 0 ; ... 

0.7308 0.1538 0.1154 0 ; ... 



Appendix B 

183 
 

0.6250 0.1250 0.2500 0 ; ... 

0.3333 0.3333 0.3334 0 ] ... 

,... 

[1 0 0 0 ; ... 

1 0 0 0 ; ... 

1 0 0 0 ; ... 

1 0 0 0 ]}; 

 

MarkovAtten = {[-50 -23 -19 -15],... %state 1 

[-50 -23 -19 -15],...            %state 2 

[-50 -23 -19 -15],...            %state 3 

[-50 -23 -19 -15]};              %state 4 in dB 

 

MarkovAtten = {[-18 -15 -12 -9],...  %state 1 

[-18 -15 -12 -9],...             %state 2 

[-18 -15 -12 -9],...             %state 3 

[-18 -15 -12 -9]};               %state 4 in dB 

 

 

Moreover, the occurring power levels are quantized into four power levels: 

  

 POWER IN DB COMMENT 

State 1 -15  

State 2 -19  

State 3 -23  

State 4 <-25 ≈ no ground reflection 

 

Table 16:  States of the ground fading Markov model 

 

The following figures present the multipath generation on an A 340, during landing, 

including the APV phase of flight. 
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Figure 75 : Multipath generation on an A 340 over 500-seconds simulation during landing, taking 

into account fuselage and ground reflections 
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Appendix B.3: Dual frequency ionospheric error 
estimation  

 
Dual frequency ionosphere-free measurements can be provided by code or carrier phase 

measurements on two frequencies:  P = 	 v<Èv<ÈKvÈÈ P& − vÈÈv<ÈKvÈÈ Pf    (258) ϕ = 	 v<Èv<ÈKvÈÈ ϕ& − vÈÈv<ÈKvÈÈ ϕf   (259)  

 

Indeed, two code pseudorange measurements at two different frequencies can be modeled 

as:  

 P& =	ρ + c3∆t� − ∆t 4 + c3I& + τ 4 + D���� + n 	 (260) 

 Pf =	ρ + c3∆t� − ∆t 4 + c3If + τ 4 + D���� + n 	 (261) 

 

And then:  

 P& − Pf 	= 	c3I& − If 4	 (262) 

 

The ionospheric code delay can be modeled as a function of the signal carrier frequency as it 

is described in Chapter 2:  

 I& =	+	�0.kv<È TEC    (263) If =	+	�0.kvÈÈ TEC    (264) 

 

As a consequence:  

 I&. f&f = If. fff   (265) 

And so:  

 
 P& . f12 − I	ρ + c3∆t� − ∆t 4 + c3τ 4 + D���� + n ].	f&f = Pf . f22 − I	ρ + c3∆t� − ∆t 4 + c3τ 4 +D���� + n ].	fff   (266) 

 

Then:  

 P = 	 ρ + c3∆tu − ∆t 4 + c3τ 4 + Dmult + n =	 v<Èv<ÈKvÈÈ P& − vÈÈv<ÈKvÈÈ Pf   (267) 

 

The same demonstration can be made with carrier phase measurements.  
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________________________________________________ 

Appendix C: Receivers and signals characteristics 
________________________________________________ 

 

Appendix C.1: Receivers classes  
 

 EUROCAE WG-62 is tasked with developing MOPS for Galileo receivers. EUROCAE WG-62 is 

also pursuing the objective to define jointly with RTCA SC-159 a combined GPS/Galileo receiver 

MOPS which will include SBAS and ABAS, and in conjunction with EUROCAE WG-28, to consider 

the existing standards related to precision approach and if appropriate update these standards to 

take account of GALILEO use (including joint GALILEO/GPS/SBAS use). 

Under this context, a combined GPS/Galileo receiver can have different definitions according to 

ones vision.  

Operational classes [EUROCAE, 2007] 

The Class 1 equipment supports oceanic and domestic en-route, terminal, non-precision 

approach, approach with vertical guidance (APV-I and II), and departure operations. 

 

The Class 2 equipment supports oceanic and domestic en-route, terminal, non-precision 

approach, approach with vertical guidance (APV-I and II), Category I precision approach, and 

departure operations. 

 

The Class 3 equipment supports precision approach operation for Category I/II/IIIA/IIIB 

operations.  This class of equipment is intended to serve as an alternative to existing precision 

approach equipment such as ILS but may also provide enhanced capabilities such as curved or 

segmented approaches. 

Functional classes [EUROCAE, 2007] 

Class Beta equipment consists of a GNSS sensor that determines position (with integrity) and 

provides position and integrity data to an integrated navigation system (such as flight 

management system and multi-sensor navigation system). The following figure illustrates the class 

beta architecture described in [EUROCAE, 2007]. 
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Figure 76: Class Beta Architecture [EUROCAE, 2007] 

 

Class Delta equipment consists of both the GNSS position sensor (defined by Class Beta) and a 

navigation function, so that the equipment provides path deviations relative to a selected path. 

Class Delta does not provide a database or direct pilot controls. The Delta class of equipment is 

only applicable to Class 2 and Class 3 precision approach, providing an alternative to Instrument 

Landing System (ILS). The figure below illustrates the class delta architecture described in 

[EUROCAE, 2007]. 

