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Abstract—This paper presents a new strategy to correct the
Earth data corrupted by spurious samples that are randomly in-
cluded in the multiplexed data stream provided by the MADRAS
instrument. The proposed strategy relies on the construction of
a trellis associated with each scan of the multi-channel image,
modeling the possible occurrences of these erroneous data. A
specific weight that promotes the smooth behavior of the signals
recorded in each channel is assigned to each transition between
trellis states. The joint detection and correction of the erroneous
data are conducted using a dynamic programming algorithm
for minimizing the overall cost function throughout the trellis.
Simulation results obtained on synthetic and real MADRAS data
demonstrate the effectiveness of the proposed solution.

Index Terms—MADRAS, multi-band imaging, destriping, mul-
tiplexing, dynamic programming.

I. INTRODUCTION

BORN from a close collaboration between the Indian and
French space agencies (namely, ISRO and CNES, respec-

tively), the MEGHA-Tropiques mission aims at developing
a monitoring system dedicated to the study of the tropical
atmosphere [1]. The measurements collected over the inter-
tropical belt by multiple sensors embedded on the spacecraft
platform allow various ocean and atmospheric parameters of
interest (e.g., rain rate, profile of water vapor content, sea
surface wind) to be determined with high spatial and temporal
sampling [2]. These climate and atmospheric parameters are
disseminated over the scientific community through academic
institutions and national agencies, whose objectives are, e.g.,
climate research, weather forecasting, and prediction of major
events (i.e., monsoons) [3].

The satellite payload is composed of four instruments:
GPS-ROSA, a GPS occultation sensor designed to provide
atmospheric temperature and humidity profiles; SCARAB,
an optical radiometer retrieving the radiation parameters;
SAPHIR, a microwave sensor for vertical humidity profiling;
MADRAS, a microwave imager used to provide rain and
cloud properties [4]. This later sensor, jointly developed by
ISRO (for the scan mechanisms) and CNES (for the radio-
frequency subsystems), is a passive conical microwave imager
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measuring the radiation at nine frequency bands, at vertical
and horizontal polarizations. Exploitation of the scientific data
collected by MADRAS has already motivated several studies
to retrieve rainfall parameters, demonstrating the interest in
these parameters by the science data users [5]–[9]. However,
after a few weeks in orbit, an anomaly in the communication
chain between two electronic devices was detected [10]. This
anomaly leads to a mixing of the channels that compose the
images provided by MADRAS. More precisely, additional data
can be randomly inserted into the main data streams associated
with each column of the MADRAS images. Visually, these
corruptions result in the occurrence of vertical stripe noise,
i.e., vertically and contiguously distributed erroneous pixels
in the columns that compose the MADRAS images. Stripe
noise, which generally comes from undesirable gain and/or
offset variations of the sensors, is a common and well-known
degradation that affects, for instance, images acquired by push-
broom scanners. Thus, destriping has motivated numerous
research works for several decades, not only for Earth remote
sensing images [11]–[13], but also for biomedical [14], [15]
images and astronomical data [16], [17]. Most of these destrip-
ing methods consist of locating the affected pixels in the image
domain or using an appropriate representation (e.g., subspace,
wavelet or histogram), and then replacing them by spatially
interpolated or more probable values. However, in the case
of the MADRAS applicative context, such interpolation-like
techniques remain prohibited to maintain the highest integrity
of the scientific data and also to guarantee the confidence the
scientists may have in their results. This constraint makes in-
applicable all the destriping methods proposed in the literature.
Fortunately, after thorough analysis of the corruption process
that affects the MADRAS images, it appears that the corrupted
data streams still contains most of the measurements of inter-
est, but in a wrong order. By removing the spurious extra data,
one may expect that the correct order of the measurements
can be reestablished to obtain exploitable scientific data. This
finding opens the door for a correction method that fulfills
the initial requirement of avoiding any creation of new pixel
values, e.g., by interpolation, which is precisely the objective
of this paper.

