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Résumé

La reconnaissance de modulations numériques consiste à identi�er, au niveau du récep-

teur d'une chaîne de transmission, l'alphabet auquel appartiennent les symboles du message

transmis. Cette reconnaissance est nécessaire dans de nombreux scénarios de communica-

tion, a�n, par exemple, de sécuriser les transmissions pour détecter d'éventuels utilisateurs

non autorisés ou bien encore de déterminer quel terminal brouille les autres.

Le signal observé en réception est généralement a�ecté d'un certain nombre d'imperfections,

dues à une synchronisation imparfaite de l'émetteur et du récepteur, une démodulation im-

parfaite, une égalisation imparfaite du canal de transmission. Nous proposons plusieurs

méthodes de classi�cation qui permettent d'annuler les e�ets liés aux imperfections de la

chaîne de transmission. Les symboles reçus sont alors corrigés puis comparés à ceux du

dictionnaire des symboles transmis. Plus précisément, nous étudions trois techniques per-

mettant d'estimer la loi a posteriori d'une modulation au niveau du récepteur. La première

technique estime les paramètres inconnus associés aux diverses imperfections a�ectant le ré-

cepteur à l'aide d'une approche Bayésienne couplée avec une méthode de simulation MCMC

(Markov Chain Monte Carlo). Une deuxième technique utilise l'algorithme de Baum Welch

qui permet d'estimer de manière récursive la loi a posteriori du signal reçu et de déterminer

la modulation la plus probable parmi un catalogue donné. La dernière méthode étudiée

dans cette thèse consiste à corriger les erreurs de synchronisation de phase et de fréquence

avec une boucle de phase.

Les algorithmes considérés dans cette thèse ont permis de reconnaître un certain nombre

de modulations linéaires de types QAM (Quadrature Amplitude Modulation) et PSK (Phase

Shift Keying) mais aussi des modulations non linéaires de type GMSK (Gaussian Minimum

Shift Keying).
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Abstract

This thesis studies classi�cation of digital linear and nonlinear modulations using Bayesian

methods. Modulation recognition consists of identifying, at the receiver, the type of mod-

ulation signals used by the transmitter. It is important in many communication scenarios,

for example, to secure transmissions by detecting unauthorized users, or to determine which

transmitter interferes the others.

The received signal is generally a�ected by a number of impairments. We propose several

classi�cation methods that can mitigate the e�ects related to imperfections in transmission

channels. More speci�cally, we study three techniques to estimate the posterior probabilities

of the received signals conditionally to each modulation. The �rst technique estimates

the unknown parameters associated with various imperfections using a Bayesian approach

coupled with Markov Chain Monte Carlo (MCMC) methods. A second technique uses

the Baum Welch (BW) algorithm to estimate recursively the posterior probabilities and

determine the most likely modulation type from a catalogue. The last method studied in

this thesis corrects synchronization errors (phase and frequency o�sets) with a phase-locked

loop (PLL).

The classi�cation algorithms considered in this thesis can recognize a number of linear

modulations such as Quadrature Amplitude Modulation (QAM), Phase Shift Keying (PSK),

and nonlinear modulations such as Gaussian Minimum Shift Keying (GMSK).
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Digital modulation classi�cation consists of identifying the type of a modulated signal

corrupted by noise and impairments. It is required in many communication applications such

as interference identi�cation, spectrum management, signal con�rmation in non-cooperative

scenarios and intelligent modems in cooperative scenarios. As the frequency spectrum be-

comes more and more packed, national and international regulators confront the increasingly

complicated issue of managing and monitoring spectrum usage. For example, radio tra�c is

in general controlled by international regulations such as International Telecommunications

Union (ITU). Spectrum monitoring and management systems provide the essential admin-

istrative and planning tools for regulatory entities to validate that licensees conform with

the approved standards. These systems can automatically identify transmitters that are not

included in the user's license database (illegal operators) as well as transmitters that are

not working within their licensed parameters, e.g., channel bandwidth, roll-o� factor, mod-

ulation type, bit rate, forward-error-correction (FEC) rate. Compliance with regulations is

1
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also an advantage in ensuring mutual interference free and �ghting against organized crime.

Measuring the spectrum occupancy is crucial for planning future allocations of frequencies.

Another application of automatic modulation classi�cation can be found in the adaptive

coding and modulation (ACM) transmission available in digital video broadcasting standard

(DVB-S2). For interactive point-to-point applications such as Internet navigation, ACM

optimizes the transmission parameters for each user depending on path condition. In clear

sky conditions, the transmitter may transmit data using a 16APSK modulation and switch

to a 8PSK modulation under heavy fading. The scheme is achieved on frame to frame basic.

The selected parameters should be known to the receiver so that data can be recovered

correctly. The transmitter needs to send supplementary signaling data causing ine�ciency in

transmission. However, the loss can be alleviated using automatic modulation classi�cation

which the modulation type is identi�ed at the receiver without redundant data from the

transmitter.

In recent years, software de�ned radio and other recon�gurable communication systems,

which the transceiver hardware can be recon�gured via software, have reinforced the impor-

tant role of automatic modulation recognition. All recon�gurable communication systems

must recon�gure every technical parameter particulary modulation format to be able to

demodulate any type of input signal automatically.

A modulation classi�cation algorithm decides what modulation is being transmitted

based on information of the received signal such as amplitude, phase, frequency, and noise

power. In general, the amount of information known to the receiver is very little. The nature

of communication channels relating to applications also contributes to the uncertainty of

the information. This makes the problem of modulation classi�cation very di�cult and

challenging. There is always a trade-o� amongst performance, speed, memory requirement,

and complexity of classi�cation algorithms depending on application purposes. For instance,

spectrum monitoring and signal con�rmation systems can a�ord high complexity and large

memory requirement in exchange of very accurate results. In software de�ned radio, a fast

algorithm may be preferred.
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1.1 Problem formulation and signal model

Assume that we can operate in a coherent and synchronous environment and that the

carrier, timing, and waveform recovery have been accomplished. All problems concerning

signal bandwidth, baud rate, pulse-shaping �lter and noise variance estimations are not

addressed in this work.

1.1.1 Ideal case

In an ideal case, after preprocessing, the baseband complex envelope of the received modu-

lated signal sampled at one sample per symbol at the output of the matched-�lter corrupted

by additive Gaussian noise can be written as:

x(n) = d(n) + z(n), n = 1, 2, ..., Ns (1.1)

where

• x(n) is the baseband complex envelope of the received signal,

• d(n) is an independent and identically distributed (i.i.d.) symbol sequence drawn

from one of c constellations denoted {λ1, λ2, ..., λc}, where λj is a set of Mj complex

numbers {S1, S2, ..., SMj},

• Mj is the number of symbols of the jth constellation,

• Ns is the number of symbols in the observation interval,

• z(n) is an i.i.d. complex Gaussian noise sequence which has zero-mean and variance

σ2
z (the real and imaginary components of z(n) are independent and identically dis-

tributed).1

In this situation, the maximum likelihood (ML) classi�er developed by Wei and Mendel

[WM00], minimizes the probability of classi�cation error, thus it achieves the optimum

performance. Bayes theory provides a minimum error-rate classi�er by �nding the maximum

a posteriori probabilities P (λj |x), j = 1, 2, ..., c. The Bayes classi�er, which is a multi-

hypothesis statistical testing, applies the Bayes rule:

assign x to λi if R(λi|x) ≤ R(λj |x), ∀j = 1, ..., c, (1.2)

1The parameter σ2
z is assumed to be known without loss of generality, as explained in [SS00].
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with R(λi|x) =
c∑
j=1

ci,j P (λj |x) is the cost function and ci,j is the cost of deciding λi given

that x ∈ λj . Furthermore, the maximum a posteriori (MAP) classi�er can be obtained in

the special case of 0− 1 loss functions:

ci,j =

{
0 if i = j

1 if i 6= j

and expressed as

assign x to λi if P (λi|x) ≥ P (λj |x), ∀j. (1.3)

If all modulations are equally-likely

P (λj) =
1
c
, ∀j,

the MAP classi�er reduces to the ML classi�er:

assign x to λi if p(x|λi) ≥ p(x|λj), ∀j. (1.4)

The ML classi�er selects the modulation of the samples x = [x(1), ..., x(Ns)] as the one that

maximizes the probability density function (pdf) p(x|λj) using the I and Q samples, where

x(n) = I(n) + jQ(n), as su�cient statistics. Such problem was studied in [WM00] in the

ideal situation where all parameters are known a priori. The ML classi�er can be rewritten

as followed:

assign x to λi if l(x|λi) ≥ l(x|λj), ∀j, (1.5)

where l(x|λj) is the logarithm of the likelihood associated to class λj (whose constellation

consists of Mj symbols S1, S2, ..., SMj ) up to additive and multiplicative constants

l(x|λj) =
Ns∑
k=1

ln

 1
Mj

Mj∑
i=1

exp
(
− 1
σ2
z

‖ x(k)− Si ‖2
) . (1.6)

Although this situation is unrealistic in noncooperative communications, it can be used

as a reference to which suboptimal classi�ers can be compared. This ideal classi�er provides

an upper bound of the expected performance for a digital modulation classi�er.
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1.1.2 More realistic case

In real scenarios, the received signal su�ers from various impairments such as the imperfec-

tions of synchronization (the frequency, phase, and timing o�sets), the intersymbol interfer-

ence (ISI) from dispersive channel characteristic, the residual channel (from the imperfect

equalization), and fading. All signal impairments lead to more complex problems in classi-

�cation. As an example, the noisy received communication signal may be a�ected by the

frequency and phase o�sets and residual channel. In this case, the baseband complex enve-

lope of the received signal sampled at one sample per symbol at the output of a matched

�lter can be written as in [SS00]:

x(n) = ej(π
n

Ns
fr+φ)

q∑
l=0

hld(n− l) + z(n), n = 1, 2, ..., Ns (1.7)

where

• fr = 2Ns(fc − f̂c) ∈ (−1/2, 1/2] is a normalized residual carrier frequency also called

frequency o�set (fc is the carrier frequency and f̂c is the frequency of the local os-

cillator, ∆f = fc − f̂c). Note that these notations imply that fr is the constellation

rotation whose maximum value is π/2 for n = Ns),

• h = [1, h1, ..., hq] is the residual channel coe�cient vector,

• φ is the phase o�set.

The signal model in (1.7) takes into account the mismatch e�ect. The e�ects of the

di�erent parameters associated to model (1.7) are illustrated in Figure 1.1. 4QAM signals

su�ering from Gaussian noise only are shown in Figure 1.1 (a). The number of symbols Ns

is 500. In the presence of the normalized frequency o�set of 0.3 (∆f = 3 × 10−4) and the

phase o�set of π/8, the e�ects on the signals together with Gaussian noise are plotted in

Figure 1.1 (b) and (c), respectively. Figure 1.1 (d) depicts the e�ect of a residual channel

with h = [1, 0.35, 0.25] in absence of Gaussian noise. The problem is more di�cult when

all imperfections (frequency o�set, phase o�set, and residual channel) are present as shown

in Figure 1.2. The aim of this dissertation is to study classi�ers that are robust to model

mismatch, practical to implement, and achieve near optimum performance.



6 CHAPTER 1. INTRODUCTION

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

I

Q
(a) 4QAM

−2 −1 0 1 2
−2

−1

0

1

2

I

Q

(b) Noisy 4QAM and fr=0.3

−2 −1 0 1 2
−2

−1

0

1

2

I

Q

(c) Noisy 4QAM and φ=π/8

−2 −1 0 1 2
−2

−1

0

1

2

I

Q

(d) 4QAM ,h=[1 0.35 0.25]
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1.2 Literature review

Two main classes of modulation classi�cations are decision-theoretic (DT) and statisti-

cal pattern recognition (PR). In the DT approach, modulation classi�cation is a multiple

hypothesis-testing problem and is solved mainly by the Bayes or ML principle. The core

idea is that the posterior distributions of the possible constellations, conditioned on the

modulated signal, provides all information for classi�cation. A classi�er based on Bayes

rule achieves the optimal solution in the sense that it minimizes the probability of error

(or an appropriate average cost function). However, the Bayes classi�er may be di�cult

to implement due to its high computational complexity. This is particularly true for the

classi�cation of digital modulations, because averaging over the data symbols leads to an

exponential computational complexity, when there are too many parameters unknown at the

receiver. Also, the Bayes classi�er is not robust to model mismatch. Most decision-theoretic

approaches already used for modulation classi�cation are summarized in Table 1.1. To over-

come the di�culties inherent to the Bayesian strategy, several suboptimal likelihood based

classi�ers have been proposed in the signal processing and communication literature (see

for instance [PK90; CLP95; ADC+04]). The main idea of these classi�ers is to avoid the

costly integration required to derive the posterior distribution of the unknown parameters.

The integration can be avoided by approximating the average likelihood ratio test (ALRT)

[PK90; CLP95], leading to the quasi log-likelihood ratio (qLLR), or by estimating every

unknown parameter by the ML estimation and using the generalized likelihood ratio test

(GLRT) [LP95]. The qLLR classi�er does not approximate the likelihood ratio accurately

enough for the optimum threshold (e.g., zero for two hypothesis tests) to be utilized. Re-

placing the unknown parameters with their ML estimates in GLRT no longer retains the

optimum threshold. Therefore, these two techniques are sensitive to threshold setting which

in turn depends on the number of observation symbols and the SNR. Hybrid likelihood ratio

test (HLRT), which considers some unknown parameters as discrete random variables and

the others as deterministic unknown variables, is another solution [HH02; PAP00]. The

plug-in classi�er that will be addressed in Section 1.3 is equivalent to HLRT classi�er. The

data symbols are treated as discrete random variables whereas the rest of the unknown pa-

rameters is treated as deterministic unknown variables. Thus estimating these deterministic

unknown variables and replacing the estimates in the likelihood function are crucial steps for
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successful classi�cation. Pattern recognition approach is an alternative to likelihood based

classi�ers. The idea is to extract interesting features from the observations and use the fea-

tures for classi�cation. In this case, the key point is to �nd the �appropriate� set of features

depending on the considered communication system. Classi�ers based on the PR approach

are generally much less complex than those of DT approach but suboptimal. Many features

have been proposed in the literature including statistical moments [SH92] or higher-order

statistics [SS00]. Table 1.1 resumes some DT based classi�ers. Table 1.2 and 1.3 summarize

some of existing pattern recognition classi�ers. Details of classi�ers in Table 1.1-1.3 can be

found in Appendix A.

1.3 Plug-in classi�er

A classi�er based on Bayes or MAP rule achieves the optimal solution but may be imprac-

tical to implement due to high complexity and di�culty in computing the exact posterior

probability P (λi|x) in the presence of many unknown parameters. To obtain a near opti-

mum performance and realizable classi�er, the estimated posterior probability P̂ (λi|x) can

be an interesting solution. From the MAP classi�er in (1.3) and introducing the unknown

parameter θ, we can write

assign x to λi if p(x|θi, λi)P (λi) ≥ p(x|θj , λj)P (λj),∀j. (1.8)

Let p̂(x|θi, λi) be the estimated pdf of observation sequence conditioned on the class λi and

the estimate θ̂i. If all modulations have equal prior probabilities, (1.8) reduces to

assign x to λi if p̂(x|θi, λi) ≥ p̂(x|θj , λj), ∀j. (1.9)

The classi�er that will be considered intensively in this study consists of replacing the

unknown parameters (e.g., fr, φ, h) in the pdf by their estimated values, resulting in the

so-called plug-in classi�er in (1.9). Proposed techniques to calculate the estimated posterior

probability P̂ (λi|x) will be presented in Chapter 2.

1.4 HOS classi�er

The high-order statistic (HOS) classi�er developed by Swami [SS00] will be considered with

a particular interest in this study. The features used by the authors in [SS00] are the
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normalized fourth-order cumulants. These statistics characterize the shape of the noisy

signal constellations or noisy baseband samples. This method can easily be applied in a

hierarchical manner to classify various digital signaling formats. It is particularly e�ective

for discriminating format subclasses, such as phase shift keying (PSK) versus pulse amplitude

modulation (PAM) and quadrature amplitude modulation (QAM). It may also be applied

within each subclass to determine the exact modulation type if su�cient signal-to-noise ratio

(SNR) and sample size are available.