 

 
 

Figure 77: Class Delta Architecture [EUROCAE, 2007] 

 

The Class Gamma functional class, incorporating the navigation function, data base, displays 

and controls is not covered by [EUROCAE, 2007].  Receivers which combine these functions with 

the sensor may be developed but the navigation function will be covered by a separate MOPS, 

such as that developed by RTCA SC-181. 

 

As recalled in chapter 3, table 3, the operational GNSS components combinations are 

identified by mode of operation and for en route down to APV I phases of flight. Based on the 

expected levels of performance that can be achieved with different signal combinations, the 

following combinations are defined in [EUROCAE, 2007]: 

 

 FUNCTIONNAL CLASS ALPHA FUNCTIONNAL CLASS DELTA 

OPERATIONAL 

CLASS 1 
Mode A: Galileo only   

OPERATIONAL 

CLASS 2 

Mode B: GPS only + GPS SBAS  

Mode C: Galileo + GPS + GPS SBAS 
Mode D: Galileo + GPS + GPS SBAS 

Table 17: Combinations to be standardized [EUROCAE, 2007]. 

 

RF Cable

Receiver

RAIM

Path Deviation 

Computation

External Data Base

Display

Autopilot

PVT

Integrity

Deviation

Dual frequency 

antenna
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In [RTCA, 2006], some receiver classes are only simple sensors as depicted in the following 

figure. 

 

 
Figure 78: Receivers functional classes as defined in [RTCA, 2006]. 
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Appendix C.2: L1 C/A and E1 OS high amplitude code 
spectrum lines  

 

The worst code spectrum lines in terms of power level, for each signal are given hereafter and 

provided for each PRN. These power levels take into account the PRN code FFT and the Fourier 

transform of the materialization waveform. These values are obtained by generating PRN code 

values, then computing the spectrum of the transmitted waveforms and comparing all code 

spectrum lines of GPS L1 C/A and future Galileo E1 OS signals. 

 

Below are identified the amplitudes (AMPL) and frequency (FREQ) of the worst code spectrum 

lines for each PRN of GPS L1 C/A and Galileo E1 OS code. The amplitude values presented are the 

power level with regard to the full signal power level. 

 

C/A CODE PRN 

N° 

WORST LINE 

FREQ (KHZ) 

WORST LINE 

AMPL (DB) 

C/A CODE PRN 

N° 

WORST LINE 

FREQ (KHZ) 

WORST LINE 

AMPL (DB) 

1 42 -22.71 20 30 -22.78 

2 263 -23.12 21 55 -23.51 

3 108 -22.04 22 12 -22.12 

4 122 -22.98 23 127 -23.08 

5 23 -21.53 24 123 -21.26 

6 227 -21.29 25 151 -23.78 

7 78 -23.27 26 102 -23.06 

8 66 -21.50 27 132 -21.68 

9 173 -22.09 28 203 -21.73 

10 16 -22.45 29 176 -22.22 

11 123 -22.64 30 63 -22.14 

12 199 -22.08 31 72 -23.13 

13 214 -23.52 32 74 -23.58 

14 120 -22.01 33 82 -21.82 

15 69 -21.90 34 55 -24.13 

16 154 -22.58 35 43 -21.71 

17 138 -22.50 36 23 -22.23 

18 183 -21.40 37 55 -24.13 

19 211 -21.77  

 

Table 18 : Worst line characteristics for each PRN for GPS C/A code. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix B 

190 
 

 

 

CODE PRN N° WORST LINE 

FREQ (KHZ) 

WORST LINE 

AMPL (DB) 

C/A CODE PRN 

N° 

WORST LINE 

FREQ (KHZ) 

WORST LINE 

AMPL (DB) 

1 697.75 -30.06 26 808 -29.43 

2 768 -30.25 27 859.5 -31.43 

3 729 -31.00 28 729.25 -29.59 

4 815.5 -29.75 29 827 -30.47 

5 587.25 -30.89 30 732.5 -30.87 

6 734 -29.91 31 930.25 -30.53 

7 634.75 -31.02 32 854 -30.25 

8 921.25 -30.04 33 726 -30.06 

9 618.75 -31.02 34 746.25 -31.04 

10 647.5 -31.05 35 558.25 -30.60 

11 855.25 -30.71 36 579.75 -30.17 

12 823 -30.67 37 593.75 -30.25 

13 884 -30.91 38 673.5 -28.81 

14 802.75 -30.48 39 866.75 -30.33 

15 562.5 -29.87 40 617.75 -29.50 

16 565 -29.91 41 580.75 -30.92 

17 776 -31.26 42 690.25 -30.69 

18 685.75 -30.86 43 714.75 -31.29 

19 979.5 -31.16 44 812 -30.04 

20 100.525 -30.91 45 663.75 -29.64 

21 602 -31.11 46 751 -30.01 

22 871.25 -30.35 47 745.5 -30.52 

23 740.75 -30.40 48 854.5 -30.73 

24 722.25 -30.97 49 522.75 -30.10 

25 827.25 -31.24 50 629.75 -29.71 

 

Table 19: Worst line characteristics for each PRN for GALILEO E1 code. 
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