In this paper, we focus on the correction of the anomalies
in the scientific data, called Earth data, collected by the
MADRAS instrument. The problem is formulated as the detec-
tion and the removal of spurious data in a data stream resulting
from a cyclic multiplexing of several individual signals. This
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problem may be encountered in various applicative contexts
where physical data are measured in several channels, such as
multi-band (e.g., multispectral or hyperspectral) imaging. The
proposed solution relies on the construction of an oriented
graph, or trellis, modeling the possible occurrences of abnor-
mal samples in the data stream. Application-driven weights are
proposed and associated with transitions between trellis states.
A similar approach has been adopted in [18] to detect and
correct errors encountered in automatic identification systems
benefiting from a cyclic redundancy check. Finally, a Viterbi-
like dynamic programming algorithm [19]–[24] is designed
to recover the optimal path of minimal cumulative weight
through the trellis.

This paper is organized as follows. The MADRAS multi-
channel images and the problem to be solved are described
in Section II. The strategy proposed to detect and correct
possible anomalies in the MADRAS data is introduced in
Section III. Section IV reports experimental results. Finally,
some conclusions are drawn in Section V.

II. PROBLEM STATEMENT

A. The MADRAS data

The scientific data acquired by MADRAS takes the form of
a multi-channel image, as depicted in Fig. 5 (1st panel) using
an arbitrary composition color. This image, composed of M =
11 individual channels, consists of a set of P contiguous scans,
where one given scan corresponds to a unique column of this
image. After sampling correction, each scan is composed of
T multi-valued pixels, called frames. Each frame is thus a
vector of M individual samples and corresponds to a given
pixel observed in the M channels. The number T of frames
depends on the type of acquired data: Earth data, which are
considered in this work, are composed of T = 526 frames.
A typical example of a scan is depicted in Fig. 1, where the
signals recorded in the M channels are depicted in distinct
colors.
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Fig. 1. Example of a scan without corruption. The Earth data of interest are
those not masked by pink areas.

To summarize, a scan can be given in form of a matrix
of size M (channels) × T (frames), where the first (last,
resp.) row corresponds to samples assigned to channel #M
(#1, resp.), and the first (last, resp.) column contains the frame
#1 (resp, #T ). However, a given scan of T frames of M
channels actually results from the reordering of a unique data
stream. This data flow contains a cyclic sequence of N = MT
samples that are sequentially and periodically acquired in the
M channels. These notations are gathered in Table I. The

relation between a scan and the corresponding data stream
is schematically illustrated in Fig. 2.

TABLE I
NOTATIONS AND NOMENCLATURE

Notation Definition
P number of scans (i.e., image columns)
T number of frames (i.e., pixels per image column)
M number of channels (i.e., pixel dimension)
N total number of samples per scan, i.e., in the data stream (= TM )
x(j) sample #j in the data stream
x(j) first j samples of the data stream (= [x(1), . . . , x(j)])
x(N) full data stream composed of N samples (= [x(1), . . . , x(N)])
S number of trellis states (= max. number of glitches per scan)

ck,j trellis node associated with sample x(j)
v0k,j branch connecting ck,j−1 and ck,j (“x(j) is not a glitch”)
v1k,j branch connecting ck−1,j−1 and ck,j (“x(j) is a glitch”)

d0(k, j) weight associated with branch v0k,j
d1(k, j) weight associated with branch v1k,j
D(k, j) cumulative weights along the unique path reaching the node ck,j
Nk,j number of accepted samples along the path reaching ck,j
x̂k,j sequence of the Nk,j samples along the path reaching ck,j

B. Anomalies

The anomalies considered in this work consist of additions
of extra samples in the data stream associated with each scan.
In the sequel of this paper, these extra samples will be called
glitches, while the valid samples will be called measurements.
The term sample will thus now stand for undifferentiated data
that could be either a glitch, either a measurement. These
multiple and random valued insertions in a given scan result
in

• the presence of erroneous samples in the multiplexed data
stream (the glitches),

• cyclic permutations of the channels after recombining the
data stream by demultiplexing (due to the presence of
glitches).

More precisely, assume that the successive samples are
periodically assigned to channels M,M − 1, . . . , 1. If a glitch
appears when acquiring a measurement for channel 3, then
this channel will receive an outlier (this glitch), channel 2
will receive the measurement initially intended for channel 3,
channel 1 will receive the measurement initially intended for
channel 2, and the shift is propagated into the next frame and
until the end of the scan. Note that, due to the M -periodic
cyclic reordering of the data stream samples into the M
channels, the insertion of M glitches between the sample #n1
(belonging to the frame #f1) and the sample #n2 (belonging
to the frame #f2>#f1) leads to an assignment of the samples
after the sample #n2 to the correct channels, subjected to a
simple delay of 1 frame. In other words, in this case, the ideal
and corrupted scans only differ by a single shift of all the
frames after the frame #f1.