For a complex-valued stationary random process xk, the mixed moments of order k are

de�ned as [DWW02], [LB97]:

Mkm , E[xk−mk (x∗k)
m]. (1.10)

Thus the second-order moment can be written as

M20 = E[x2
k] or M21 = E[|xk|2]. (1.11)

Many di�erent stationary fourth-order cumulants can be de�ned for complex signals. These

cumulants include

C40 = cum(xk, xk, xk, xk),

C41 = cum(xk, xk, xk, x∗k),

C42 = cum(xk, xk, x∗k, x
∗
k). (1.12)

For zero-mean random variables a, b, c, and, d, the operator cum(�, �, �, �) is de�ned as

cum(a, b, c, d) = E[abcd]− E[ab]E[cd]− E[ac]E[bd]− E[ad]E[bc]. (1.13)

The fourth-order cumulants can be estimated by standard estimators [SS00]:

Ĉ40 =
1
Ns

Ns∑
k=1

x4
k − 3

(
1
Ns

Ns∑
k=1

x2
k

)2

,

Ĉ41 =
1
Ns

Ns∑
k=1

x3
kx
∗
k − 3

(
1
Ns

Ns∑
k=1

x2
k

)(
1
Ns

Ns∑
k=1

|xk|2
)
,

Ĉ42 =
1
Ns

Ns∑
k=1

|xk|4 −
∣∣∣∣ 1
Ns

Ns∑
k=1

x2
k

∣∣∣∣2 − 2
(

1
Ns

Ns∑
k=1

|xk|2
)2

. (1.14)
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Theoretical cumulant statistics C40 and C42 have been computed for various constellation

types (see Table I of [SS00]). C42 is used �rst to decide whether the constellation is real-

valued (BPSK/PAM), circular (PSK), or rectangular (QAM). Then, if the unknown phase

rotation can be assumed to be small, |C40|may be used for classi�cation within each subclass.

If the unknown phase rotation cannot be ignored, then |C40| must be employed rather than

C40. Table I of [SS00] also shows that it is advantageous to use |C40| for the test statistic
(rather than C42) because |C40| = 0 for 8PSK. For a given SNR, one can compute the

optimal threshold under the assumption that Ĉ40 is Gaussian. Let µk and σ2
k denote the

mean and variance of the statistic, S = Ĉ40, under the kth hypothesis; and assume that

the M hypotheses are ordered so that µ1 < µ2 < ... < µM . A simplifying approximation

considers that the variances of S are all equal under the M hypothesis. In this case, the

decision rule consists of choosing Hk if

(µk−1 + µk)/2 < S < (µk + µk+1)/2, (1.15)

with µ0 = −∞ and µM+1 =∞.

Consider the four-class problem based on the following set of modulation types

λ = {BPSK, 4PAM, 8PSK, 16QAM}. (1.16)

The decision rule for the four-class problem Ω4 can then be summarized as:

|Ĉ40| < 0.34⇒ 8PSK

0.34 ≤ |Ĉ40| < 1.02⇒ 16QAM

1.02 ≤ |Ĉ40| < 1.02⇒ 4PAM

|Ĉ40| ≥ 1.68⇒ BPSK

The cumulants Ĉ40 and Ĉ42 are moderately robust to model mismatch. Even if the thresholds

have been determined by assuming no frequency o�set, phase o�set, and residual channel,

the classi�er works well in presence of imperfection.

1.5 Performance measure

A basic performance measure is the probability of correct classi�cation. Denotes as P (i|i)

the (classi�cation) probability to declare the signal format i has been sent, where indeed the
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format i is present. The average probability of correct classi�cation is de�ned by

Pcc =
1
c

c∑
i=1

P (i|i), (1.17)

where c is the number of possible modulations (i.e., the number of classes). When the

theoretical probability of error cannot be determined in closed-form, (1.17) provides a simple

measure of classi�cation performance and is used throughout this thesis.

1.6 Chapter organization and contribution

The organization of this thesis is described in the following. Chapter 2 presents a method

to mitigate signal impairments such as synchronization errors due to the imperfection of

local oscillator, residual channel from imperfect equalization, and intersymbol interference

(ISI) from dispersive channel. The method estimates unknown parameters related to the

impairments of the transmission channel in order to compensate their e�ects by de-rotating,

de-spreading and de-convolving. We have studied three techniques to estimate the unknown

parameters based on Markov Chain Monte Carlo (MCMC) methods, the Baum-Welch (BW)

algorithm, and phase-locked loop (PLL). Our work in this chapter leads to:

• A modi�cation of the MCMC parameter estimation to approximate complex residual

channels as an extension of the work in [LTD01].

Chapter 3 studies a plug-in MAP classi�er based on the MCMC parameter estimation. We

study the classi�cation performance of the proposed classi�er in the presence of mismatch

e�ects. The same methodology is extended to a slow Rayleigh fading environment. The key

�ndings in this chapter are:

• The phase and frequency o�sets, residual channels, as well as fading amplitude and

phase can be estimated using MCMC methods.

• The proposed MCMC plug-in classi�er can identify BPSK/4PAM/8PSK/16QAMmod-

ulations subjected to model mismatch e�ects and outperforms the ML and HOS clas-

si�ers studied by [WM00] and [SS00], respectively.

• For our study, the computation complexity involving in drawing samples of Metropolis-

Hastings (MH) algorithm can be reduced using the relationship: ln
∑

j e
aj ' maxj aj .
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• Our simulation results demonstrate that the proposed MCMC plug-in classi�er can

distinguish BPSK/QPSK/8PSK/16QAM modulations under a slow Rayleigh fading

and outperforms the MOM classi�er in [ADC+04].

Chapter 4 studies the utilization of the BW algorithm to a plug-in MAP classi�er. The

BW algorithm is used to compute the posterior probabilities which are then plugged into the

optimal Bayes decision rule. The classi�cation performance of the proposed MAP classi�er

based on the BW algorithm is presented for di�erent scenarios. Note that Chapter 3 and

Chapter 4 focus on linear modulations. The main contributions include:

• Our proposed classi�er can identify OQPSK from QPSK modulations even they have

the same constellations. It can be generalized to classify between π/4-QPSK and

8PSK modulations, which also share the constellation shapes.

• Compare to the qLLR classi�er proposed by [CLP95] to recognize BPSK/QPSK/OQPSK

modulations, our proposed classi�er obtains better classi�cation performance.

• Our proposed classi�er can recognize 16PSK/16QAM modulations in unknown ISI

channels and outperforms the PSP/GLRT classi�er studied by [LP95].

• It can be used to discriminate BPSK/QPSK/8PSK/16QAM modulations in unknown

ISI channels.

• From our simulations, it is found that the initialization of the BW algorithm by the

method according to [Men91] improves classi�cation performance compare with ran-

dom initialization.

• From simulations, we �nd that the LMS-update type BW algorithm yields better

classi�cation results than that of the standard batch mode BW algorithm.

• We demonstrate the use of the BW algorithm in conjunction with phased-lock loops

(PLL) to classify BPSK/QPSK/OQPSK/8PSK/16QAM modulations in the presence

of large frequency o�sets.

Chapter 5 deals with nonlinear modulations. It describes the importance of nonlinear mod-

ulations and motivation to recognize linear and nonlinear modulations. We explain the prin-

ciple of nonlinear Gaussian minimum shift keying (GMSK) modulations and how the BW
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algorithm can be applied to them. We use the proposed MAP classi�er studied in Chapter

4 for unknown ISI channels to recognize two GMSK modulations with di�erent bandwidths

on AWGN channels. Then we apply the same strategy to identify linear modulations from

nonlinear modulations. The important results are:

• The proposed MAP classi�er based on the BW algorithm can be applied to recognize

GMSK modulations with di�erent bandwidth (BT = 0.25, BT = 0.5) and provides

good classi�cation performance. This is based on the assumption that other linear

modulations have been identify by other existing methods.

• We can classify linear modulations (BPSK, QPSK, 8PSK) and nonlinear (GMSK

BT = 0.25, GMSK BT = 0.5) modulations using the conventional receiver structure

for linear modulations and the proposed MAP classi�er based on the BW algorithm.

• The proposed classi�er achieves good classi�cation performance at small SNRs as

required by satellite/space communication applications.

Chapter 6 concludes the importance of our work and proposes directions for future research.
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Table 1.1: A summary of DT classi�ers in AWGN.

Author(s) Modulations Unknown parame-

ters

Wei et al. [WM00] 16QAM, V29 -

Sapiano et al. [SM96] UW, BPSK, QPSK, 8PSK -

Sills [Sil99] BPSK, QPSK, 16QAM,

V29, 32QAM, 64QAM

Phase o�set

Kim et al. [KP88],

[PK90]

BPSK, QPSK Phase o�set

Long et al. [LCP94] 16PSK, 16QAM, V29 Phase o�set

Hong et al. [HH03] BPSK, QPSK Signal level

Beidas et al. [BW96],

[BW98]

32FSK, 64FSK Phase jitter, tim-

ing o�set

Pannagiotu et al.

[PAP00]

16PSK, 16QAM, V29 Phase o�set

Hong et al. [HH00] BPSK, QPSK Signal level

Chugg et al. [CLP95] BPSK, QPSK, OQPSK Phase o�set, signal

power, noise power
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Table 1.2: A summary of PR classi�ers under the ideal situation in AWGN.

Author(s) Features Modulations

Azzouz et

al. [AN96b],

[AN96a]

Maximum power spectral density of

normalized centered amplitude, stan-

dard deviation of normalized centered

amplitude, phase and frequency

2ASK, 4ASK, BPSK,

QPSK, 2FSK, 4FSK

Hsue et al.

[HS89], [HS90]

variance of the zero-crossing interval

sequence, phase di�erence and zero-

crossing interval histrograms

UW, BPSK, QPSK,

8PSK, BFSK, 4FSK,

8FSK

Yang et al.

[YS91a],

[YS97], [YL98]

PDF of phase UW, BPSK, QPSK,

8PSK

Soliman et al.

[SH92], [YS95]

Statistical moments phase UW, BPSK, QPSK,

8PSK

Sapiano et al.

[SMH95]

DFT of phase PDF UW, BPSK, QPSK,

8PSK

HO et al.

[HPC95],

[HPC00]

Variance of haar WT magnitude, haar

WT magnitude and peak magnitude

histograms

BPSK, QPSK, 8PSK,

2FSK, 4FSK, 8FSK,

CP2

LeMartret et

al. [? ]

Forth- and second-order moments of

the received signal

QPSK, 16QAM

LeMartret et

al. [MLL98]

Forth- and second-order cyclic cumu-

lants of the received signal

QPSK, 16QAM,

64QAM

Dobre et al.

[DBNS03]

Eigth-order cyclic cumulants of the re-

ceived signal

BPSK, QPSK, 8PSK,

4ASK, 8ASK, 16QAM,

64QAM, 256QAM

Yu et al.

[YSS03]

DFT of the received signal 2FSK, 4FSK, 8FSK,

16FSK, 32FSK
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Table 1.3: A summary of PR classi�ers.

Author(s) Features Modulations Unknown

parameters

Channel(s)

Swami et

al. [SS00]

Normalized fourth-

order cumulants of the

received signal

BPSK, 4ASK,

16QAM,

8PSK, V32,

V29, V29c

Phase, fre-

quency and

timing o�-

set

AWGN,

impul-

sive noise,

cochannel

interference

Dobre

et al.

[DBNS04]

Eighth-, sixth, and

fourth-order cyclic cu-

mulants of the received

signal

4QAM,

16QAM

Phase and

frequency

o�set,

phase jitter

AWGN,

impulsive

noise

Spooner et

al. [Spo95]

Fourth- and second-

order cyclic cumulants

of the received signal

MSK, QPSK,

BPSK, 8PSK,

8QAM

-

AWGN,

cochannel

interference

Spooner

[Spo01]

Sixth-, fourth- and

second-order cyclic cu-

mulants of the received

signal

QPSK,

16QAM,

64QAM, V29

-

AWGN,

cochannel

interference
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2.1 Introduction

In coherent system, synchronization errors such as frequency and phase o�sets due to the

imperfection of local oscillator lead to system impairments. The frequency o�set spreads

the received signal constellation points whereas the phase o�set rotates them, see Figure 1.1

17
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(b)-(c). The residual channel from imperfect equalization and ISI from dispersive channel

are also sources of deterioration. To mitigate the e�ects, several unknown parameters can

be estimated and then the estimated values are used to de-rotate and de-spread the received

signals. This step is the key point of the plug-in classi�ers studied intensively in this thesis.

To implement the plug-in classi�ers in (1.9), we have to estimate the posterior probability

P̂ (λi|x) or equivalently the pdf of observation sequence given each possible modulation

format. We study three approaches to estimate the probability of observation sequence

given the model as well as unknown parameters.

• The �rst approach consists of two steps. The parameter estimation step is carried out

by a Bayesian method coupled with Markov Chain Monte Carlo (MCMC) methods.

The second step replaces the unknown parameters by their estimates in the likelihood

function and calculate the posterior probability of each possible modulation.

• The second approach relies on hidden Markov models (HMMs) whose model parame-

ters and the probability of observation sequence given the model are approximated at

one step using the forward/backward Baum-Welch (BW) algorithm. The estimation

of the probability of observation sequence conditioned on each possible modulation

type will be used in the rest of the work for classi�cation.

MCMC methods and the BW algorithm are appropriate for packet transmission because

they work on the principle of feed-forward estimation. The packet mode of operation is

typical of time-division multiple access (TDMA), where several users share the capacity of

the communication channel by transmitting bursts of data in non-overlapping time intervals.

Further distinction will be made between short packet operation and long packet operation.

In the case of short packet communication, the number of data symbols per packet is so

small that the carrier phase and frequency o�sets can be considered as constant over the

entire burst. As a result, it is su�cient to acquire a single parameter estimation per packet

and apply these parameters for detecting all data symbols within the packet. In the case

of long packet communication, the variation of these parameters over the packet cannot be

neglected. In this case, operation in long packet mode is similar to operation in continuous

mode. Thus, it is necessary to make multiple carrier phase and frequency estimates per

packet in order to track the �uctuations of these parameters. In the packet transmission, the

synchronization parameters (particularly the carrier phase) can change signi�cantly between
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packets from the same user, so that these parameters must be acquired again for each

packet. In the case of short packet communication, the information sequence per packet

might be only about a hundred symbols long, so that for a high e�ciency there should

be only a very short preamble or preferably no preamble at all. Therefore, a feed-forward

synchronizer or so called estimator is required for this mode of transmission due to a very

short acquisition time requirement. In the continuous transmission, this requirement can

be relaxed. Applications of the continuous transmission are found in Satellite downlink

communications such as Digital Video Broadcasting (DVB) systems. Feedback synchronizers

such as phase-locked loops (PLLs) are generally preferred because of their abilities to track

any change in the carrier phase and frequency.

• The last approach also has two steps. A phase-locked loop (PLL) is applied to com-

pensate the frequency and phase o�sets �rst. Then the probability of observation

sequence given the model is estimated by the BW algorithm.

2.2 MCMC Parameter estimation

The requirement of the integration of high-dimensional functions to obtain the posterior

distribution is the main drawback of Bayesian approaches. An attempt to alleviate the

disadvantage is to compute complex integrals by expressing them as expectation of some

distribution and then estimate this expectation by drawing samples from that distribution.

This is referred to as Monte Carlo integration. MCMC methods are techniques that simulate

samples from some complex distribution of interest. MCMC methods are so-named because

one uses the previous sample values to randomly generate the next sample value, generating

a Markov chain (as the transition probabilities between sample values are only a function

of the most recent sample value).

The signal model is expressed as in (1.7). The unknown parameter vector θ = (fr, φ, h) is

estimated according to the minimum mean square error (MMSE) principle (which minimizes

the standard quadratic cost function E[(θ̂ − θ)2])

θ̂MMSE = E[θ|x]. (2.1)
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Obviously, a closed-form expression for the MMSE estimator of θ cannot be obtained. How-

ever, the MMSE estimate (which is the mean of the a posteriori density) can be approxi-

mated as follows

θ̂MMSE =
∫
θp(θ|x)dθ ' 1

Ni

Ni∑
n=1

θn, (2.2)

where θn, n = 1, ..., Ni are samples drawn from θn ∼ p(θ|x) and Ni is the number of itera-

tions. This result can be used to approximate the MMSE estimator θ̂MMSE, as soon as it

is possible to generate samples θn distributed according to p(θ|x). This work proposes to

generate θn using the Metropolis-Hastings (MH) algorithm, which is one of the most popular

MCMC methods. The MH algorithm consists of drawing samples distributed according to

p(θ|x) by running an ergodic Markov chain whose stationary distribution is the posteriori

distribution p(θ|x). The reader is invited to consult [GRS96] for more details. It is proved

that the following ergodic theorem holds ([GRS96, p.47])

1
Ni

Ni∑
k=1

η(θk) as→
Ni→∞

Ep(θ|x)[η(θ)], (2.3)

for every function η de�ned on Ω, where Ep(θ|x)[η(θ)] exists. In (2.3),
as→

Ni→∞
denotes almost-

sure convergence. Consequently, after discarding the so-called �burn-in� samples, the mean

of the a posteriori distribution (2.1) is estimated by the time average of the remaining

Markov chain samples (which converges to the MMSE estimator according to (2.3)).

2.2.1 Posteriori distribution p(θ|x)

By Bayes theorem, the posterior distribution can be expressed as

p(θ|x) ∝ p(x|θ)p(θ),

where ∝ means proportional to, p(x|θ) is the likelihood of the observed data conditioned on

the unknown vector θ, and p(θ) is the prior knowledge about θ. The following priors for the

MMSE estimation of θ are used:

• Uninformative independent uniform priors for the frequency and phase o�sets: p(fr, φ) =

p(fr)p(φ) where p(fr) = I(−1/2,1/2](fr), p(φ) = M
2π I[−π/M,π/M ](φ) for an M-PSK mod-

ulation, p(φ) = 2
π I[−π/4,π/4](φ) for other modulations, and I is the indicator function.
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• Independent normal priors distribution N (0, σ2
h) are selected for the residual channel

FIR �lter taps, σ2
h = 0.01 (see [SS00]). A suitable choice of parameter σ2

h allows to

incorporate vague prior information about the parameters hl.