A schematic view of the corruption affecting a scan is
depicted in Fig. 2, where for conciseness, only M = 4
channels have been considered and the data flow is split into
T = 3 successive frames.
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Fig. 2. Schematic view of anomaly in the data stream. The symbol ”G” is
used to represent the glitch that has appeared in channel #3.

A typical example of a scan corrupted by several glitches is
depicted in Fig. 3, and typical examples of resulting MADRAS
images are plotted in Fig. 5 and 6 (2nd panels).
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Fig. 3. Example of Earth data corrupted by several anomalies.

III. PROPOSED ALGORITHM

This section describes a new algorithm that is proposed
for the detection and removal of glitches in the MADRAS
data. The algorithm operates on each scan individually, and
the technical developments that follow are related to the
analysis of the corresponding data stream composed of N
samples denoted as x(N). Moreover, for clarity, the set of
the first j observed samples of the data stream is denoted by
x(j) , [x(1), . . . , x(j)].

A. Trellis design

A trellis is an oriented graph whose nodes are organized into
vertical stacks that identify all the possible states of a given
system at the same discrete time step. Each node is connected
to at least one node from the previous time step and at least
one node from the next time step. In this work, a given discrete
time step corresponds to a given sample of the data stream,
and the states are defined by the number of glitches that have
already been detected in the data stream preceding a given
sample.

More precisely, the trellis is defined by the following
characteristics.
• The trellis contains S nodes per received sample x(j),

which are denoted by ck,j (k = 0, · · · , S − 1), where
S is the maximum number of glitches. The node ck,j
corresponds to the presence of k glitches (modulo S−1)
in the set of received samples x(j).

• Each node ck,j is connected to the nodes ck−1,j−1 and
ck,j−1 associated with the previous sample, and ck,j+1

and ck+1,j+1 associated with the next sample. The trellis
is circular in the sense that node c0,j is connected to node
cS−1,j−1, and node cS−1,j is connected to node c0,j+1.

• The vertices connecting the nodes are referred to as
branches, or transitions. The branch connecting nodes
ck,j−1 and ck,j is denoted by v0k,j , and the branch
connecting nodes ck−1,j−1 and ck,j is denoted by v1k,j .

• The branch v1k,j corresponds to the proposition “x(j) is
a glitch” for state k whereas the branch v0k,j corresponds
to the proposition “x(j) is not a glitch” for state k (i.e.,
x(j) is a valid measurement).

• The branches v0k,j and v1k,j are assigned weights d0(k, j)
and d1(k, j), respectively. These weights can be inter-
preted as the (inverse) probabilities of reaching node ck,j
from nodes ck,j−1 or ck−1,j−1, respectively, given the
new observed sample x(j). Consequently, these weights
should penalize the transitions v0k,j and v1k,j according
to their respective likelihoods. The choice of the weights
d0(k, j) and d1(k, j) is discussed in Section III-C.

Based on this trellis, the most likely configuration of glitch
occurrences in the set of samples x(1), . . . , x(j) can be
identified by the path connecting the series of j successive
nodes of minimum cumulative costs. This optimal path can be
recovered by a Viterbi-like dynamic programming algorithm
described in the next subsection.

B. Viterbi algorithm

The Viterbi algorithm removes at each time instant j all
branches but one reaching the states ck,j , such that each state
ck,j can be reached by only one unique path through the
trellis. More specifically, the following rules are applied to
sequentially prune the trellis.
• At time j − 1, each node ck,j−1 has been assigned the

cumulative weight D(k, j − 1) defined as the sum of the
weights of the branches of the unique path reaching it.

• At node ck,j , if the sum of D(k, j − 1) and d0(k, j) is
smaller than the sum of D(k − 1, j − 1) and d1(k, j):

– The branch v1k,j is removed from the trellis, and the
branch v0k,j is kept.

– The sample x(j) is accepted as a valid measurement
at state k.

– The sequence of Nk,j samples that have been ac-
cepted along the unique path reaching the node ck,j
is denoted by x̂k,j , with final value x̂k,j(Nk,j) =
x(j). Note that Nk,j = j − k since k glitches have
been detected at state k among the j already analyzed
samples.