From the signal model in (1.1), we know that the conditional pdf of the observation

symbol given the transmitted symbol has the normal distribution and the logarithm of the

likelihood associated to class λj has the form in (1.6). Thus reversing the e�ect of the

unknown parameters θ results in an approximated likelihood function of (1.6). This can be

achieved by de-spreading and de-rotating the observation symbol by the estimated frequency

and phase o�sets, respectively. Then the observation sequence is passed through the inverse

�lter constructed from the estimated coe�cients. Given a modulation type λj with Mj

constellation points, the approximated logarithm of the likelihood can be written as

l̂(x|θ) =
Ns∑
k=1

ln
[

1
Mj

Mj∑
i=1

exp
(
− 1
σ2
z

‖ x(k)θ − Si ‖2
)]
, (2.4)

where x(k)θ is the output of the �lter having the transfer functionH−1(z) = 1/
(∑q

l=1 ĥlz
−l
)

driven by the input x(k)e−j(πkf̂r/Ns+φ̂).

2.2.2 Metropolis-Hastings (MH) algorithm

The Markov chain state space and current state are denoted by Ω and θn = (fnr , φ
n, hn) ∈ Ω,

respectively. At each iteration, a candidate y is drawn according to a proposal distribution

q(y|θn). This candidate is accepted with the following probability:

α(θn, y) = min
{

1,
p(y|x)q(θn|y)
p(θn|x)q(y|θn)

}
. (2.5)

Equivalently, if rand is the outcome of a uniform drawing on [0,1] and θn is the value of θ

at iteration n, the next value of θ is chosen as follows:{
θn+1 = y if rand < p(y|x)q(θn|y)

p(θn|x)q(y|θn) ,

θn+1 = θn otherwise.
(2.6)

A fundamental property of the MH algorithm is that any proposal distribution q(y|θn)

can be chosen, provided that the support of p(·|x) is contained in the support of q(y|θn)

[GRS96]. In this work, it is appropriate to use the normal distribution N (θn, σ2) as a
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proposal distribution, where σ2 is optimized to provide a suitable acceptance rate (1/4 to

1/2, see [Rob98, p.8]. We choose to draw y from a local perturbation of the previous sample,

i.e., y = θn + ε, leading to the well-known random-walk MH algorithm. In this case, the

proposal distribution is of the form q(y|θn) = g(y − θn). Interestingly, the choice of a

symmetric distribution for g leads to an acceptance probability which is independent on q.

Instead of updating the whole of θ en bloc, it is often more convenient and computa-

tionally e�cient to divide θ into k blocks and to update each block one-at-a-time. This

procedure has been suggested by many authors (see [GRS96] for more details) and has been

shown to improve the mixing property of the sampler. Here we propose to update θ one

component at-a-time. Such strategy, indeed, exhibits good performance in classi�cation of

digital modulations as shown in [LTD01].

2.2.3 Simulation results

This section shows some results of MCMC parameter estimation. A 4QAM signal is trans-

mitted through a linear FIR channel and corrupted by Gaussian noise. At the receiver, the

signal is further deteriorated by synchronization errors. The signal-to-noise ratio (SNR) in

decibels for the normalized (unit energy) constellation is de�ned as

SNR = 10 log10

(
1
σ2
z

)
. (2.7)

Simulation parameters

• λj =4QAM, Mj = 4.

• fr = 0.1, φ = 0.2, otherwise stated in the �gures.

• h = [1, 0.35 + 0.25j].

• SNR = 10 dB

• Current state: θn = (fnr , φ
n, hn).

• Proposal distribution: random walk q(y|θn) ∼ N (θn, σ2) where σ = 0.03.

Figure 2.1 plots the histogram of the estimated posteriori distribution of the frequency

o�set fr and phase o�set φ. The number of samples Ns is 250 and the number of iterations
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Figure 2.1: Normalized histograms of fr and φ.
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Figure 2.3: MCMC samples
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Ni is 50000 including burn-in samples. Similar histograms can be produced for h1 and are

plotted in Figure 2.2. Markov Chain convergence of each estimated parameter are shown in

Figure 2.3. Here, the number of iteration Ni is 3000. It can be observed that samples reach

the target values after hundreds of burn-in samples.

Figure 2.4 (a) shows the average mean square error (MSE) of φ versus the number of

iterations after 100 Monte Carlo runs for 2 values of SNR. At SNR = 10 dB, it is clearly seen

that Ni = 1000 samples are su�cient to approximate the MMSE estimator. At SNR = 5

dB, the value of average MSE oscillates around 0.01 till Ni = 5000. Figure 2.4 (b) displays

the average MSE versus SNR given the iteration number of 1000 and burn-in samples of

500.

Figure 2.5 (a) plots the estimated frequency and phase o�sets of 4QAM signal. The

number of symbol is 500 and the number of iterations is 1500 including the burn-in of 500

whereas �gure 2.5 (b) shows the signal constellation before and after frequency and phase

compensation.

MCMC methods have the advantage that the accuracy of the estimation can be improved

by increasing the number of samples and iterations. More importantly, choosing the proposal

distribution corresponding exactly to the target posteriori distribution is a key success of the

accuracy of the methods. Certainly in some circumstances the target posteriori distribution

may not be known. MCMC methods can estimate many unknown parameters (fr, φ, h, ...).

However the complexity and speed of calculation also grow with the number of samples,

iterations, and unknown parameters.
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2.3 BW Parameter estimation

Assume that we have a perfect synchronization but the signal is transmitted through a

dispersive channel. The signal model in (1.7) can be represented in another way as

x(n) =
∑q

l=0 hld(n− l) + z(n), n = 1, 2, ..., Ns,

= hsT (n) + z(n),

(2.8)

where

• d(n) ∈ {d1, d2, ..., dM} is an i.i.d. symbol sequence of M -values drawn from one of c

constellations denoted {λ1, λ2, ..., λc},

• s(n) = [d(n), d(n− 1), ..., d(n− q)],

• h = [h0, ..., hq] is a vector containing the q+1 taps of the linear �nite impulse response

(FIR) channel and h0, ..., hq are channel coe�cients,

• q is the channel memory.

The received signal x(n) can be modeled as a probabilistic function of an hidden state

at time n which is represented by a �rst order HMM with the following characteristics:

1. The state of the HMM at the nth time instant is s(n). Thus, s(n) takes its values in

{s1, s2, ..., sN} of size N = M q+1, where sj is the jth possible value of s(n).

2. The state transition probability distribution is

aij = P [s(n+ 1) = sj |s(n) = si],

which equals 1/M when all symbols are equally likely.

3. The initial state distribution vector π = (π1, ..., πN )T is de�ned by πi = P [s(1) =

si] = 1/N .

4. Based on (2.8), the pdf of the observation x(n) conditioned on state j, denoted as

pj [x(n)] , p[x(n)|sj ] can be written

pj [x(n)] =
1
πσ2

z

exp
(
−|x(n)−mj |2

σ2
z

)
, (2.9)



2.3. BW PARAMETER ESTIMATION 29

Figure 2.6: Received signal modeled by a HMM.

for j = 1, ..., N , where mj =
∑q

l=0 hldj(n − l). We denote as m = [m1, ...,mN ]T the

vector containing all signal means.

For example, if M=2, q=1 and all symbols are equally likely, we can draw the state

diagram and write the signal state matrix as in Figure 2.6.

Given the above HMM, the BW algorithm can be used to determine the probability of

the observation sequence given the model and estimate the unknown model parameters. It

is based on a forward-backward procedure which estimates iteratively the unknown model

parameters maximizing the posterior probability of the unknown parameters. After conver-

gence, the BW algorithm provides MAP estimates of m and σ2
z such that:

(m̂, σ̂2
z) = arg max

m,σ2
z

P (m, σ2
z |x, λ). (2.10)

The algorithm needs a forward operation to compute P (m, σ2
z |x, λ) whereas a forward/backward

algorithm is necessary to estimate the unknown parameters mj and σ2
z . This section de-

scribes the principles of the standard BW algorithm. A least mean square type (LMS-type)

update BW algorithm is also discussed.
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Figure 2.7: Computation of the forward variable.

2.3.1 The standard BW algorithm

The standard BW algorithm [Rab89] estimates P (x|m, σ2
z , λ) by using the following three-

step procedure iteratively:

1) Compute the normalized forward variable αi(n), see Figure 2.7

• Initialization:

αi(1) = πipi(x(1)), 1 ≤ i ≤ N (2.11)

• Induction:

αj(n+ 1) = c(n)pj(x(n+ 1))
N∑
i=1

αi(n)aij , (2.12)

for n = 1, 2, ..., Ns − 1, j = 1, ..., N , and where c(n) =
(∑N

i=1 αi(n)
)−1

,

2) Compute the normalized backward variable βi(n), see Figure 2.8

• Initialization:

βi(Ns) = c(Ns), 1 ≤ i ≤ N (2.13)

• Induction:

βi(n) = c(n)
N∑
j=1

aijpj(x(n+ 1))βj(n+ 1), (2.14)

for n = Ns − 1, ..., 1 and i = 1, ..., N .
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Figure 2.8: Computation of the backward variable.

3) Estimate the model parameters as follows

m̂i =
∑Ns

n=1 γi(n)x(n)∑Ns
n=1 γi(n)

, (2.15)

σ̂2
z =

1
Ns

Ns∑
n=1

N∑
i=1

γi(n)|mi − x(n)|2, (2.16)

where γi(n) = αi(n)βi(n).

In a batch mode implementation, steps 1 to 3 are carried out iteratively with updated

values of pj [x(n)] until convergence. Thus, the estimated probability of the observation

sequence given the model is computed as follows

P̂ (x|m, σ2
z , λ) =

∑N
i=1 αi(Ns)∑Ns
i=1 c(i)

. (2.17)

Di�erent modi�cations have been applied to the standard BW algorithm to improve esti-

mation/classi�cation performance or reduce computation complexity. These modi�cations

are presented in Section 2.3.2 and 2.3.3.

2.3.2 Regularization

For a linear channel, we have the relationship m = ShT , where S is the state matrix

de�ned as S = [s1, s2, ..., sN ]T . This information can be used to regularize the estimated
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mean values. For this, at each iteration, the estimated means are projected into the space

spanned by the columns of S [FV94]:

m← SS]m (2.18)

where S] is the pseudo-inverse of S and ĥ = [S]m]T .

2.3.3 The LMS-type update algorithm

The standard BW algorithm su�ers from the �curse of dimensionality" because the compu-

tation complexity and memory requirement are proportional to the square of the number of

the states. Furthermore the convergence rate is rather slow. Thus, it is worth seeking im-

provements in terms of memory and computation speed. In this thesis, we have implemented

the LMS-update type algorithm initially presented in [FV94]:

mi(n) = mi(n− 1) + µmγi(n)ei(n), (2.19)

σ2
z(n) = (1− µs)σ2

z(n− 1) + µs

(
N∑
i=1

γi(n)|ei(n)|2
)
, (2.20)

where ei(n) = x(n)−mi(n− 1) for i = 1, ..., N .

The initialization and time-induction calculation for the forward variable can be com-

puted as in the standard BW algorithm. The calculation of backward variable can be

obtained by using the �xed-lag or sawtooth-lag schemes [KM93]. In this work, we have im-

plemented the �xed-lag case where ∆ > q+1 and apply for each n the normalized backward

recursion from n + ∆ to n. However, for the normalized backward recursion from n + ∆

to n, the calculation of the normalized forward variable from n to n + ∆ is required for

the �xed-lag ∆. This means that the calculation can be started as soon as the observation

symbols are greater than 2 + ∆.

2.3.4 Simulation results

This section studies the convergence and tracking characteristics of the LMS-type update

algorithms. The signal-to-noise ratio (SNR) in decibels is de�ned as

SNR = 10 log10

(
|h|2

σ2
z

)
.
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Figure 2.9: Estimated real and imaginary part of h1.

A 4QAM signal is transmitted through a linear channel whose complex impulse response

is h = [1, 0.75 + 0.25j]. The output of the �ltered sequence is then contaminated by an

additive complex white Gaussian noise with variance σ2
z = 0.01. The initial values and the

step-sizes of the LMS-type update algorithm have been adjusted as follows:

µm = 0.6, µs = 0.1, σ2
init = 1,∆ = 5.

Figures 2.9 and 2.10 display typical estimates for the real and imaginary parts of h1 and

the variance σ2
z for a single run. Figure 2.11 shows the average MSE versus SNR for the

estimated real and imaginary parts of h1. Of course, better performance can be achieved

for high SNRs, as expected.

Figure 2.12 (a) shows the received 4QAM signals propagated through a dispersive channel

and corrupted by Gaussian noise, signal means, and estimated means obtained from the

modi�ed BW algorithm. It can be seen that the received signal constellation bears no

resemblance to the original 4QAM constellation. Figure 2.12 (b) plots the signals after

deconvolution of the estimated channel coe�cients (calculated from the estimated means)

with the received signals.
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Figure 2.12: Dispersive channel mitigation using the modi�ed BW algorithm.
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Figure 2.13: Analog phase locked loop.

2.4 Phase-locked loop

A PLL is generally used to synchronize the frequency and phase of a reference or input signal

with an output signal which is usually generated by an oscillator. In the synchronized or so-

called locked state, the di�erence (error) between the reference and the oscillator output is

zero or very small. The overall circuit consists of three main parts. They are phase detector

(PD), loop �lter (LP) and voltage control oscillator (VCO), see Figure 2.13. Details on

PLLs are rich and can be found in the literature. We are interested in implementing a

digital phase-locked loop as in �gure 2.14 in which the VCO is replaced by numerically

voltage controlled oscillator (NCO).

2.4.1 Signal model

Consider the baseband received signal at the output of the matched �lter a�ected by a

phase error θ which is assumed to be constant over NsT , where T is the symbol duration.
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Figure 2.14: A digital phase-locked loop.

Assuming perfect timing recovery, the received samples can be expressed as:

x(k) = d(k)ejθ(k) + z(k), n = 1, 2, ..., Ns (2.21)

where d(k) = dI(k) + jdQ(k) and z(n) is an i.i.d. complex Gaussian noise sequence which

has zero-mean and variance σ2
z .

Let φ = θ − θ̂ be the phase di�erence between the phase error and the correction phase

θ̂ from the VCO output signal. Applying the ML principle, we obtain the logarithm of the

likelihood function [Bou97]

Λ(φ) =
1
N0

(
Ns∑
k=1

Re[x(k)d̂∗(k)e−jφ̂]

)
. (2.22)

2.4.2 Phase detector : Decision-Directed (DD) algorithm

The role of the phase detector is to provide an information representing the phase error.

This information will be �ltered and integrated in order to generate θ̂ in attempt to make

zero error. The DD algorithm uses the estimated data symbol to calculate (2.22). Let φopt

be the optimal phase value that makes the derivative of (2.22) with respect to φ equal to
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error signal output of VCO

2 increase

0 not change

-2 decrease

Table 2.1: Polarity-type decision-feedback phase detector.

zero, we have

d

dφ
[Λ(φopt)] = 0 ⇔ Im

[
L∑
k=1

d̂∗(k)x(k)e−jφopt

]
= 0, (2.23)

where d̂∗(k) is the conjugate of the maximum likelihood data estimate. After the phase

correction, we can write

w(k) = x(k)e−jθ̂. (2.24)

Thus (2.23) can be written as

Im

[
L∑
k=0

d̂∗(k)x(k)e−jφopt

]
=

L∑
k=1

Im[d̂∗(k)w(k)] = 0. (2.25)

Let εt be the error signal before loop �ltering and ε(φ) be the equivalent phase detector

characteristic (also called loop S-curve),e.g., ε(φ) = E[εt(φ)]. Thus (2.25) can be expressed

as

εt(φ(k)) = Im[d̂∗(k)w(k)]. (2.26)

We can write various expressions for the phase detector according to [LV83]. However

the author suggested the use of the error signal which is in the form

εt(φ(k)) = Im[csgn(w∗(k))csgn(w(k)− d̂(k))], (2.27)

where csgn(x) = sgn(Re[x]) + jsgn(Im[x]).

The error signal in (2.27) provides a polarity-type decision-feedback phase detector. A

phase detector applied this error signal outputs three values, i.e., 2, 0, and -2. The positive

signal voltage pulse will be sent to the LP to slow the VCO whereas the negative signal

voltage pulse is induced to speed up the VCO. This can be summarize in Table 2.1.
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Figure 2.15: 4QAM at 20 dB.

Figure 2.15 plots the phase detector output and the phase estimate. The nature of this

error signal has the following comments.

• There is no modulation noise at the equilibrium point φ = 0.

• The implementation requires only EXOR gates and adders.

• This error signal applies to all modulation schemes as long as the quadrant symmetry

is satis�ed.

In �gure 2.16, we compare the equivalent phase detector characteristic of the error signal

in (2.26) represented by the solid line to (2.27) represented by the broken line. The signal

constellation type is 16QAM operating at SNR = 22dB.

The gain of the detector Gd can be de�ned by the slope at the origin of its phase detector

characteristic. The slope at the origin is an important element to determine the performance

of a detector in term of the variance [Bou97]. It is necessary to know the slope in order

to calculate the loop noise bandwidth, e.g., two loops with di�erent detectors but the same

low-pass �lters will have di�erent loop noise bandwidths. The slope at the origin of the
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detector using (2.27) is greater than that of (2.26). Thus the variance associated with this

detector is smaller. Moreover, the area under curve of (2.26) is small causing the increase of

the probability of cycle jump. The phase detector characteristic of (2.26) is enlarged in Fig

2.17 which exhibits undesirable lock points. Thus we choose to implement our PLL using

the phase detector (2.27).

2.4.3 Loop �lter

The choice of the loop �lter a�ects the behavior of the PLL. Generally, the transfer function

of the second order loop �lter of the form F (z) = A+ B
1−z−1 is used where B = 0 yields the

�rst order loop �lter. The transfer function of the second order PLL is given by [LC81]

H(z) =
GF (z)

(z − 1) +GF (z)
, (2.28)

where G is the overall gain de�ned by G = Gd.Go (Go = 1 is the NCO gain). Putting it

another way, we obtain

H(z) =
GA(z − 1) +GBz

(z − 1)2 +GA(z − 1) +KBz
. (2.29)

This is equivalent to its analog counterpart

H(s) =
2ξωns+ ω2

n

s2 + 2ξωns+ ω2
n

, (2.30)

where ξ is the damping factor (ξ = 0.7 is a common choice) and ωn is the normalized natural

frequency of the loop. The normalize loop noise bandwidth is given by

BlTloop =
ωnTloop

2

(
ξ +

1
4ξ

)
, (2.31)

where 1/Tloop is the sampling rate of the PLL. The sampling rate 1/Tloop is typically chosen

to minimize loop tracking error due to thermal noise and input phase dynamics. The phase

error variance augments as the value of 1/Tloop decreases. To avoid threshold degradation,

BlTloop . 0.1 is required [LC81]. The value of BlTloop is also related to the acquisition

time (the transition from a large initial uncertainty to a small steady-state estimation error

variance). Widely speaking, a PLL with a small value of BlTloop has large acquisition time.

By equating the denominator of (2.29) and (2.30), then letting z = exp(sTloop) and

applying Taylor expansion of order 2, we obtain

GB

1 + GA+GB
2

= (ωnTloop)2, (2.32)
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and
GA+GB

1 + GA+GB
2

= 2ξωnTloop. (2.33)

Writing them another way,

GA =
(2ξ − ωnTloop)ωnTloop

1− ξωnTloop
, (2.34)

and

GB =
(ωnTloop)2

1− ξωnTloop
. (2.35)

Once BlTloop is chosen, we can determine the parameter A and B of the loop �lter.

2.4.4 Simulation results

This section presents some results regarding the technique to combat the e�ects of the

frequency and phase o�sets using PLL. To simulate continuous transmission, the number of

observation symbols of the transmitted 16QAM signals is 4096.

Figure 2.18 (a)-2.19 (a) show the in�uence ofBlTloop to the error variance of the estimated

values in the presence of only the phase o�set. In case of BlTloop = 0.001, the error variance

is less than that of BlTloop = 0.01 but the acquisition time is longer. To compensate the

phase o�set, these two cases provide the correct signal constellations, see Figure 2.18 (b)-

2.19 (b). When a large frequency o�set of 0.02 is introduced, it is more prominent to see the

advantage of BlTloop = 0.01. Figure 2.20 shows that the PLL fails to track the frequency

o�set and the correct signal constellation cannot be recovered. Better results are shown in

Figure 2.21.

2.5 Conclusions

Three techniques to mitigate di�erent impairments were addressed. The estimation of the

unknown parameters (frequency and phase o�set, residual channel) was conducted by simu-

lating samples distributed according to the likelihood under all hypothesises. This operation

was achieved by the Metropolis-Hastings algorithm which is one of the most popular MCMC

methods. Exploiting the memory structure of ISI channels, which can be modeled by a �rst

order HMM, is the core idea behind the parameter estimation using the modi�ed BW al-

gorithm. Since the computational complexity increases with the number of samples, these
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(b) Signal constellation before and after impairment mitigation.

Figure 2.18: Phase impairment mitigation using PLL, BlTloop = 0.001.
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(b) Signal constellation before and after impairment mitigation.

Figure 2.19: Phase impairment mitigation using PLL, BlTloop = 0.01.
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(b) Signal constellation before and after impairment mitigation.

Figure 2.20: Frequency impairment mitigation using PLL, BlTloop = 0.001.
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(b) Signal constellation before and after impairment mitigation.

Figure 2.21: Frequency impairment mitigation using PLL, BlTloop = 0.01.
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two feed-forward approaches are suitable for a small packet transmission. The feedback syn-

chronizer is more attractive in case that the transmitted signal of continuous transmission

su�ers from a large frequency o�set.
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3.1 Introduction

A considerable number of researches has been carried out on modulation classi�cation mit-

igating only the e�ect of the additive white Gaussian noise (AWGN). The ML classi�er

studied by [WM00] reaches the optimal performance. However, it requires knowledge of

all parameters such as the phase o�set, the frequency o�set, or the residual channel. The

ML classi�er provides an upper bound of performance and can be used as a reference for

any classi�er that performs under some non-ideal cases. In [PK90], the classi�er based on

49
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a quasi log-likelihood ratio (qLLR) was derived by approximating the average likelihood-

ratio function of MPSK modulated signals in non-coherent carrier phase and asynchronous

timing environments. The same principle can classify BPSK/QPSK/OQPSK signals in the

presence of the phase o�set [CLP95]. The author in [Sil99] also proposed a pseudo-ML mod-

ulation classi�er to discriminate BPSK/QPSK/8PSK/16QAM/32QAM/64QAM signals in

non-coherent carrier phase case. It was based on approximating the PDF of the phase dif-

ference at high SNR. However, none of these classi�ers considered the situation where the

modulated signal is deteriorated by the frequency o�set and a residual channel. In this

chapter we study an MCMC plug-in classi�er which can recognize the modulated signal

format taking into account all the e�ects mentioned above. Simulation experiments and

comparison with the ML and HOS classi�ers will be included.

We also extend the proposed MCMC plug-in classi�er in a slow fading scenario. In some

practical situations, the transmitted signal may propagate through various additional im-

pairment environments including fading. The problem of classifying communication signals

in presence of fading has received less attention in the literature. The Bayes classi�er was

studied in [HH03] to discriminate between BPSK and QPSK modulations. This method has

high computation cost since it computes the expectation of the likelihood function over the

fading amplitude. Hybrid likelihood-based solutions were proposed in [HH00; ADC+04].

The proposed methodologies consist of estimating the unknown parameters and putting

these estimates in the likelihoods. The authors in [HH00] used numerical techniques to �nd

the maximum likelihood estimate of the fading amplitude for BPSK and QPSK modula-

tions. Approximating the fading amplitude and phase by the method of moments (MOM)

was also studied in [ADC+04] for QAM modulations.

3.2 Modulation classi�cation in presence of mismatch e�ects

This section studies the performance of an MCMC plug-in classi�er in some realistic sce-

narios. The signal model is expressed as in (1.7) in which the synchronization errors (the

frequency and phase o�sets) and the residual channel (from the imperfect equalization) lead

to more complex models for the received signals. Given Ns samples x(k), k = 1, 2, ..., Ns of

a modulated signal, the classi�cation problem is to identify the underlying modulation λi

represented by the sample x(k) where λi ∈ {λ1, λ2, ..., λc}. The plug-in classi�er estimates
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the unknown parameters θ = (fr, φ, h) by MCMC methods assuming the ith hypothesis is

true, then uses these estimates in a likelihood ratio test as if they were correct. The details

of MCMC parameter estimation have been reported in Section 2.2. The MCMC plug-in rule

is de�ned as

assign x to λi if l̂(x|θi, λi) ≥ l̂(x|θj , λj),∀j. (3.1)

where

l̂(x|θj , λj) =
Ns∑
k=1

ln
[

1
Mj

Mj∑
i=1

exp
(
− 1
σ2
z

‖ x(k)θ − Si ‖2
)]
,

and x(k)θ is the output of the �lter having the transfer function H−1(z) = 1/
(∑q

l=1 ĥlz
−l
)

driven by the input x(k)e−j(πkf̂r/Ns+φ̂).

The four-class problem for linear modulations λ = {BPSK, 4PAM, 8PSK, 16QAM} stud-
ied in [SS00] is considered in this thesis for comparison. The classi�cation performance is

the average probability of correct classi�cation Pcc. Various simulation experiments are pre-

sented for three classi�ers: ML, HOS, and MCMC Plug-in classi�ers. Note that the ML

classi�er in (1.5) and HOS classi�er in Section 1.4 do not take into account the mismatch ef-

fects. To investigate the average probability of correct classi�cation, simulation experiments

were carried out using 1000 trials, i.e., 4000 trials for the four-class problem. The number of

symbols in the observation period is Ns = 250. All constellation symbols have unit energy.

The signal-to-noise ratio (SNR) in decibels is de�ned as in (2.7). Note that our simulation

is based on one sample per symbol, thus SNR per symbol is equivalent to the energy per

symbol to noise spectral density (Es/N0). The MCMC sampler has the following properties:

• Number of burn-in iterations: Nbi = 500,

• Number of iterations: Ni = 3000,

• Proposal distributions: q(z|θni ) ∼ N (θni , σ
2) where σ = 0.03.

3.2.1 Simulation results

Table 3.1 shows confusion matrices for the four-class problem Ω4 obtained for SNR = 5 dB,

fr = 0.4, φ = 0, and h = [1, 0, 0]. It is obviously seen that the MCMC plug-in classi�er

outperforms the ML and HOS classi�ers.



52CHAPTER 3. CLASSIFICATION OF LINEARMODULATIONS USINGMCMCMETHODS

Table 3.1: Confusion matrices for three classi�ers of 100 trials at SNR = 5dB.

Classi�er Classi�er Input
Classi�er Output

BPSK 4PAM 8PSK 16QAM

ML

BPSK 0 0 99 1

4PAM 0 0 0 100

8PSK 0 0 99 1

16QAM 0 0 18 82

HOS

BPSK 16 84 0 0

4PAM 11 78 0 11

8PSK 0 0 83 17

16QAM 0 0 61 39

MCMC

BPSK 100 0 0 0

4PAM 24 76 0 0

8PSK 0 0 100 0

16QAM 0 0 37 63

In�uence of fr

The robustness of the MCMC Plug-in classi�er to the frequency o�set is illustrated in Figure

3.1 for an ideal channel (i.e., no residual channel) h = [1, 0, 0], φ = 0, and SNR = 5 dB.

Although we were interested in the e�ect of the frequency o�set only for this experiment,

we also estimated the values of h. The e�ect of the phase o�set, keeping other parameters

constant, is not presented because the HOS classi�er is insensitive to the phase o�set. Figure

3.2 and 3.3 display the performance of the three classi�ers versus the frequency o�set in the

presence of a three-tap FIR channel h = [1, 0.25, 0.15] for SNR = 0 dB and SNR = 5

dB, respectively. The ML classi�er is not sensitive to a small range (i.e.,fr ≤ 0.2) of the

frequency o�set. After that its performance drops rapidly. The HOS classi�er is also robust

to a small range of the frequency o�set but does not perform as good as the ML and MCMC

Plug-in classi�ers in this range. The performance of the HOS classi�er decreases slowly

compared to the ML classi�er.
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Figure 3.1: Performance versus fr, h = [1, 0, 0].
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Figure 3.2: Performance versus fr, h = [1, 0.25, 0.15], SNR = 0 dB.
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Figure 3.3: Performance versus fr, h = [1, 0.25, 0.15], SNR = 5 dB.
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Figure 3.4: Performance versus residual channel modulus (only h is estimated).
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In�uence of residual channels

Figure 3.4 shows that the MCMC Plug-in classi�er is not a�ected by residual channels,

contrary to the ML and HOS classi�ers. Recall here that the ML and HOS classi�ers

assume implicitly no residual channel. This explains their poor performance. The e�ect of

a residual channel can be also seen when comparing Figure 3.1 with Figure 3.3. The ML

and HOS classi�ers have the same performance behavior trend as a function of fr in the two

�gures but with smaller values of Pcc in the presence of a residual channel, h = [1, 0.25, 0.15].

However, the performance of the MCMC Plug-in classi�er is unchanged. The price to pay

with this MCMC Plug-in classi�er is an increasing of computational cost compared to the

ML and HOS classi�ers.
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3.3 Modulation classi�cation in Rayleigh fading environment

This section extends the classi�cation rule studied in the Section 3.2 for modulations sub-

jected to Rayleigh fading. The proposed strategy is similar to the one developed in [ADC+04]

except the unknown parameters (residual carrier frequency, phase o�set, and fading ampli-

tude) are estimated by using the MMSE estimator. The numerical problems related to this

estimator are circumvented by using MCMC methods. Note that the main novelty of the

proposed classi�cation rule with respect to [LTD01] is that the fading amplitude and phase

are estimated.

3.3.1 Signal model and assumptions

This work considers a synchronous transmission scheme over a Rayleigh fading channel.

This kind of transmission yields residual carrier frequency and phase o�sets due to imperfect

coherent downconversion. We assume here that there is no residual channel e�ects and that

the amplitude factor is random due to fading as in [HH02; HH03]. However, this study

could be extended to more general models including a residual channel and timing errors

(as in [VTK02]). After preprocessing, the baseband complex envelope of the received signal

sampled at one sample per symbol at the output of a matched �lter can be written as:

x(k) = α(k)ej(π
k

Ns
fr+φ(k))d(k) + z(k), k = 1, 2, ..., Ns, (3.2)

where

• Ns is the number of symbols in the observation interval,

• d(k) is an i.i.d. symbol sequence drawn from one of c constellations denoted {λ1, λ2, ..., λc},
where λj is a set of Mj complex numbers {S1, S2, ..., SMj},

• φ(k) is a phase o�set (resulting from fading phase and synchronization errors) having

a uniform distribution in the [0, 2π] interval,

• fr = 2Ns(fc − f̂c) ∈ (−1/2, 1/2] is a normalized residual carrier frequency also called

frequency o�set (fc is the carrier frequency and f̂c is the frequency of the local os-

cillator). Note that these notations imply that fr is the constellation rotation whose

maximum value is π/2 for k = Ns),
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• α(k) is the unknown real amplitude factor,

• z(k) is an i.i.d. complex Gaussian noise sequence which has zero-mean and variance

σ2
z (the real and imaginary components of z(k) are independent and identically dis-

tributed).

When the signal is transmitted through a slow �at fading channel, the attenuation factor α

can be regarded as a random variable whose pdf is Rayleigh

p(α) =
α

σ2
α

exp
(
− α2

2σ2
α

)
IR+(α), (3.3)

where IR+(.) is the indicator function on R+ (i.e. IR+(α) = 1 if α > 0 and 0 else).

Fading channel

Flat fading mobile radio channels are usually characterized by the following frequency re-

sponse:

S(f) =
1

2πfd

[
1−

(
f

fd

)2
]−1/2

I[−fd,fd](f). (3.4)

The output of this channel can be generated by �ltering a complex white Gaussian sequence

with a low-pass Butterworth �lter. The cuto� frequency of this �lter is the product of the

symbol duration T by the Doppler shift fd due to vehicle motion. It is possible to generate

slow or fast fading channels, depending on the value of fdT . As an example, Fig. 3.5 shows

the output of the Butterworth �lter for fdT = 0.01 (Top) and fdT = 0.001 (Bottom), where

T = 1. These �gures clearly show that a large (resp. small) value of fdT induces fast (low)

fading amplitude variations.

The simulations performed in this work have been obtained for fdT = 0.001. In this case,

the fading amplitude α and phase φ are di�erent in each symbol resulting from the variations

as a function of time. However, for a slow fading, they can be assumed approximately

constant for each group of Ns = 100 consecutive symbols d(k). We can rewrite (3.2) as:

x(k) = αej(π
k

Ns
fr+φ)d(k) + z(k), k = 1, 2, ..., Ns. (3.5)

At the receiver, the estimated values of parameters α̂, φ̂ obtained for MCMC methods

represent the averaging of the fading amplitude and phase over 100 consecutive samples. This

point is illustrated on the bottom of �gure 3.5 which compares the real fading amplitude

with its piecewise constant estimated value.
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Figure 3.5: Fading amplitude versus time.