• Otherwise, if the sum of D(k, j−1) and d0(k, j) is larger
than the sum of D(k−1, j−1) and d1(k, j) at node ck,j :

– The branch v0k,j is removed from the trellis, and the
branch v1k,j is kept.

– The sample x(j) is identified as a glitch and is not
accepted as a valid measurement by state k.

– The resulting sequence of Nk,j valid measurements
x̂k,j is hence given by x̂k,j = x̂k−1,j−1, with final
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ck+1,j+1 at the next time instant. The trellis is circular in
the sense that node c0,j is connected to node cS�1,j�1,
and node cS�1,j is connected to node c0,j+1.

• The vertices connecting the nodes are referred to as
branches, or transitions. The branch connecting nodes
ck,j�1 and ck,j is denoted by v0

k,j , and the branch
connecting nodes ck�1,j�1 and ck,j is denoted by v1

k,j .
• The branch v1

k,j corresponds to the proposition “x(j) is
a glitch” for state k whereas the branch v0

k,j corresponds
to the proposition “x(j) is not a glitch” for state k.

• Each branch v0
k,j and v1

k,j has assigned weights d0(k, j)
and d1(k, j), respectively. These weights can be inter-
preted as the (inverse) probabilities of reaching node ck,j

from nodes ck,j�1 or ck�1,j�1, respectively, given the
new observed sample x(j). Consequently, these weights
should penalize the transitions v0

k,j and v1
k,j according

to their respective likelihoods. The choice of the weights
d0(k, j) and d1(k, j) is discussed in Section III-C.

Based on this trellis, the most likely configuration of glitch
occurrences in the set of samples x(1), . . . , x(j) can be identi-
fied by the path connecting the series of j nodes of successive
minimum cumulative costs. This optimal path can be recovered
by a Viterbi-like dynamic programming algorithm described
in the next subsection.

B. Viterbi algorithm

The Viterbi algorithm removes at each time instant j all
branches but one reaching the states ck,j , such that each state
ck,j can be reached by only one unique path through the
trellis. More specifically, the following rules are applied to
sequentially prune the trellis.

• At time j � 1, each node ck,j�1 has been assigned the
cumulative weight D(k, j � 1) defined as the sum of the
weights of the branches of the unique path reaching it.

• At node ck,j , if the sum of D(k, j � 1) and d0(k, j) is
smaller than the sum of D(k � 1, j � 1) and d1(k, j):

– The branch v1
k,j is removed from the trellis, and the

branch v0
k,j is kept.

– The sample x(j) is accepted as a valid measurement
at state k.

– The sequence of Nk,j samples that have been ac-
cepted along the unique path reaching the node ck,j

is denoted by x̂k,j , with final value x̂k,j(Nk,j) =
x(j). Note that Nk,j = j � k since k glitches have
been detected at state k among the j already analyzed
samples.

• Otherwise, if the sum of D(k, j�1) and d0(k, j) is larger
than the sum of D(k�1, j�1) and d1(k, j) at node ck,j :

– The branch v0
k,j is removed from the trellis, and the

branch v1
k,j is kept.

– The sample x(j) is not accepted as a valid measure-
ment by state k.

– The resulting sequence of Nk,j valid measurements
x̂k,j is hence given by x̂k,j = x̂k�1,j�1, with final
value x̂k,j(Nk,j) = x̂k�1,j�1(Nk�1,j�1). Note also
that in this case Nk,j = Nk�1,j�1.

After receiving the last data sample x(N), the path through
the trellis with the smallest cumulative weight D(k, N), ter-
minating at the optimal node, denoted ck̂,N , is chosen. The
corrected set of data, composed of Nk̂,N samples, is given by
the vector x̂k̂,N .

The design of the trellis and of the Viterbi algorithm are
illustrated in Fig. 4 on a toy example with a data stream
composed of 10 samples, including 2 glitches, distributed into
T = 3 frames of M = 4 channels, using a trellis of S = 5
possible states with constant and artificial branch weights.
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Fig. 4. Illustration of the Viterbi algorithm on a toy example for data with
frames consisting of M = 4 channels, using a trellis with S = 5 states (0
to 4 glitches). The blue disks correspond to the nodes of the trellis (from
left to right; the first column is the initial node before receiving data, the last
two columns have not yet received data). The blue numbers next to the nodes
provide the cumulative distance along the single path through the trellis that
reaches them. Here, for simplicity, artificial constant weights are used (given
in the adjacent table), which corresponds to the black numbers on branches of
the trellis. The algorithm has been initialized at the state c0,4 before receiving
x(5). The trellis is plotted during the reception of the sample x(10) nominally
destined to channel #1, while two glitches have previously corrupted the data
stream. State c1,10 needs to decide on which of the two paths reaching it (from
states c0,9 and c1,9) has smallest cumulative weight. In this example, the
branch to be preserved is v1

1,10 (cumulative weight of D(0, 9)+d1(1, 10) =

6), the branch v0
1,10 will hence be pruned from the trellis (cumulative weight

of D(1, 9) + d0(1, 10) = 11), leading to D(1, 10) = 11.

C. Branch weights
As previously stated, the choice of weights must promote

the most likely transition from a node at time instant j � 1
to a connected node at time instant j, given the new sample
x(j). For the application considered in this paper, the weights
assigned to the trellis branches are based on local derivatives
of the measurements x(j) with future and past received
measurements. Indeed, since the MADRAS instrument records
physical parameters, the evolution between two successive
samples in a given channel is expected to be rather smooth, as
illustrated in Fig. 1. More precisely, the weights are defined
as follows.

Fig. 4. Illustration of the Viterbi algorithm on a toy example with frames
consisting of M = 4 channels, using a trellis with S = 5 states (0 to 4
glitches). The blue disks correspond to the nodes of the trellis (from left to
right; the first column is the initial node before receiving data, the last two
columns have not yet received data). The blue numbers next to the nodes
provide the cumulative distance along the single path through the trellis that
reaches them. Here, for simplicity, artificial constant weights are used (given
in the adjacent table), which corresponds to the black numbers on branches of
the trellis. The algorithm has been initialized at the state c0,4 before receiving
x(5). The trellis is plotted during the reception of the sample x(10) nominally
destined to channel #1, while one glitch has previously corrupted the data
stream. State c1,10 needs to decide on which of the two paths reaching it (from
states c0,9 and c1,9) has smallest cumulative weight. In this example, the
branch to be preserved is v11,10 (cumulative weight of D(0, 9)+d1(1, 10) =

6), the branch v01,10 will hence be pruned from the trellis (cumulative weight
of D(1, 9) + d0(1, 10) = 11), leading to D(1, 10) = 11.

value x̂k,j(Nk,j) = x̂k−1,j−1(Nk−1,j−1). Note also
that in this case Nk,j = Nk−1,j−1.

After receiving the last sample x(N), the path through the trel-
lis with the smallest cumulative weight D(k,N), terminating
at the optimal node, denoted ck̂,N , is chosen. The corrected
set of Nk̂,N samples is given by the vector x̂k̂,N .

The design of the trellis and of the Viterbi algorithm are
illustrated in Fig. 4 on a toy example with a data stream
composed of 12 samples, including 1 glitch and 11 valid
measurements, distributed into T = 3 frames of M = 4
channels (the toy example corresponds to that shown in Fig.
3), using a trellis of S = 5 possible states with constant and
artificial branch weights. The trellis is depicted at the instant
of recepton of the 10th sample x(10).

C. Branch weights

As previously stated, the choice of weights must promote
the most likely transition from a node at time instant j − 1
to a connected node at time instant j, given the new sample
x(j). For the application considered in this paper, the weights
assigned to the trellis branches are based on local derivatives
of the samples x(j) with future and past received samples.
Indeed, since the MADRAS instrument records physical pa-
rameters, the evolution between two successive valid measure-
ments in a given channel is expected to be rather smooth while
the difference in value between distinct channels is large, as

illustrated in Fig. 1. More precisely, the weights are defined
as follows.
Weigths d0(k, j). The weight assigned to the branch v0k,j
connecting nodes ck,j−1 and ck,j is given by the square root
of the absolute difference between x(j) and the last valid
measurement received by state k that is supposed to belong to
the same channel as x(j), namely x̂k,j(Nk,j −M + 1):

d0(k, j) =
(
|x(j)− x̂k,j(Nk,j −M + 1)|

)p
. (1)