3.3.2 MCMC plug-in classi�er

This section studies a plug-in classi�er for classifying digital modulations subjected to

Rayleigh fading. We assume that the received signal amplitude and phase vary from one

observation interval to another and are unknown to the receiver. This assumption is real-

istic in a slow fading context and has been used in [HH03]. In this case, the classi�er has

to mitigate the amplitude and phase changes to yield good classi�cation performance. One

solution to this problem is to assign some prior distribution to fading amplitude and phase,

then integrate out these parameters from the likelihood. However, this strategy yields clas-

si�cation rules with exponential implementation complexity. An alternative is to estimate

the unknown parameters and then replace the unknown parameters by their estimates in

the likelihood. This plug-in rule strategy has shown good classi�cation properties in fading

environment [ADC+04]. This section studies the MCMC plug-in classi�er which estimates

the phase o�set, residual carrier frequency and fading parameters for modulation classi�ca-

tion purposes. Denote as θ = (fr, φ, α) the unknown parameter vector. The plug-in rule is
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de�ned as follows:

assign x to λi if l̂(x|θi) ≥ l̂(x|θj), ∀j = 1, ..., c, (3.6)

where l̂(x|θj) is the logarithm of the likelihood associated to class λj (whose constellation

consists of Mj symbols S1, S2, ..., SMj )

l̂(x|θj) =
Ns∑
k=1

ln
[

1
Mj

Mj∑
i=1

exp
(
− 1
σ2
z

‖ x(k)− wi ‖2
)]
, (3.7)

and

wi = α̂Sie
j(π k

Ns
f̂r+φ̂).

The plug-in rule can be used as soon as estimates of the unknown parameter vector θ can

be obtained conditionally upon each class λj . A Bayesian estimation technique was studied

in [LTD01] to estimate the unknown phase o�set, carrier frequency and residual channel

in absence of fading. The method can be extended to signals subjected to fading. More

precisely, the unknown parameter vector θ = (fr, φ, α) is estimated conditionally to each

possible class λj using MCMC methods, see more details in Section 2.2. Note that the

Markov chain state space and current state are denoted by Ω and θn = (fnr , φ
n, αn) ∈ Ω,

respectively.

Reducing the computational complexity

The acceptance probability (2.5) depends on the pdfs p(y|x) and p(θn|x) whose computation

requires to evaluate summations of logarithm functions. This operation can be easily and

e�ciently conducted on MATLAB. However, in practical applications where a Digital Signal

Processor (DSP) has to be used, the evaluation of a logarithm function is too expensive.

Therefore, an approximation version which reduces the calculation cost is preferable. The

approximation is obtained from the following well-known relation:

ln(ea1 + ea2) = max(a1, a2) + ln(1 + e−|a1−a2|) (3.8)

or it can be written as

ln
∑
j

eaj ' max
j
aj (3.9)

By applying this result to ai = − 1
σ2

z
‖ x(k)− wi ‖2, the following result can be obtained
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l̂(x|λj) =
Ns∑
k=1

[
− lnMj + ln

Mj∑
i=1

eai

],
' − lnMj −

Ns∑
k=1

max
i
ai,

' − lnMj −
1
σ2
z

Ns∑
k=1

(
Mj

max
i=1

‖ x(k)− wi ‖2
)
. (3.10)

This last expression reduces the computational cost required to evaluate the likelihood.

The corresponding loss of performance is not critical in most simulations that have been

conducted. This point will be illustrated in Section 3.3.4.

3.3.3 Method of moments

Estimating the parameter vector θ can be made by using the method of moments as in

[ADC+04]. The phase o�set is approximated by

φ̂ =
1
M

arg

(
Ns∑
k=1

x(k)M
)
, (3.11)

where M is the number of points in the constellations for the MPSK signal and M = 4 for

the QAM signal. The amplitude can be found from

α̂2 =

√
M42 − 2M2

12

k2 − 2
, (3.12)

where Mmn , E
[
xm−n(x∗)n

]
, k2 = 1 for BPSK, 4QAM, 8PSK and k2 = 1.32 for 16QAM.
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3.3.4 Simulation results

Simulations have been carried out to evaluate the performance of the plug-in classi�er.

This section focuses on a four-class problem λ = {BPSK,QPSK, 8PSK, 16QAM} which has

already been considered in the literature [SS00]. All constellations have been normalized

(unit energy) yielding the signal-to-noise ratio (SNR) de�ned as in (2.7). The MCMC

sampler has the following properties:

• Current state: θn = (fnr , φ
n, αn).

• Proposal distribution: random walk q(y|θn) ∼ N (θn, σ2) where σ = 0.03.

• Uninformative independent uniform priors for the frequency and phase o�sets : p(fr, φ) =

p(fr)p(φ) where p(fr) = I(−1/2,1/2](fr), p(φ) = I[0,2π](φ), and I is the indicator func-

tion.

• Prior knowledge about α is de�ned in (3.3).

• Number of burn-in iterations: Nbi = 500,

• Number of iterations: Ni = 1000,

Parameter estimation

This section illustrates the performance of the MCMC-based MMSE estimator summarized

in Section 3.3.2. The unknown parameter vector θ has been estimated on each burst of

100 symbols by running a Markov chain with 1000 samples including 500 burn-in samples

(i.e., the �rst 500 samples generated by the MH algorithm have not been used for the

estimation). The simulation has been conducted for a BPSK constellation with a signal

to noise ratio SNR = 5 dB. Moreover, the residual carrier frequency is constant (fr = 0

without loss of generality), the random phase φ is uniformly distributed on the interval

[−π/4, π/4] and the fading amplitude is distributed according to a Rayleigh distribution

(see 3.3.1 for more details). The actual values of the unknown parameters (continuous lines)

and the corresponding estimates (circles) for fading amplitude (top), phase o�set (middle),

and residual carrier frequency (bottom) are depicted on Fig. 3.6. Comparison to the MOM

estimation at SNR = −2 dB is plotted in Figure 3.7. These results clearly show the accuracy

of the proposed estimation methodology particularly at slow SNRs and in deep fade.
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Figure 3.7: Comparison between the MOM and MCMC estimation methods.
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Performance versus SNR

The �rst simulation results depicted on Figure 3.8 compare the average probability of correct

classi�cation for di�erent classi�ers as a function of SNR:

• the circle curve corresponds to the ML classi�er (labeled Ref) which assumes the fading

amplitude and phase of each symbol are known,

• the star curve is obtained for the MCMC plug-in classi�er (labeled MCMC),

• the diamond curve stands for the classi�er derived in [ADC+04] (labeled MOM).

The simulation scenario is similar to the examples of Figure 3.6-3.7 except that the uniform

phase o�set is in [0, 2π] interval. Note again that the ML classi�er cannot be implemented

in practical applications since it assumes that the fading amplitude and phase are perfectly

known. Thus, it provides an upper bound of classi�cation performance. Figure 3.8 shows

that the MCMC plug-in classi�er outperforms the MOM classi�er in a slow �at fading

scenario. The �gure also shows that the average probability of correct classi�cation for

the MCMC plug-in and MOM classi�ers approaches the optimal one provided by the ML

classi�er for high SNRs.

Figure 3.9 shows the probability of correct classi�cation of the MCMC plug-in classi�er

for each candidate modulation (BPSK, QPSK, 8PSK, and 16QAM). This �gure indicates

that modulations with large numbers of constellation points (8PSK and 16QAM) are more

di�cult to classify than modulations with small numbers of points (BPSK, QPSK) for the

same SNR.

Performance versus fr

Figure 3.10(b) and 3.10(a) show the e�ect of frequency o�set (due to inaccuracies of the

local oscillators) on classi�cation performance for SNR = 10 and 15 dB. When the frequency

o�set is less than 0.2, the MCMC classi�er still performs reasonably well. The classi�cation

performance drops very slightly at the frequency o�set fr = 0.3 and tends to degrade much

further. However, it is important to note that the MCMC-based classi�er is more robust to

frequency o�set than the MOM classi�er particularly for fr > 0.2.
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Figure 3.8: Performance versus SNR.
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Figure 3.9: Probability of correct classi�cation versus SNR.



3.3. MODULATION CLASSIFICATION IN RAYLEIGH FADING ENVIRONMENT 65

0 0.1 0.2 0.3 0.4 0.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
BPSK/QPSK/8PSK/16QAM at 10 dB

Normalised frequency offset

P
cc

 

 

Ref
MCMC
MOM

(a) SNR = 10 dB

0 0.1 0.2 0.3 0.4 0.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
BPSK/QPSK/8PSK/16QAM at 15 dB

Normalised frequency offset

P
cc

 

 

Ref
MCMC
MOM

(b) SNR = 15 dB

Figure 3.10: Performance versus fr in a slow �at fading scenario for di�erent SNRs.
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Approximated classi�cation rule

The last simulation results illustrate the performance of the approximate MCMC classi�er

which uses (3.10) instead of (3.7). Figure 3.11 compares the estimated posterior distributions

of the residual carrier frequency fr obtained by using the exact (dotted line) and approximate

(continuous line) MCMC samplers. The number of burn-in iterations Nbi for this example

is 500 and the posteriors have been estimated by using the 2500 last Markov chain samples.

The two distributions are clearly in good agreement, showing that the approximate MCMC

sampler can be used if the computational cost of the algorithm is an important issue.
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Figure 3.11: Estimated posteriors for fr = 0.2.

3.4 Conclusions

The application of MCMC sampling to modulation classi�cation in the presence of frequency

o�set, phase o�set, and residual channel was presented. The proposed MCMC plug-in clas-

si�er estimated the unknown parameters characterizing the model mismatch. The estimates

were then plugged into the class-conditional densities. The proposed classi�er outperformed

ML and HOS classi�ers. Furthermore, the proposed strategy was extended to the problem



3.4. CONCLUSIONS 67

of digital modulation classi�cation in a Rayleigh fading environment and showed good per-

formance. Reducing the computational complexity of the proposed classi�er is an important

problem which will make the classi�er more attractive and useful. It would be interesting

to work on this problem in future studies.
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Classi�cation of Linear Modulations

using the BW Algorithm
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4.1 Introduction

For classi�cation purpose, our main interest is to determine the posterior probabilities of

the received signals conditionally to each class. We propose to use the BW algorithm to

compute these probabilities which are then plugged into the optimal Bayes decision rule.

Applications of the BW algorithm to three di�erent scenarios are studied in this chapter.

• Firstly (Section 4.2.2), we apply our proposed methodology to classify the o�set

quadrature phase shift keying (OQPSK) from QPSK signals in an AWGN channel.

69
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We then compare our proposed classi�er with the qLLR classi�er studied by [CLP95]

to discriminate BPSK/QPSK/OQPSK modulation formats.

• Secondly (Section 4.2.3), the BW algorithm in conjunction with PLLs are applied to

the classi�cation problem that includes the frequency o�set. The role of PLL is to com-

pensate the phase and frequency o�sets. The BW algorithm computes the posterior

probabilities of the signal sequence conditionally to each class after the compensation.

We will study the advantage of using PLLs to mitigate large frequency o�sets.

• Lastly (Section 4.3), modulation recognition in the presence of intersymbol interfer-

ence (ISI) is investigated. In a non-cooperative scenario, the classi�cation of digitally

modulated signals propagating through an ISI environment has been studied by many

researchers [LP95; BSSS00; LTD01]. However, it still presents a great deal of issues.

Indeed, without some kind of ISI mitigation, the performance of current classi�cation

techniques designed for AWGN channels degrades signi�cantly. All of the proposed

classi�ers addressed in this chapter use the classi�cation rule de�ned in the following

subsection.

4.1.1 Classi�cation rule

The proposed classi�ers apply the following classi�cation rule

Assign x to λi if P̂ (x|λi) ≥ P̂ (x|λj), ∀j = 1, ..., C, (4.1)

where P̂ (x|λi) , P̂ (x|m, σ2
z , λi) is obtained from the BW algorithm ( see (2.17)). Note that

the whole sequence (of length Ns) is required to estimate P̂ (x|λi) even if the online LMS-

update type algorithm has been used for the the computation of mi(n) and σ2
z(n). Note also

that the observation length Ns required to properly identify the modulation constellations

should be greater than the maximum number of states Nmax = M q+1
λc

(i.e. Ns > Nmax) so

that every possible state can be reached by the algorithm.

4.2 Modulation classi�cation in AWGN channels

An AWGN channel is a communication channel that can be modeled as the linear addition

of white noise (with a constant power spectral density N0
2 W/Hz) whose the amplitude has
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Figure 4.1: Constellations and phase changes of QPSK and OQPSK.

a Gaussian distribution. The model does not take into account of fading, nonlinearity or

dispersion., etc.

The OQPSK modulation will be included in the dictionary. In satellite transmitters,

OQPSK signals are less sensitive to spectral sidelobe spreading than QPSK signals, thus

the out-of-band interfering due to band limiting and the nonlinearity of the ampli�er is

decreased. OQPSK is e�ectively the same as QPSK except that the I- and Q-channel pulses

are o�set in time by T/2 seconds. Unlike QPSK signal whose the phase changes at the

symbol boundaries can be 0o, ±90o, and 180o, the phase changes at the symbol boundaries

of OQPSK signal can only be 0o and ±90o, see Figure 4.1. This property can be exploited

via the BW algorithm to discriminate OQPSK signals from QPSK signals even though

they have the same constellations. The fact that some transitions are not allowed is also

useful to discriminate between π
4 -QPSK and 8PSK signals using the same methodology. The

constellations and phase changes of π4 -QPSK and 8PSK signals are illustrated in Figure 4.2.

Note that in the �gure we show all possible phase changes but 0o for 8PSK.

4.2.1 Simulation results: ideal case

This section studies a three-class problem λ = {BPSK,QPSK,OQPSK}. This simulation

considers that BPSK, QPSK, and OQPSK signals have a common baud-time (de�ned as the
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Figure 4.2: Constellations and phase changes of 8PSK and π/4-QPSK.

minimum time between data transition). Also the same observation interval is simulated as

it is more realistic. Thus the number of symbols of BPSK and QPSK signals is twice the

number of symbols of OQPSK signals, e.g., NQPSK = 2NO. The SNR in this experiment is

de�ned as the SNR per bit. It is required to adjust the value of the LMS step-size param-

eter µm for each constellation. The values of µm used in this research have been obtained

by minimizing the average MSE of the estimated parameters. The following results have

been obtained: µm = 0.3 for BPSK, µm = 0.6 for QPSK and OQPSK. Figure 4.3 shows

the performance comparison of our strategy with the method proposed by Chugg and Poly-

doros [CLP95]. The authors proposed a qLLR classi�er to identify BPSK/QPSK/OQPSK

modulation types. Due to di�culty in setting thresholds resulting from the approximation

of ALRT, the classi�er works in two stages. First, it distinguishes between {OQPSK} and
{BPSK,QPSK}. If the received signal is not OQPSK type, then it classi�es between BPSK

and QPSK formats. Note that there is no phase o�set in this simulation. The threshold

of the qLLR classi�er in Figure 4.3 is an ideal threshold obtained by maximizing Pcc over a

large number of data and noise realizations. Although this threshold setting is not practical,

it gives the best performance for the qLLR classi�er. It is obviously seen that our classi�er

outperforms the qLLR classi�er.
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Figure 4.3: Average probability of correct classi�cation versus SNR.

4.2.2 Simulation results: phase o�set

The e�ect of a phase o�set to our classi�er is also investigated. The phase o�set represents

a synchronization error of the local oscillator at the receiver and is obtained by rotating

the constellation with an angle φ. Figure 4.4 plots the performance of the classi�er with

(estimate σ2
z and m) and without (estimate σ2

z only) the phase estimation at SNR = 0 dB

and NO = 100. From the �gure, our proposed classi�er is robust to the phase errors. The

classi�cation performance for di�erent SNRs versus φ for NO = 100 is illustrated in Figure

4.5.

4.2.3 Simulation results: large frequency o�set

This section addresses an application of BW algorithm in conjunction with PLLs, as shown

in Figure 4.6, to modulation classi�cation when the received signal is a�ected by a large

frequency o�set. The role of PLL is to mitigate the phase and frequency impairments.

After the phase and frequency correction, recognition is achieved by the same strategy as in

Section 4.2. The baseband received signal in (2.21) can be rewritten as
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Figure 4.6: Proposed classi�er for large frequency o�set.

x(k) = ej(2π∆fT+φ)d(k) + z(k), k = 1, 2, ..., Ns (4.2)

where ∆fT = (fc− f̂c)T is the frequency o�set. In the situation where the frequency o�set

is very small ∆fT � 1 or the maximum value of constellation rotation is π/2 for k = Ns, the

feed-forward frequency estimation presented in Section 2.2 and 2.3 can be used. However,

the two estimators cannot cope with large frequency o�sets, ∆fT ≥ 0.01. This motivates

us to use PLLs to counteract the synchronization errors.