As expected, this weight will be small if the new sample x(j)
is not a glitch and should be assigned to the same channel as
x̂k,j(Nk,j −M + 1).
Weigths d1(k, j). The weights d1(k, j) assigned to the
branches v1k,j connecting nodes ck−1,j−1 and ck,j are chosen
equal for all the transitions v1k,j , k = 0, . . . , S − 1, hence
d1(j) = d1(k, j). The weight d1(j) is derived from a “robus-
tified” mean of the absolute differences between the last valid
measurement x̂k,j(Nk,j−M +1) that the state k has received
and the Nf future samples x(j + 1), . . . , x(j + Nf ). More
precisely,

d1(j) =
α

S

S−1∑
k=0

γ̄k,j , where γ̄k,j =
2

Nf

Nf/2∑
i=1

γk,j(i) (2)

γk,j = sort↑
i=1,··· ,Nf

{(
|x(j + i)− x̂k,j(Nk,j −M + 1)|

)p}
.

(3)

Only the Nf/2 smallest differences associated with each
state are considered in the average to discard any distance
that could correspond with the presence of another but not yet
detected glitch in the future samples. The parameters Nf , p
and α have been chosen as Nf = 10, p = 1

2 and α = 1.77 after
testing different possible values and keeping those providing
the best results, i.e., according to a cross-validation technique,
for the application to MADRAS data considered here.

IV. EXPERIMENTS

A. Simulated data

To assess the performance of the proposed algorithm, an
anomaly-free MADRAS image has been artificially corrupted
by simulated glitches. The simulated glitch corruptions are
designed to closely resemble those observed on corrupted
MADRAS images and consist of random values (drawn in the
image dynamics range) that are inserted at (groups of) random
positions in the data stream. Four simulated datasets with
several degrees of anomaly severities have been considered:
from scenario 1, which corresponds to relatively clean data,
to scenario 4, which corresponds to highly corrupted data.
The numbers of glitches and corrupted samples for the four
scenarios are reported in Tables II and III. Three kinds of
performance analysis have been conducted. In a first anal-
ysis, reported in paragraph IV-A1, the corrected image is
visually compared with the original uncorrupted image. Then,
in paragraph IV-A2, a quantitative analysis is conducted on
the synthetic datasets to evaluate the ability of the proposed
algorithm to detect glitches. More precisely, the `0-norm of the
correction error is computed to measure (i.e., to count), the
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Fig. 5. Scenario 1. 1st panel: original image. 2nd panel: corrupted image.
3rd panel: corrected image. 4th panel: `0-norm errors for corrupted image
(channel 6). 5th panel: `0-norm errors for corrected image (channel 6).

number of badly corrected samples and frames (i.e., pixels)
between the original (uncorrupted) image and the corrected
one. Let X = [x1, . . . ,xP ] denote the matrix of the P data
streams xp = [xp(1), . . . , xp(N)]

T associated with the P
contiguous scans that compose the original image. Denote as
x̂p(n) (p = 1, . . . , P , n = 1, . . . , N ) the corrected samples.
The proposed error measure is

e0 = ‖X‖0 =

P∑
p=1

‖xp − x̂p‖0 =

P∑
p=1

N∑
n=1

δ (xp(n)− x̂p(n))

where the Kronecker function δ(·) is defined as

δ(x) =

{
1, if x 6= 0;
0, if x = 0.

Note that this `0-measure is particularly drastic since it pe-
nalizes all errors equally, whatever the absolute difference
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Fig. 6. Scenario 4. 1st panel: original image. 2nd panel: corrupted image.
3rd panel: corrected image. 4th panel: `0-norm errors for corrupted image
(channel 6). 5th panel: `0-norm errors for corrected image (channel 6).

between the original and corrected samples. However, in the
MADRAS applicative context, preserving integrity of uncor-
rupted samples is crucial, which can be assessed only by this
sample-wise comparison before and after corruption. Finally,
paragraph IV-A3 compares the correction performance of the
proposed algorithm with those obtained by two destriping
methods. In addition to the `0-norm based quality measure,
the peak signal-to-noise ratio (PSNR) which relies on a `2-
norm reconstruction error, is considered.