We study the classi�cation performance of the proposed classi�er for a �ve-class problem

λ = {BPSK,QPSK,OQPSK, 8PSK, 16QAM}. The number of samples is 4096 (for OQPSK

No = 2048). The PLLs are implemented as explain in Section 2.4. The value of BlTloop

employed in this experiment is 0.01. The classi�cation rule in (4.1.1) is applied for the last

200 samples to identify the transmitted signal format. This is based on the assumption that,

after thousands of samples, one of the PLLs corresponding to the transmitted modulation

format is locked with very high probability. Figure 4.7 plots the average probability of correct

classi�cation against SNR for three values of frequency o�set. The performance is much

deteriorated when ∆fT = 0.02. In this case the average probability of correct classi�cation



76CHAPTER 4. CLASSIFICATION OF LINEARMODULATIONS USING THE BWALGORITHM

2 4 6 8 10 12 14 16
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

SNR(dB)

P
cc

BPSK/QPSK/OQPSK/8PSK/16QAM, Ns=4096, φ=0.2 rad

 

 

∆fT=0.005
∆fT=0.01
∆fT=0.02

Figure 4.7: Average probability of correct classi�cation versus SNR.

does not even increase when the SNR changes from SNR = 5 to 10 dB. This result is

con�rmed by the probability of correct classi�cation (Pc) for each modulation format in

Figure 4.8. It can be noticed that BPSK, QPSK, OQPSK and 8PSK signals can be identi�ed

with 100% of con�dence starting from SNR = 6 dB. However, the proposed classi�er requires

high values of SNR (15 dB for this experiment) to obtain perfect classi�cation when 16QAM

signals are included.
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4.3 Modulation classi�cation in unknown ISI channels

A communication channel that has a nonideal frequency response characteristic causes the

signal amplitude and delay distortion. As a result, the overlapping of successive pulses

occurs and the peaks of the pulses are no longer distinguishable. This phenomenon is called

intersymbol interference (ISI). Transmission of a signal through a band-limited channel also

introduces ISI. In a band-limited channel case, ISI can be avoided using the transmitting

and receiving �lters that satisfy Nyquist criterion.

This section studies the performance of the digital modulation classi�er based on HMMs

in the presence of ISI channels. The classi�er estimates HMM posterior probabilities as well

as model parameters by using the forward/backward BW algorithm [Rab89]. The estimated

posterior probabilities are then used for classi�cation via the usual MAP rule. Here, we

are interested in classifying linear modulation types transmitted through an unknown �nite

memory channel and corrupted by AWGN. As a result, our main goal is to determine the

posterior probabilities that the received communication signal corresponds to modulation

types belonging to a known dictionary. However, channel coe�cient estimates can also be
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obtained as side results.

The proposed classi�er will be compared with the per-survivor processing (PSP) tech-

nique introduced in [LP95]. This technique estimates the data sequence and the unknown

parameters of a communication signal, and classi�es this communication signal by using the

generalized likelihood ratio test (GLRT). It tackles the problem by using the PSP to estimate

the channel coe�cients and the data sequence in order to calculate the test statistic. Note

that the classi�cation thresholds of this method have to be determined empirically depending

on the operating SNR. Also, PSP requires good initialization. Another practical approach

which might be used for comparison is based on constant modulus and alphabet-matched

algorithms followed by cumulant-based classi�ers [BSSS00]. However, this technique relies

on the performance of blind equalizers which usually operate at high SNRs. Furthermore,

the decision after the cumulant-based classi�er requires one to measure the erratic behavior

of the cumulant estimates, which could be dubious and complicated.

Our assumptions regarding the operating system and the signal model are similar to

[SS00]. After preprocessing, the baseband complex envelope of the received signal sampled

at one sample per symbol at the output of a matched �lter can be represented by (2.8).

4.3.1 Simulation results

Many simulations have been carried out to evaluate the performance of the proposed classi-

�er. All constellations have been normalized (unit energy). The SNR in decibels is de�ned

as

SNR = 10 log10

(
|h|2

σ2
z

)
.

Since the iterative BW algorithm may converge to a local maximum of the likelihood func-

tion, one important issue is parameter initialization.

BW algorithm initialization

The impulse response of the unknown channel can be estimated using HOS of the received

signal. According to [Men91], the impulse response of a qth-order moving average (MA)

system can be calculated from the estimated fourth-order cumulants of its output as

ĥk =
ĉ4,x(q, 0, k)
ĉ4,x(q, 0, 0)

, k = 0, ..., q, (4.3)



4.3. MODULATION CLASSIFICATION IN UNKNOWN ISI CHANNELS 79

where ĉ4,x(t1, t2, t3) is an estimate of

c4,x(t1, t2, t3) = cum(x∗(t), x(t+ t1), x(t+ t2), x∗(t+ t3))

with

cum(w, x, y, z) = E(wxyz)− E(wx)E(yz)− E(wy)E(xz)− E(wz)E(xy).

This procedure generally yields good estimations at reasonably high operating SNRs.

Classi�cation performance

This section examines the performance of the plug-in MAP classi�er de�ned in (3.6). All

simulations have been obtained from 1000 trials belonging to each class λi (i.e. a total of

4000 signals for the four-class problem, and 2000 signals for the two-class problem). For our

experiments, the mean vector m was initialized randomly or by (4.3) whereas the initial

noise variance was set to σ2
init

= 1. The step-size for the LMS algorithm was set to µs = 0.1

and ∆ = 5 for the �xed-lag scheme.

• 2-class problem

Consider a set of two modulation formats λ = {16PSK, 16QAM}. For the LMS-type

algorithm, we apply µm = 20 for both formats. This particular example is interesting

because the two modulation formats 16PSK and 16QAM have the same number of

states and are di�cult to distinguish in the presence of ISI and noise. Figure 4.9 shows

the average probability of correct classi�cation versus SNR for this problem. Note that

two di�erent initializations of the channel coe�cients have been considered, namely

HOS initialization using (4.3) and random initialization. Of course, the performance

improves when the HOS initialization is used. Figure 4.10 displays the average prob-

ability of correct classi�cation versus the number of observations for di�erent SNRs.

This allows one to adjust the number of observations required to achieve a given clas-

si�cation performance. For instance, at SNR = 9dB, the observation length should

satisfy Ns ≥ 500 to ensure Pcc ≥ 0.9. When operating at lower SNRs, larger values

of Ns are necessary to ensure Pcc ≥ 0.9. For comparison, we consider a two-tap FIR

channel with impulse response h = [0.707, 0.707] studied in [LP95]. The frequency

response characteristics of this channel is compared to that of h = [1, 0.75 + 0.25j]
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Figure 4.9: Average probability of correct classi�cation versus SNR.

in Fig. 4.11. This �gure shows that this new channel exhibits a severe ISI due to its

strong attenuation in the signal bandwidth. Figure 4.12 compares the performance of

the MAP classi�er (4.1) and the PSP/GLRT classi�er as a function of the observation

length. The proposed classi�er provides better performance for 300 < Ns < 900. Note

that the two classi�ers achieve the same performance for SNR = 9dB and Ns > 900.

• 4-class problem

This section considers a set of four modulations which have been studied in [LTD01;

BSSS00], i.e., λ = {BPSK, 4QAM, 8PSK, 16QAM}. The values of µm used are: µm =

0.3 for BPSK, µm = 0.6 for 4QAM, µm = 10 for 8PSK, and µm = 20 for 16QAM.

The average probabilities of correct classi�cation obtained with the classi�er (4.1) for

random and HOS initializations are displayed in Fig. 4.13. Again, this result shows

the necessity of having a good channel initialization. The probabilities of correct

classi�cation of each candidate modulation type are plotted in Fig. 4.14. This �gure

indicates that 4QAM and 16QAM are more di�cult to classify than BPSK and 8PSK

for the same SNR.
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4.4 Conclusions

The problem of digital modulation recognition in the presence of AWGN and �nite memory

unknown channels was addressed. The received communication signal was classi�ed accord-

ing to a plug-in MAP rule. This rule required to estimate the posterior distribution of

the received communication signal conditionally to each modulation belonging to a known

dictionary. This estimation was conducted by using the BW algorithm for hidden Markov

models which has shown interesting properties for speech recognition. The performance of

the proposed classi�er was assessed by means of several simulation results. It is important

to note that the proposed classi�er is insensitive to phase o�sets.

To alleviate the performance degradation from large frequency o�sets, the classi�er con-

structed from PLLs followed by the BW algorithm was proposed. Recognition was achieved

via the plug-in MAP rule. Simulation results showed good classi�cation performance.
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5.1 Introduction

In this chapter, we consider nonlinear modulation methods in which the principle of super-

position does not apply in the mapping of the digital sequence into successive waveforms.

Nonlinear modulations are preferable in communication applications which use ampli�er

devices operating in a nonlinear mode or at near saturation such as in satellite communi-

cations. Indeed, the spectral spreading due to the nonlinearity of the ampli�er is reduced

85
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when using such modulations. The Gaussian minimum shift keying (GMSK) modulation is

an important nonlinear modulation that has become a new modulation standard for teleme-

try/telecommand (TM/TC) satellite links. The consultative committee for space data sys-

tem (CCSDS) for future space missions standardized two di�erent GMSK signals [Con01].

More precisely, for the packet telemetry for space-to-earth links, the CCSDS recommends

the GMSK (BT = 0.25) modulation for spacecrafts orbiting at the altitude below 2 × 106

km and the GMSK (BT = 0.5) modulation at the altitude above. The choice of GMSK

modulation can be motivated by many interesting properties including spectrum e�ciency,

capacity of supporting several receivers, and high immunity against interference (see [VV02]

and references therein). These new schemes will have to co-exist with other space systems

using di�erent linear modulation schemes (BPSK, QPSK, 8PSK). As a consequence, it is

important to be able to identify the authorized and non authorized systems. Equivalently,

the problem consists of recognizing the modulation associated to a received communication

signal.

In this work, we study two classi�cation problems:

• A Bayesian classi�er which recognizes GMSK signals with di�erent bandwidths BT =

0.25 and BT = 0.5 as recommended by the CCSDS. Figure 5.1 shows the power

spectrum obtained with these two values of BT .

• A Bayesian classi�er which recognizes linear modulations used in satellite systems

(BPSK, QPSK, 8PSK) as well as the non-linear CCSDS standardized GMSK modu-

lation schemes (BT = 0.25 and BT = 0.5).

5.2 GMSK signals

The GMSK modulation was originally proposed by [MH81] and can be realized by �ltering

a nonreturn-to-zero (NRZ) binary data stream with a Gaussian �lter, then passed through

an FM analog modulator as shown in Fig. 5.2. GMSK signals are partial continuous

phase modulation (CPM) signals (with modulation index m = 0.5 and Gaussian frequency

shaping) de�ned as [Pro01]:

y(t) = A cos [2πfct+ Φ(t,a)] , t ∈ R, (5.1)
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Figure 5.1: Normalized power spectrum at the output of the GMSK modulator.

Figure 5.2: GMSK transmitter (FM implementation).
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where fc is the carrier frequency and Φ(t,a) is the time-varying phase. The transmitted

data sequence of M-ary symbols selected from the alphabet ±1,±3, . . . ,±(M − 1) denoted

as a = {ak} is embedded in the time-varying phase

Φ(t,a) = 2πm
∞∑

k=−∞
akq(t− kT ), (5.2)

where q(t) =
∫ t
−∞ g(τ)dτ and T is the symbol duration. The frequency shape pulse g(t)

has a smooth phase shape over a �nite time interval 0 ≤ t ≤ LT , where L ∈ N, and is

approximately zero outside this interval. For a GMSK signal, g(t) is de�ned as

g(t) =
1

2T

[
Q

(
2πB

t− T
2√

ln 2

)
−Q

(
2πB

t+ T
2√

ln 2

)]
, (5.3)

where B is the 3dB bandwidth of the lowpass Gaussian �lter (with 0 ≤ BT ≤ 1) and

Q(t) =
∫∞
t

1√
2π

exp
(
− τ2

2

)
dτ . The time-varying phase during interval [kT, (k+ 1)T ] can be

written as

Φ(t,a) = θk(t,a) + φk, (5.4)

where

θk(t,a) = 2πm
k∑

i=k−L+1

aiq(t− iT ), (5.5)

and

φk = mπ

k−L∑
i=−∞

ai (mod 2π). (5.6)

θk(t,a) is determined by the data symbol ak and the previous L− 1 symbols. φk represents

the memory of all symbols up to time k − L. It also represents the constant part of the

total time-varying phase in [kT, (k + 1)T ], and is equal to the sum of the maximum phase

changes contributed to each symbol, accumulated along the time axis up to the (k − L)th

symbol interval. It can be recursively computed as

φk+1 = φk +mπak−L+1. (5.7)

If m is rational, i.e. m = 2q/p, the number of distinct values of φk is p. The state of a CPM

signal at t = kT is classically de�ned as the vector

s(k) = (φk, ak−1, ak−2, . . . , ak−L+1). (5.8)
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Each state corresponds to a speci�c value of the excess phase. An example of the state

trellis is shown in Figure 5.3. The signal constellations or scattering diagrams of two GMSK

transmitted signals are shown in Figure 5.4. After constructing the state trellis associated

to a GMSK signal, the BW algorithm can be applied to estimate the posterior probability

of the received modulated signal as done in Section 4.3 for linear modulations in presence

of residual channel interferences.

Figure 5.3: State trellis diagram of GMSK signal, BT = 0.5.
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Figure 5.4: Constellations of GMSK transmitted signals.
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Figure 5.5: Basic quadrature receiver from [AAS86].

5.2.1 GMSK receivers

Satellite/space communication channel is modeled as an AWGN channel and coherent re-

ceivers are suitable to obtain the best performance. The coherent receivers can be imple-

mented in two di�erent ways.

• The received signal is multiplied with the synchronous carrier, followed by lowpass

(LP) �lters, see Figure 5.5. Then a phase generator constructs all the phase transitions

depending on the states and compares the received signal with each of the possible

transmitted signal, in order to compute a branch metric used by a subsequent Viterbi

detector. This receiver has high complexity but is optimum.

• Based on the Laurent decomposition [Lau86], a GMSK signal can be approximated in

a form of a superposition of two OQPSK signal with baseband pulses C0(t) and C1(t),

respectively, and o�set in time by T . Depending on the BT values (BT = 0.25 or

BT = 0.5), the authors in [VMP+02] proposed two di�erent receiver structures for each

BT value. For instance, Figure 5.6 shows the suboptimum receiver for GMSK signals

with BT = 0.5. For this value of BT , using only the pulse C0(t) is su�cient. The

signal constellation (one sample per symbol) at the output of the suboptimum receiver

displayed in 5.6 in the absence of noise is plotted in Figure 5.7. These suboptimum

receivers will destroy the memory of GMSK modulation. Thus they are not suitable

for our method to be applied.
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Figure 5.6: Simple GMSK receiver based on OQPSK receiver structure.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

BT=0.5

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

BT=0.25

Figure 5.7: GMSK constellations at the output of the suboptimum receiver.
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5.3 Classi�cation of GMSK signals with di�erent bandwidths

The classi�cation of nonlinear modulations has received less attention in the literature

though these modulations play a great deal in modern communications. Polydoros studied

di�erent methods for classifying nonlinear modulations with di�erent modulation indexes

[HP92; CP94]. A classi�er based on an approximate likelihood function for a multiple M-ary

frequency shift keying (MFSK) signal (transmitted through a Rayleigh fading channel) was

also studied in [EMN02]. However, classi�cation problems involving GMSK modulations

have not been considered in the literature (to the best of our knowledge), despite the pop-

ularity of GMSK signals. The classi�cation of linear modulation signals propagating via

unknown ISI channels has been studied in Section 4.3. The �rst step of the proposed algo-

rithm estimated the channel coe�cients (which are related to the signal means) and noise

variance using the BW algorithm. The received communication signal was then identi�ed

according to the MAP rule as in (4.1). In this chapter, we modify the algorithm proposed

in Section 4.3 to handle non-linear modulations transmitted through an AWGN channel.

The proposed algorithm assumes that these two non-linear modulations have been pre-

identi�ed from other linear modulation candidates. This preprocessing step might be achieved

by feature-based classi�ers that discriminate constant and nonconstant envelope signals. For

instance, the maximum of the squared Fourier transform of the normalized signal amplitudes

has been used for this purpose in [AN96a]. Note that the classi�er performance will be stud-

ied especially at small SNRs as required by GMSK modulation applications.

5.3.1 Signal and hidden Markov model

The baseband GMSK signal can be written as u(t) = exp[jΦ(t,a)], where the phase Φ(t,a)

has been de�ned in (5.2). The transmitted signal is modulated by a local oscillator exp(jωct)

and is corrupted by additive white Gaussian noise wBP (t) with spectral density N0/2. At

the receiver side, the received signal is multiplied by the synchronous carrier exp(−jωct),
followed by low pass �lters to generate the real and imaginary parts of the complex envelope

of the received signal, as illustrated in Figure 5.5.

After downconversion, we obtain the received baseband signal

x(t) = u(t)⊗ f(t) + z(t), t ∈ R, (5.9)
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Figure 5.8: GMSK constellations (one sample per symbol).
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Figure 5.9: Noisy GMSK constellations at SNR = 2 dB.

where f(t) is the impulse response of the LP �lters, z(t) = w(t) ⊗ f(t) is a normalized

complex-valued additive Gaussian noise process with variance σ2
z and “⊗ ” denotes convo-

lution. Note that w(t) represents the lowpass-equivalent complex Gaussian noise of wBP (t).