1) Visual inspection: Visual inspection of the corrupted and
corrected images has been conducted for scenarios 1 and 4
(Figs. 5 and 6, respectively). The corrected image is visually
compared with the original uncorrupted image: original data
(top panel, synthetic color composition), corrupted data (2nd
panel, synthetic color composition), corrected data (3rd panel,
synthetic color composition), `0-norm of the error between the
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original and corrupted data (4th panel, displayed in channel 6),
`0-norm of the error between the original and corrected data
(bottom panel, displayed in channel 6). Note that the `0-norm
error takes two values (0 in green and 1 in dark red) that indi-
cate which samples have been properly or wrongly corrected,
respectively. Note also that some scans entirely appear as blue
lines. This is due to another sensor anomaly that has been
simulated, which is different from the one considered in this
work but easily detectable (it consists of scans with all constant
values and will not be further discussed here). Moreover, note
that due to the insertion of glitches, the corrupted scans contain
less than N valid measurements. Thus, once these glitches
have been detected and removed by the proposed algorithm,
no additional measurement can be recovered at the end of
the scan since these measurements are not contained in the
corrupted data. These missing measurements appear as dark
blue pixels in the corrected data of Figs. 5 and 6 (3rd panel).

The obtained corrected images are visually of remarkably
good quality, even in the most perturbed case. In particular,
for less corrupted data (scenario 1), almost all the glitches
have been properly detected and removed. For this scenario,
only some scans (5 scans around scan #1600) appear as
improperly corrected after frames/pixels #300. A thorough
analysis of these scans allows two kinds of correction errors
to be identified: First, for scan #1572 of scenario 1, an extra
glitch has been detected, likely due to the fact that all channels
contain similar values in the concerned frame. This leads to
channel permutations of the remaining frames of the scan
as illustrated by a color permutation after frame #358 in
Fig. 7. Second, the algorithm sometimes removes an entire
frame/pixel when several consecutive extra glitches have been
detected in the data stream. This results in the deletion of a
frame/pixel in all the channels. Consequently, it has a small
impact on the visual inspection since spatial coherence has
been preserved. This behavior is illustrated in Fig. 8. The `0-
norm of the error computed on scan #1627 of scenario 1,
indicates that the proposed correction is completely wrong for
all the frames/pixels after the frame #307. Even if the corrected
scan (3rd plot) seems to be in very good agreement with the
original data (1st plot) since there is no change in curve colors,
the residual error (pixelwise distance in each channel) is non-
zero for all the frames/pixels after frame #307 (4th plot). A
simple explanation is that the original and corrected scans
only differ by an entire frame/pixel that has been incorrectly
removed. Indeed, the residual error now computed with a shift
of one frame/pixel is zero in all the frames/pixels for every
channels (see the last plot).

2) Detection performance statistics: A comprehensive
quantitative performance analysis is conducted for evaluating
the ability and accuracy of the proposed algorithm for de-
tecting glitches. Two further scenarios with relatively severe
corruptions (scenario 2 and 3) are simulated in addition to
those used in the previous paragraph for visual inspection.
Scenario 3 contains twice as many glitches as scenario 2, yet
affecting exactly the same scans (thus resulting in a similar
number of corrupted samples). The total number of glitches
in scans 1 to 1000 for the four scenarios are reported in Table
II (second column).
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−500
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Corrected minus Original: Scan 1572

Fig. 7. Scenario 1: end of scan #1572 appears as badly corrected due to
a wrongly detected glitch. Note that the corrected signals in the channels are
subjected to a permutation illustrated by a change of curve colors between
plots 1 and 3 after frame #358.

Columns 3 to 11 of Table II report the number of non-
detected (related to the probability of detection) and incor-
rectly detected glitches (related to the probability of false
alarm) within a local neighborhood ranging from ∆ = 0
(exact localization) to ∆ = 8 of the glitch locations. The
results demonstrate that the proposed algorithm is capable of
detecting and correcting a very large majority of the glitches
originally present in the data stream at their precise location,
and nearly all of them in a small neighborhood.

TABLE II
ALGORITHM PERFORMANCE AS NUMBER OF GLITCHES NOT DETECTED

(TOP) AND INCORRECTLY DETECTED (BOTTOM).

Sc. #glitches ∆
=

0

∆
=

1

∆
=

2

∆
=

3

∆
=

4

∆
=

5

∆
=

6

∆
=

7

∆
=

8

#1 267
1 0 0 0 0 0 0 0 0
6 5 5 5 5 5 5 5 5

#2 23970
106 31 13 6 1 0 0 0 0
109 34 17 9 4 3 3 3 3

#3 47894
192 128 78 44 21 12 4 2 0
236 172 122 88 65 56 48 46 44

#4 136378
611 398 270 116 66 30 13 6 5
853 640 512 358 308 272 255 248 247
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Fig. 8. Scenario 1: end of scan #1627 appears as badly corrected due to
extra detected glitches, that results in the deletion of an entire frame. Note
that the overall behavior of the individual signals in each channel has been
preserved after correction (no channel permutation).

3) Correction performance statistics: The correction per-
formance is further investigated by means of the PSNR (ex-
pressed in dB), which is a well-admitted quality measure for
image processing applications. As in the previous paragraph,
the number of corrupted samples in the corrected data has also
been counted using the `0-norm of the reconstruction error
(expressed as percentages). The proposed algorithm has been
also compared with two standard destriping methods from
the literature. The first one, denoted as wFFT, consists of a
combined wavelet-FFT filtering [14]. The second method, de-
noted as TV, formulates the destriping task as a TV-regularized
optimization problem [25], solved here using an alternating
direction method of multipliers (ADMM). Quantitative re-

sults1 are reported in Table III for all four scenarios. They
demonstrate that the glitch detection and correction algorithm
is highly effective and insensitive to the level of corruption,
contrary to the two destriping methods. Even for scenario 4,
for which initially almost 85% of samples were corrupted,
less than 0.3% samples remain corrupted after correction
with the proposed algorithm, i.e., more than 99.7% of the
corrected samples are identical to the original measurements.
Note also that both TV and wFFT methods slightly improve
the PSNR measures when compared to the original image.
However, these methods are unable to keep the correct samples
unaltered. As a consequence, these techniques cannot maintain
the integrity of the data, since they slightly improve the
(visual) quality of the corrupted images while failing to recover
any of the valid measurements.

TABLE III
ALGORITHM PERFORMANCE AS PERCENTAGE OF CORRUPTED SAMPLES

AND PSNR ERRORS BEFORE AND AFTER CORRECTION.

Sc. corrupted data samples (%) PSNR (dB)
original proposed wFFT TV original proposed wFFT TV

#1 7.81 0.20 100 100 23.5 44.3 33.3 36.0
#2 55.28 0.13 100 100 15.1 46.1 19.8 21.8
#3 55.07 0.14 100 100 14.3 46.1 18.9 20.3
#4 84.67 0.29 100 100 12.1 42.7 15.2 15.6

B. Real MADRAS data

The proposed algorithm has been applied on the real image
#1391− 1392 acquired by MADRAS, which is considered as
being very strongly corrupted. Scans 1− 1298 of the original
image are plotted in Fig. 9 together with the corresponding
corrected image (artificial color compositions). While the
corrected image is not perfect, most of the glitches have been
detected and corrected. A thorough analysis of the residual
corruptions in the corrected image reveals that a large part
of them are due to anomalies that are different from the one
considered in this work.

Figure 10 summarizes as an histogram the number of
detected and corrected glitches per scan. For this image, most
of the scans are detected to be corrupted, and a large number
of them severely. More precisely, the algorithm has detected
147820 glitches, which roughly corresponds to 57 glitches per
scan on average, and a considerable number of scans with
more than 100 glitches.

V. CONCLUSION

We proposed a simple and efficient Viterbi-like dynamic
programming algorithm for the detection and removal of
glitches from multiplexed data streams of multi-channel mea-
surements. Experiments conducted on simulated and real data
provided by the MADRAS instrument demonstrated its excel-
lent correction performance for both low and high corruption
levels. The efficiency and performance of the algorithm were
achieved by a concise modeling of the process corrupting

1A visual inspection of the results obtained by the wFFT and TV methods
can be conducted from the figures in the companion technical report [26]
available online.
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Fig. 9. Results on image #1391 − 1392. Top: channel 6 of original (first
1298 scans). Bottom: corrected image.
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Fig. 10. Detection results for image #1391− 1392: histogram of number
of detected and corrected anomalies.

the data. One of the specificities of the proposed correction
algorithm was that no interpolation or approximation schemes
were used and only valid original measurements were pre-
cisely recovered. The algorithm is operational [27] and has
already been used to correct the data stream provided by
the MADRAS instrument for its exploitation by the scientific
community [28], [29]. Its versatility to correct data acquired by
other modalities was further assessed by analyzing LANDSAT
data, as reported in the companion report [26]. Future work
will include other entities of geophysical multi-channel data,
notably hyperspectral images, and will consider different types
of anomalies.
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