The baseband complex envelope of the received modulated signal sampled at one sample

per symbol (t = kT ) at the output of the lowpass �lters can be written as:

x(k) = u(k)⊗ f(k) + z(k), k = 1, ..., Ns, (5.10)

where Ns is the number of symbols in the observation interval. Two GMSK signal constel-

lations obtained at the output of a square root raised cosine �lter (roll-o� factor R = 0.35

and cuto� frequency adapted to symbol duration) in the absence of noise marked by �+�
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are shown in Figure 5.8. The two constellations are clearly similar even if they are obtained

from two distinct GMSK modulations. In the presence of noise as shown in Figure 5.9, it is

di�cult to distinguish between the two modulations.

The received signal x(k) can be modeled as a probabilistic function of an hidden state

at time k which is represented by a �rst order HMM. This model will be used e�ciently

for classifying the two nonlinear GMSK modulations with di�erent bandwidths (denoted as

λ1, λ2). The main HMM characteristics are summarized below:

1. The state of the HMM at time instant k is s(k) which belongs to an alphabet denoted

as {s1, s2, ..., sN} of size N = 4ML−1, where sj is the jth possible value of s(k). As an

example, for binary symbols and GMSK modulation with BT = 0.5, L = 2, hence N =

8 di�erent states. For binary symbols and GMSK modulation with BT = 0.25, L = 4,

yielding N = 32 di�erent states.

2. The state transition probability distribution is

aij = P [s(k + 1) = sj |s(k) = si],

which equals 1/M when all symbols are equally likely.

3. The initial state distribution vector π = (π1, ..., πN )T is de�ned by πi = P [s(1) =

si] = 1/N, i = 1, ..., N .

4. Based on (5.10), the pdf of the observation x(k) conditioned on state i, denoted as

pi[x(k)] , p[x(k)|si] can be written

pi[x(k)] =
1
πσ2

z

exp
(
−|x(k)−mi|2

σ2
z

)
, (5.11)

for i = 1, ..., N , where mi = u(k) ⊗ f(k) and is approximated by the ith value of

exp[jΦ(kT,a)]. We denote as m = [m1, ...,mN ]T the vector containing all possible

constellations points.

5.3.2 Simulation results

Many simulations have been carried out to evaluate the performance of the proposed clas-

si�er. All constellations have been normalized to unit energy and generated with the bit



5.3. CLASSIFICATION OF GMSK SIGNALS WITH DIFFERENT BANDWIDTHS 95

−10 −8 −6 −4 −2 0 2 4 6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
GMSK25/GMSK50, φ=0, R=0.35

SNR(dB)

P
cc

 

 

N
s
=4000

N
s
=1000

N
s
=500

N
s
=200

N
s
=100

Figure 5.10: Classi�cation performance versus SNR for di�erent Ns.

duration T = 1 and the sampling rate Fe = 10. The SNR is de�ned as Eb/N0, where Eb

is the energy per bit at the input of the receiver. Note that for our GMSK modulations,

Es/N0 = Eb/N0, where Es is the energy per symbol.

Figure 5.10 displays the classi�cation performance as a function of SNR for the two

GMSK modulations (�ve di�erent values of the number of observations Ns are considered).

This �gure allows one to appreciate good classi�cation performance even for small SNRs.

Figure 5.11 shows the classi�cation performance versus SNR for di�erent values of roll-o�

factor R. Clearly, the roll-o� factor has an impact on the performance and it should be

adjusted as a function of signal bandwidth in practical scenarios.

The last simulations study the e�ect of a phase o�set obtained by rotating the constel-

lation with an angle φ (this phase o�set is due to synchronization errors at the receiver).

Figure 5.12 shows that the classi�cation performance seems to be robust to moderate syn-

chronization errors especially for SNR ≥ 0dB.
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Figure 5.11: Classi�cation performance versus SNR for di�erent R.
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Figure 5.12: Classi�cation performance versus phase o�set.
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5.4 Classi�cation of linear and nonlinear modulations

A new methodology for classifying the two non-linear GMSK modulations recommended by

CCSDS was proposed in Section 5.3. The classi�er was based on a state trellis representation

(exploiting the fact that the GMSK modulation is a modulation with memory) allowing the

use of a modi�ed version of the BW algorithm. The BW algorithm was used to estimate the

posterior probabilities of the received modulated signal (conditionally to each class). These

posterior probabilities were then plugged into the optimal Bayes decision rule.

However, the algorithm proposed in Section 5.3 assumed that non-linear modulations

were pre-identi�ed from other linear modulation candidates, which is not always a simple

task. We take a step further and show that linear modulations used in satellite systems

(BPSK, QPSK, 8PSK) as well as the non-linear standardized GMSK modulation schemes

can be identi�ed using the same recognition process. The emitted linearly or nonlinearly

modulated signals are assumed to be corrupted by an additive Gaussian noise whose variance

is estimated by the BW algorithm. The performance of the proposed classi�er is assessed

through several simulation results.

5.4.1 Linear M-PSK modulations

This section recalls some details of linear MPSK modulations to make this chapter self

contained. This also allow us to introduce the notations used in Section 5.4.2.The baseband

complex envelope of a linearly modulated signal can be written as

u(t) =
∑
k

dkh(t− kT ), (5.12)

where h(t) is the impulse response of the pulse-shaping �lter and T represents the symbol

duration. The i.i.d. complex symbol sequence d = {dk} to be transmitted takes its val-

ues from a set of M complex numbers {S1, S2, . . . , SM} called constellation representing a

particular modulation. MPSK modulations are de�ned by

Sm = exp
(
j2π

m− 1
M

)
, m = 1, . . . ,M. (5.13)

For instance, BPSK, QPSK and 8PSK constellations are displayed in Figure 5.13.
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Figure 5.13: Classical linear modulation constellations.

5.4.2 Signal and Hidden Markov model

The signal model and receiver structure in Section 5.3.1 are applied here. The received

baseband signal x(k) can be modeled as a probabilistic function of an hidden state at time

k which is represented by a �rst order HMM model whose characteristics are summarized

below:

• The state of the HMM at time instant k is s(k) = dk for MPSK modulated signals

(memoryless linear modulation) whereas s(k) = (φk, ak−1, ak−2, ..., ak−L+1) for GMSK

modulated signals (non-linear modulation with memory). The state s(k) takes its

values in {s1, s2, ..., sN} where sj is the jth possible value of s(k). The size of this state

matrix is N = 4ML−1 for GMSK signals and N = M for linear MPSK modulations.

• The state transition probability is de�ned by aij = P [s(n + 1) = sj |s(n) = si], and

equals 1/M when all symbols are equally likely.

• The initial state distribution vector π = (π1, ..., πN )T is de�ned by πi = P [s(1) =

si] = 1/N for i = 1, . . . , N .

• Based on (5.10), the pdf of the observation x(k) conditioned on state i, denoted as
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pi(x(k)) , p(x(k)|s(i)) can be written

pi[x(k)] =
1
πσ2

z

exp
(
−|x(k)−mi|2

σ2
z

)
,

where i = 1, ..., N and mi is the ith constellation point (ith possible value for u(k)⊗
f(k)). Note that mi = Si for MPSKs when the transmitter and receiver �lters are

matched. For GMSK signals, mi is approximated by the ith value of ejΦ(kT,a). We

denote as m = [m1, ...,mN ]T the vector containing all possible constellation points.

5.4.3 Simulation results

Many simulations have been carried out to evaluate the performance of the proposed plug-in

MAP classi�er. All constellations have been normalized to unit energy and generated with

the bit duration T = 1 and the sampling rate Fe = 10. The SNR is de�ned as Eb/N0.

Tables 5.1-5.3 present the confusion matrices of the proposed classi�er for di�erent SNR

values (the number of samples is Ns = 500 for these examples). It can be observed that the

two GMSK signals as well as the MPSK signals can be distinguished even at very low values

of SNR (even if the constellations of GMSK and QPSK signals are very similar). However, to

distinguish among linear modulations, the required operating SNR is much higher especially

when 8PSK modulations are present in the dictionary.

Figure 5.14 displays the classi�cation performance as a function of SNR, for di�erent

values of the number of observations Ns. A good classi�cation performance can be observed

especially for small values of SNR which are typical for satellite space communications. The

e�ect of roll-of mismatch on classi�cation performance was also studied. Figure 5.15 displays

the classi�cation performance for several values of the roll-o� factor R of the square root

raised cosine �lters used at the transmitter RTx and at the receiver RRx. The proposed

classi�er seems to be robust to roll-o� mismatch. The last simulations study the e�ect of

a phase o�set obtained by rotating the constellation with an angle φ (this phase o�set is

due to synchronization errors at the receiver). Figure 5.16 shows that the classi�cation

performance is robust to moderate synchronization errors.
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In/Out GMSK25 GMSK50 BPSK QPSK 8PSK

GMSK25 449 51 0 0 0

GMSK50 13 487 0 0 0

BPSK 0 0 500 0 0

QPSK 0 0 0 498 2

8PSK 0 0 0 0 500

Table 5.1: Confusion matrix for SNR=0dB.

In/Out GMSK25 GMSK50 BPSK QPSK 8PSK

GMSK25 406 94 0 0 0

GMSK50 46 454 0 0 0

QPSK 0 0 500 0 0

4QAM 0 0 0 457 43

8PSK 0 0 0 5 495

Table 5.2: Confusion matrix for SNR=−2dB.

In/Out GMSK25 GMSK50 BPSK QPSK 8PSK

GMSK25 334 164 1 0 1

GMSK50 123 375 0 1 1

BPSK 0 0 488 4 8

QPSK 0 0 0 313 187

8PSK 0 0 0 81 419

Table 5.3: Confusion matrix for SNR=−6dB.
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Figure 5.14: Classi�cation performance versus SNR.

−6 −4 −2 0 2 4 6
0.7

0.75

0.8

0.85

0.9

0.95

1
GMSK25/GMSK50/BPSK/QPSK/8PSK, Ns=500

SNR(dB)

P
cc

 

 

R
Tx

=R
Rx

=0.20

R
Tx

=R
Rx

=0.35

R
Tx

=R
Rx

=0.50

R
Tx

=0.20/R
Rx

=0.35

Figure 5.15: Classi�cation performance versus SNR for di�erent roll-o� factor.



102 CHAPTER 5. CLASSIFICATION OF NONLINEAR MODULATIONS

0 5 10 15 20 25 30 35 40 45
0.4

0.5

0.6

0.7

0.8

0.9

1

φ(deg)

P
cc

GMSK25/GMSK50/BPSK/QPSK/8PSK, N
s
=500, R=0.35

 

 
SNR=4dB
SNR=2dB

Figure 5.16: Classi�cation performance versus phase o�set.

5.5 Conclusions

The problem of identifying non-linear GMSK signals with di�erent values of BT transmitted

through AWGN channels has been considered �rst. The proposed algorithm assumed that

these two non-linear modulations have been pre-identi�ed from other linear modulation

candidates. Then, the algorithm has been extended to the problem of classifying linear and

nonlinear modulations transmitted through AWGN channels. Note that the classi�cation

was achieved using the same algorithm.

The received signal was classi�ed according to a MAP rule. This rule required to esti-

mate the posterior distribution of the received communication signal conditionally to each

modulation belonging to a known dictionary. This estimation was conducted by using the

BW algorithm for HMM. The performance of the proposed classi�er was assessed by means

of several simulation results and showed good classi�cation performance.



Chapter 6

Conclusions and Perspectives

We have studied the plug-in MAP classi�er for digital linear and nonlinear modulations. The

key idea of the plug-in MAP classi�er is to replace the unknown parameters in the likelihood

of the observed data by their estimated value. We have studied three techniques to estimate

the posterior probabilities of the received signals conditionally to each modulation, namely

MCMC methods, the BW algorithm, and PLL.

The key idea of the MCMC plug-in classi�er is to replace the unknown parameters in the

likelihood of the observed data by their estimates. These values are obtained from averaging

samples drawn by MH algorithm which is one of the most popular MCMC methods. An

interesting advantage of MCMC methods is that the accuracy of the estimation can be im-

proved by increasing the number of samples and iterations. More importantly, choosing the

proposal distribution corresponding exactly to the target posteriori distribution increases the

accuracy of the methods. However, in some circumstances the target posteriori distribution

may not be known. In general, MCMC methods are capable of estimating many unknown

parameters at the expense of the complexity and speed of calculation. The MCMC plug-in

classi�er was investigated for linear modulations. From simulation results, it is concluded

that the MCMC plug-in classi�er outperformed ML and HOS classi�ers in the presence of

mismatched e�ects where the received signal is subjected to synchronization errors and resid-

ual channels. In a slow Rayleigh fading scenario, we showed by simulation that the MCMC

plug-in classi�er can be employed and achieve better classi�cation performance than the

MOM plug-in classi�er.

Due to the high computational cost of MCMC parameter estimation, the BW algorithm
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was studied to provide an alternative method of estimation. The BW plug-in classi�er

estimates recursively the posterior probabilities directly and determine the most likely mod-

ulation type from a known dictionary. The modi�ed LMS-type update algorithm was applied

to enhance the convergence and computation speed. Although, the BW algorithm does not

estimate the unknown parameters directly, they can be derived as side results. Classi�cation

performance of the BW plug-in classi�er was assessed by simulation for linear modulations

in unknown ISI channels. It was shown that using the HOS initialization improved the

classi�cation performance compared to random initialization.

The BW plug-in classi�er does not take into account the frequency o�set. To solve this

drawback, the frequency compensation is obtained using PLLs. The most important part

of PLL for our classi�cation application is the phase detector. The polarity-type decision-

feedback phase detector was studied because it was suitable for all modulation schemes

under study. Due to long acquisition time of PLL, it is suggested that this approach is

appropriate for long packet communication.

The classi�er using the MCMC parameter estimation technique relies on �nding the

average minimum distance between the received symbols and each constellation point in a

known catalogue. Therefore, it cannot distinguish di�erent modulation types having the

same constellation shapes such as QPSK and OQPSK, or similar such as nonlinear GMSK

modulations (BT = 0.25 and BT = 0.5). The problem was solved using the BW plug-

in classi�er to recognize QPSK from OQPSK. The classi�er can also identify two GMSK

modulations (BT = 0.25 and BT = 0.5). The same strategy can be applied to classify linear

and nonlinear modulations.

An interesting perspective is to recognize modulations in new satellite communication

standards such as digital video broadcasting satellite handheld (DVB-SH). This standard

uses QPSK, 8PSK, 16APSK modulations and orthogonal frequency division multiplexing

(OFDM) whose automatic recognition is a challenging problem.



Appendix A

Existing Modulation Classi�cation

Techniques

A.1 Decision-theoretic classi�ers

There are three major techniques depending on the model selected for the unknown quanti-

ties proposed in the literature: average likelihood ratio test (ALRT), generalized likelihood

ratio test (GLRT), and hybrid likelihood ratio test (HLRT). ALRT considers the unknown

parameters as random variables with known pdf and averages the likelihood function over

this pdf [WM00; Sil99; SM96; KP88; PK90; LCP94; HH03; BW96; BW98]. However, ALRT

classi�er is not robust with respect to modeling errors and classi�cation of QAM signals is

more sensitive than PSK signals [Sil99]. Unlike ALRT, the GLRT regards the unknown

parameters as deterministic unknown variables and maximizes the likelihood function with

respect to them [HH00; LP95; PAP00]. The GLRT estimates the unknown parameters as-

suming the ith hypothesis is true, then uses these estimates in a likelihood ratio test as if

they were correct. Some implementation advantages over ALRT and HLRT are achieved

as it avoids the computation of exponential function and does not require any knowledge

of noise power to calculate the likelihood function. ALRT demands a multidimensional

integration while GLRT needs a multidimensional maximization. The multidimensional in-

tegration complexity and the requirement of knowing the pdf of random variables may cause

the ALRT impractical, particularly for a large number of unknown parameters. In GLRT,

the multivariate maximization over the unknown variables can lead to the same value of
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the likelihood function for the nested signal constellations, e.g., BPSK, QPSK, 16QAM,

etc., which results in incorrect classi�cation. HLRT is a combination of the two techniques

where vectors of unknown quantities are modeled as random and deterministic variables

[CLP95; HH01; HH02]. Averaging over the unknown variables in HLRT vanishes the nested

constellation problem of GLRT.

The three approaches are brie�y discussed below by assuming the baseband received

complex envelope is given by

r(t) = s(t) + n(t), (A.1)

where s(t) is the baseband complex envelope of the modulated received signal and n(t) is

the baseband complex noise.

•For ALRT, the likelihood function under hypothesis Hi, representing the ith modulation

is given by

ΛiA[r(t)] =
∫

Λ[r(t)|vi, Hi]p(vi|Hi)dvi (A.2)

where Λ[r(t)|vi, Hi] is the conditional likelihood function , vi is the unknown vector of the

likelihood under hypothesis Hi, and p(vi|Hi) is the prior information regarding these pa-

rameters.

•For GLRT, the likelihood function is given by

ΛiG[r(t)] = max
vi

Λ[r(t)|vi, Hi] = Λ[r(t)|v̂ML, Hi] (A.3)

where v̂ML is the maximum likelihood estimator of vi under hypothesis Hi.

•For HLRT, the likelihood function is given by

ΛiH [r(t)] = max
vi1

∫
Λ[r(t)|vi1 ,vi2 , Hi]p(vi2 |Hi)dvi2 (A.4)

where vi1 is a vector gathering deterministic variables and vi2 is a vector of random variables.

In a two-hypothesis classi�cation problem, the decision is made according to

H1

Λ(1)[r(t)]

Λ(2)[r(t)]
≷ Γ(PFA)

H2

(A.5)
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where Γ(PFA) is an appropriate threshold depending on the probability of false alarm

(PFA).

A.2 Pattern recognition approach

The high complexity of ML methods motivates the search for statistical features leading to

pattern recognition approach that will yield good results with low complexity. The design

of a pattern recognition algorithm is basically based on feature extraction (to represent

the received data), followed by pattern recognizer or decision making. Di�erent methods

were proposed for decision making, such as density-based [SS00], the Hellinger distance and

unsupervised clustering techniques [DH97]. Examples of features such as the variance of

the centered normalized signal amplitude, phase and frequency [AN96a], the variance of the

magnitude of the signal wavelet transform (WT) after peak removal [HPC95], moments, and

cumulants of the signal [SS00; DWW02; LB97] are explained in this appendix.

A.2.1 Instantaneous amplitude, phase, and frequency

The fact that the information is hidden in the instantaneous amplitude, phase, and frequency

of the signal can be exploited. For spectral based features, the standard deviation of the

normalized-centered instantaneous amplitude de�ned by [AN96a; AN96b] is

σaa =

√√√√ 1
L

[ ∑
An(i)>at

A2
cn(i)

]
−
[

1
L

∑
An(i)>at

Acn(i)
]2

(A.6)

where Acn(i) is the value of the normalized-centered instantaneous amplitude at time instant

t = i/fs, (i = 1, 2, ..., Ns), fs is the sampling rate, An(i) is the normalized instantaneous

amplitude at time instant t = i/fs, L is the number of samples inAcn(i) for whichAn(i) > at,

and at is a threshold value.

The standard deviation of the normalized-centered instantaneous phase is

σap =

√√√√ 1
D

[ ∑
An(i)>at

φ2(i)
]
−
[

1
D

∑
An(i)>at

|φ(i)|
]2

(A.7)

where D is the number of samples in φ(i) for which An(i) > at.



108 APPENDIX A. EXISTING MODULATION CLASSIFICATION TECHNIQUES

The standard deviation of the normalized-centered instantaneous frequency is

σaf =

√√√√ 1
D

[ ∑
An(i)>at

f2(i)
]
−
[

1
D

∑
An(i)>at

|f(i)|
]2

. (A.8)

The maximum value of the spectral power density of the normalized-centered instanta-

neous amplitude is de�ned as

γmax =
max |DFT (Acn(i))|2

Ns
. (A.9)

A.2.2 Wavelet transform

Digital modulated waveform is a cyclostationary signal that contains transients in ampli-

tude, frequency or phase. Di�erent modulation schemes have di�erent transients, and the

di�erences can be exploited for modulation classi�cation. For instance, FSK changes fre-

quency, whereas PSK changes phase. Another example is that an M-ary PSK signal has M

possible phase changes. The WT provides a constant-Q analysis that is suitable for transient

detection and characterization.

For digital implementation, the magnitude discrete Haar WT of the MPSK received

signal were used in [HPC95; HPC00] for modulation classi�cation:

|WT p(a, n)| = 2

√
S

a

∣∣∣∣sin(ωca/4) sin(ωca/4 + α/2)
sin(ωc/2)

∣∣∣∣ (A.10)

(i− 1)Ts + a/2 ≤ n ≤ iTs − a/2
where S is the signal power, a is the scale, and α ∈ {(m− 1)2π/M}Mm=1.

The magnitude discrete Haar WT of the MFSK signal can be obtained from

|WTF (a, n)| = 2

√
S

a

sin2((ωc + ωi)a/4)
| sin(ωc + ωi/2)|

(A.11)

where ωi ∈ {ω1, ω2, ..., ωM} is the frequency deviation and can have a negative value.

The WT magnitude of PSK has one DC level and many levels of peaks, whereas that

of FSK has several levels for DC and peaks. After �ltering, the FSK WT magnitude still

contains di�erent DC levels, whereas there is only one in PSK. Thus the median �lter output

for FSK will have a higher variance, and the variance test is a simple method to separate

the two. Identi�cation of M-ary PSK is achieved by observing the number of possible peak

values at the times of phase changes.
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A.2.3 Phase PDF and statistical moments

The received signal in (A.1) has the general MPSK signal component given by

s(t) =
√

2E
Ts

cos(ωct+ b(t) + θc). (A.12)

The information bearing signal is written as

b(t) =
∑
n

ϕnu(t− nTs) (A.13)

where u(t) is the standard unit pulse of duration Ts. ϕn = an(π/M) is the phase transmitted

at time nTs ≤ t < (n + 1)Ts. The phase component extracted from r(t) at the ith sample

ψ(i) can be expressed as

ψ(i) = θM (i) + ξ(i),−π < ψ(i) ≤ π (A.14)

where θM (i) is the sampled phase component of s(t), and ξ(i) is the random phase component

due the noise.

The pdfs of phase ψ were derived in [YS91a]:

p(ψ;M) =
1

2π

{
1 + 2

∞∑
m=1

cm cos(mψ)
}
,M = 1(CW ) (A.15)

p(ψ;M) =
1

2π

{
1 + 2

∞∑
n=1

cnM (−1)n cos(nMψ)
}
,M = 2, 4, 8, ... (A.16)

where cm = e−γ
∑∞

k=0
Γ( m

2
+1+k)γm/2+k

k!(m+k)! and γ is the SNR.

The optimum classi�er then determines which one of the possible transmitted signals

has the maximum a posteriori probability according to Bayes rule

p(Hi|ψNs) =
p(Hi)p(ψNs |Hi)

p(ψNs)
(A.17)

where p(ψNs |Hi) =
∏Ns
k=1 p(ψ(k)|Hi).

The pdf of phase can be approximated by the Tikhonov function and thus can be ex-

pressed as

p(ψ;M) =
1
M

M∑
k=1

exp[2γcos(ψ − ηk(M))]
2πI0[2γ]

(A.18)
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where I0[.] is the zero order modi�ed Bessel function of the �rst kind and ηk(M) = (2k −
M − 1)/M .

The nth moment of the phase is de�ned as

mn(M) =
∫ π

−π
ψnp(ψ;M)dψ. (A.19)

Since p(ψ;M) is an even function of ψ, mn(M) = 0 for odd n. For classi�cation purposes,

the even moments from the sampled phases is needed. Thus the sampled moments are

de�ned as

mn(M) =
1
Ns

Ns∑
i

ψn(i;M) (A.20)

where Ns is the number of samples. By the central limit theorem, the pdf of mn(M),

p(mn(M)), approaches a Gaussian density as Ns increases. That is

p(mn(M)) = N(µn(M), σ2
z(M)) (A.21)

where µn(M) = mn(M) and σ2
z(M) = (m2n(M)−m2

n(M))/Ns.

A.2.4 Cyclic-cumulants

The received signal x(t) can be modeled as a cyclostationary process. As a result, time-

dependency must be taken into account when expressing the temporal cumulants of x(t).

Let Cx,p+q,p(t; τ) be the (p + q)th-order cumulant-based correlation of the process x(t),

de�ned with p non-conjugated terms and q conjugated terms:

Cx,p+q,p(t; τ) = cum(x(t), x(t+ τ1), ..., x(t+ τp−1), x∗(t− τp), ..., x∗(t− τp+q−1)). (A.22)

Since x(t) is almost-cyclostationary, there are at most countably values of α for which

the so-called (p+ q)th-order cyclic correlation de�ned as

Cαx,p+q,p(τ) = lim
T→+∞

1
T

T−1∑
t=0

Cx,p+q,p(t; τ) exp(−jαt). (A.23)

Therefore, the modulus of the 2th-order cyclic-cumulant is given by [Spo95]:

|Cαx,2,1(τ)| =
∣∣∣∣C21

Ts

+∞∑
t=−∞

g(t)g(t− τ) exp(−jαt)
∣∣∣∣ (A.24)
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where C21 = cum(xk, x∗k) and g(t) is the real-valued pulse function. Similarly, the modulus

of the cyclic tricorrelation (also called fourth-order temporal cumulant) is

|Cαx,4,2(τ)| =
∣∣∣∣C42

Ts

+∞∑
t=−∞

g(t)g(t+ τ1)g(t− τ2)g(t− τ3) exp(−jαt)
∣∣∣∣. (A.25)

A.2.5 Algorithms for linearly modulated signals

Pattern recognition algorithms depend on features that can be extracted from modulated re-

ceived signals. For linear modulation recognition, features extracted from the instantaneous

amplitude and phase of the received signal were exploited . The variance of the absolute

value of the normalized-centered instantaneous amplitude was used to di�erentiate between

2ASK and 4ASK [AN96a; AN96b; NA97; NA98; WN01]. For PSK signals, the phase PDF

is multimodal, thus the number of modes provides information for PSK order identi�ca-

tion [YS91a; SH92; YS91b; YS95; YS97; YL98]. In the high-SNR region, MPSK exhibits

M distinct modes. However with the decrease of SNR or the increase of M , the peaks

smear o� and the PDF converges to a uniform PDF [SH92]. An approximation using the

Tikhonov PDF and a Fourier series expansion of the phase PDF with a log-likelihood ratio

test were employed [YS91a; YS97; YL98]. By using these methods to compute the phase

PDF, closed-form expressions for the phase statistical moments were derived, and pdfs of

the sample estimates of the moments were used for decision making [YS91a; SH92; YS95].

The histogram of phase di�erence between two adjacent symbols was compared against a

particular pattern, for PSK signal identi�cation in [Lie84; HS89; HS90]. The DFT was ap-

plied to the phase histogram of the received symbols to analyze the periodic components of

the phase PDF or the empirical characteristic function of the phase [SMH95; SR97]. By ex-

ploiting an additional information about the magnitude of the received signal, the algorithm

in [SR97] was extended to QAM signal classi�cation. Other features such as the kurtosis of

the amplitude extracted from the instantaneous amplitude and phase were investigated for

PSK and QAM identi�cation in [TM99; DBG91; UIK00]. Di�erent PSK signals give rise to

di�erent sets of peak values in the magnitude of the Haar wavelet transform, and hence, the

input was classi�ed as PSK of order M if the histogram of the peak magnitudes had M/2 to

M-1 distinct modes [HPC95; HPC00].

Cumulant-based features were also proposed in [SS00] to recognize the modulation or-

der of ASK, PSK and QAM signals: the normalized cumulant of fourth-order with two
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conjugations for ASK, the magnitude of the normalized cumulant of fourth-order with zero

conjugations for PSK (M > 2) and the normalized cumulant of fourth-order with zero con-

jugations for QAM. This technique was modi�ed to signals in frequency-selective channels

[SBS00]. Arti�cial neural network (ANN) using spectral based feature set for modulation

recognition was addressed in [AN96a; AN96b; NA97; NA98] for PSK signals. In addition to

the spectral based feature set, multi-layer perceptrons (MLP) recognizer was implemented in

[WN01] with better generalization by addition of a new statistical cumulant-based features

set to include QAM signals.

The cyclostationarity property of linear modulation signal was also exploited by two main

techniques: spectral line generation and periodic �uctuations with time of cumulants up to

the n th-order. The �rst method analyzed the set of spectral lines generated by various

m-th law devices using a decision-tree provides good classi�cation results in an AWGN

environment [Rei92]. To improve the robustness of the classi�er in unknown environments,

the authors in [SKKR97] explored a Hidden-Markov-Model (HMM) based classi�er. These

techniques can also be used to classify ASK, BPSK, QPSK, 2FSK, MSK and CW. The

second method computed cyclic-cumulants (CCs) of di�erent orders at the cycle frequency

equal to the symbol rate. A CC-based feature proposed in [MLL98] was used to recognize

QAM signals. Cyclic-cumulants up to the sixth-order were investigated in [Spo95; SBY00;

Spo01] for one and multiple incoming signals. Multiple signals, which overlap in time and

frequency but have distinct symbol rates and hence, di�erent cycle frequencies, can also

be distinguished using cyclic-cumulants [GS94]. Eight-order cyclic-cumulants were studied

in [DBNS03] for classifying real- and complex-valued constellations, respectively. CC-based

features which are robust to carrier frequency o�set and phase jitter were proposed for QAM

classi�cation in [DBNS04].

Signal moments similar to the CC-based feature proposed in [MLL98] were applied to

distinguish between QPSK and 16QAM in [? ]. Speci�cally, a linear combination of the

fourth-order moment with two conjugations and the squared second-order moment with

one conjugation were employed, with the coe�cients and the delay vector optimized, to

maximize the probability of correct classi�cation. A set of features was chosen for certain

values of the delay vector, and classi�cation was made based on the correlation between the

observed and theoretical feature vectors. The relationships between the second- and higher

moments of received signal was employed to discriminate BPSK, 4ASK, 8PSK, and 16QAM
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signals in [DWW02].

A.2.6 Algorithms for nonlinearly modulated signals

FSK signals are characterized by constant instantaneous amplitude, whereas ASK sig-

nals have amplitude �uctuations, and PSK signals have information in the phase. Thus,

the instantaneous frequency information can be exploited for identifying FSK signals. In

[AN96a; AN96b; NA97; NA98; WN01], the variance of the absolute value of the normal-

ized centered instantaneous frequency was used to distinguish between 2FSK and 4FSK. In

[HS89; HS90], the variance of the zero-crossing interval was used as a feature to distinguish

between unmodulated waveform (UW) and PSK, and FSK classes. This zero-crossing inter-

val is a measure of the instantaneous frequency and hence, for FSK signals it is a staircase

function, whereas for UW and PSK signals it is a constant. The variance of the instanta-

neous frequency was also employed in [AFM92; FM93] to distinguish between single-tone

(UW and PSK) and multiple tones (FSK). As in PSK classi�cation, the number of modes

in the instantaneous frequency histogram was employed in [HS89; HS90] for FSK classi�ca-

tion. The instantaneous frequency derivative was also used to distinguish between 2FSK and

4FSK [AFM92; FM93], while, the number of modes in the pdf of the Haar wavelet transform

magnitude was investigated for FSK signal identi�cation [HPC95; HPC00]. Finally, spectral

properties of FSK signals were explored for classi�cation in [YSS03].
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This thesis studies classi�cation of digital linear and nonlinear modulations using Bayesian
methods. Modulation recognition consists of identifying, at the receiver, the type of modu-
lation signals used by the transmitter. It is important in many communication scenarios,
for example, to secure transmissions by detecting unauthorized users, or to determine
which transmitter interferes the others.

The received signal is generally a�ected by a number of impairments. We propose several
classi�cation methods that can mitigate the e�ects related to imperfections in transmission
channels. More speci�cally, we study three techniques to estimate the posterior probabili-
ties of the received signals conditionally to each modulation. The �rst technique estimates
the unknown parameters associated with various imperfections using a Bayesian approach
coupled with Markov Chain Monte Carlo (MCMC) methods. A second technique uses
the Baum Welch (BW) algorithm to estimate recursively the posterior probabilities and
determine the most likely modulation type from a catalogue. The last method studied
in this thesis corrects synchronization errors (phase and frequency o�sets) with a phase-
locked loop (PLL).

The classi�cation algorithms considered in this thesis can recognize a number of lin-
ear modulations such as Quadrature Amplitude Modulation (QAM), Phase Shift Keying
(PSK), and nonlinear modulations such as Gaussian Minimum Shift Keying (GMSK).
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RESUME en français

La reconnaissance de modulations numériques consiste à identi�er, au niveau du récepteur

d'une chaîne de transmission, l'alphabet auquel appartiennent les symboles du message

transmis. Cette reconnaissance est nécessaire dans de nombreux scénarios de communica-

tion, a�n, par exemple, de sécuriser les transmissions pour détecter d'éventuels utilisateurs

non autorisés ou bien encore de déterminer quel terminal brouille les autres.

Le signal observé en réception est généralement a�ecté d'un certain nombre d'imperfections,

dues à une synchronisation imparfaite de l'émetteur et du récepteur, une égalisation im-

parfaite du canal de transmission. Nous proposons plusieurs méthodes de classi�cation

qui permettent d'annuler les e�ets liés aux imperfections de la chaîne de transmission.

Les symboles reçus sont alors corrigés puis comparés à ceux du dictionnaire des symboles

transmis. Les algorithmes considérés ont permis de reconnaître un certain nombre de

modulations linéaires de types QAM et PSK mais aussi des modulations non linéaires de

type GMSK.
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