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Introduction Motivation of motion estimation

Motivation

Optimal treatment of cardiac disease requires early detection of
abnormalities and accurrate monitoring tools.
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Introduction Motivation of motion estimation

Introduction to convolutional sparse coding (CDL)
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Introduction Example of CDL in Ultrasound Imaging

Example of CDL in Ultrasound Imaging

(a) (b)

+           ∗=               ∗ +        ∗

(c)
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Motion estimation, frame 5 Active filters

sk is modeled as a convolution between the coefficient maps xm and a set
of M filters dm.

sk ≈
M∑

m=1

dm ∗ xm (1)
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Introduction Dictionary filters and coefficient maps

Dictionary filters and coefficient maps

A dictionary is estimated off-line by using a set of training cardiac motions
denoted as ŝ.

argmin
dm,xk,m

1

2

∑
k

∥∥∥∥∥∑
m

xk,m ∗ dm − sk

∥∥∥∥∥
2

2

+ λ
∑
m

∑
k

‖xk,m‖1

s.t. ‖dm‖ = 1 ∀m = 1, ...,M

(2)

The coefficient maps xm are computed from cardiac motions sk

argmin
xm

1

2

∥∥∥∥∥∑
m

xm ∗ dm − sk

∥∥∥∥∥
2

2

+ λ
∑
m

‖xm‖1. (3)

Eq (2) and (3) can be solved using alternating direction method of
multipliers (ADMM).
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Introduction Dictionary filters and coefficient maps

Motion estimation

A pair of successive frames (rk , rk+1) ∈ RJ×N acquired at time
instants k and k + 1

(sx , sy ) ∈ RJ×N where sx and sy are the motions along the x and y
axes.

Since the motion estimation problem is considered independently the
displacement vector is equal to s = sx or s = sy .

The motion estimation field is formulated as the minimization of a
cost function with energy Edata(s) penalized by spatial and sparse
regularizations, i.e.,

argmin
x,s

{
Edata(s) + λdEsparse(s, x) + λsEspatial(s)

}
(4)
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Introduction Dictionary filters and coefficient maps

Data fidelity

The ML estimator is classically computed in the negative log-domain

argmin
s
− ln [p(rk+1)|rk(n)]. (5)

Straightforward computations exploiting the Rayleigh statistics of
ultrasound imaging detailed in [1] lead to the following data fidelity term

Edata(s) = −2d(s) + 2 log[e2d(s) + 1] + C (6)

where

d(s) =
1

b

N∑
n=1

[rk+1(n + s(n))− rk(n)],

n indicates the pixel index, s = [s(1), . . . , s(N)]T is the vectorized motion,
and rk = [rk(1), . . . , rk(N)]T is the vectorized ultrasound image in frame
k , and C = − log(2σ4/b) is a known constant

PhD(c) Nelson Diaz HDSP group March 5, 2019 8 / 28



Introduction Dictionary filters and coefficient maps

Regularization term

The spatial regularization term promotes the smoothness of the motion
estimation field and is defined as

Espatial(s) = ‖∇s‖2
2 (7)

The proposed sparse regularization determines the motion sk that is best
represented as a convolution between M filters dm and the coefficient
maps xm, i.e,

Esparse(s) =

∥∥∥∥∥sk −
M∑

m=1

xm ∗ dm

∥∥∥∥∥
2

2

. (8)
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Method Motion estimation algorithm

Motion estimation algorithm

Input: rb,1, rb,2, λs , λd ,K , J, λ, ρ,
s̃0 = LADdist motions, ŝ0 = LADprox motions

Output: s
1: function MEFCDL(rb,1, rb,2, λs , λd ,K , J, λ, ρ, s̃0, ŝ0)
2: dm ← Computes the dictionary by solving (2)
3: xm ← Computes the coefficient maps by solving (3)
4: for k ← 1,K do
5: for j ← 1, J do
6: argmins

{
Edata(rb,1, rb,2, sj−1)+

λs‖∇sj−1‖2
2 + λd(k)‖sj−1 −

∑
m dm ∗ xm‖2

2

}
s.t. ‖dm‖ = 1 ∀m . Motion estimation

7: return s . (Estimated motion field)
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Results Experimentation setup

Experimentation setup

Table 1: Parameters for each step of algorithm 7, dictionary learning, sparse coding, and
cardiac motion estimation.

Step Parameters Values

Dictionary
learning

Database LADdist
Filter size 16× 16

Filters number M = 48
Sparsity term λ = 0.001

Number of iteration 500

Sparse
coding

Database LADprox
Number of iteration 500

Cardiac
motion
estimation

Regularization parameter λs = 0.75
Sparsity term (Systole) λd = {1× 10−6 × 10−3}
Sparsity term (Diastole) λd = {1× 10−9 × 10−2}
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Results Experimentation setup

Parameters λ and ρ

ρ0 = 25 ρ1 = 50 ρ2 = 100 ρ3 = 150
λ0 = 0.05 28.9992 29.2101 28.6905 29.3802
λ1 = 0.1 24.9587 24.9932 25.2910 25.2395
λ2 = 0.2 20.9748 21.1248 21.2963 21.3028
λ3 = 0.3 18.7247 18.8688 18.8703 18.8667
λ4 = 0.5 16.1208 16.1271 15.9824 16.0115

Table 2: Image quality (PSNR) with 100 iteration of (CBPDN) for different choices of λ and ρ
by using the motion horizontal ground-truth.

ρ0 = 25 ρ1 = 50 ρ2 = 100 ρ3 = 150
λ0 = 0.05 26.9361 27.2072 27.2159 27.3542
λ1 = 0.1 22.8906 22.8575 22.9179 23.1302
λ2 = 0.2 19.2978 19.2049 19.3376 19.3352
λ3 = 0.3 17.3294 17.4144 17.4043 17.3599
λ4 = 0.5 15.1404 15.2372 15.2145 15.1526

Table 3: Image quality (PSNR) with 100 iteration of (CBPDN) for different choices of λ and ρ
by using the motion horizontal ground-truth.
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Results 3 Dictionaries

3 dictionaries, 3 scenarios

(a) (b)

D
ic

ti
on

ar
y 

fo
r 

ea
ch

 fr
am

e 
D

ic
ti

on
ar

y 
fo

r 
 a

ll 
se

qu
en

ce

Horizontal Vertical

D
ic

ti
on

ar
y 

fo
r 

sí
st

ol
e 

m
ot

io
n 

D
ic

ti
on

ar
y 

fo
r 

di
as

to
le

m
ot

io
n (e) (f)

(g) (h)

(c) (d)

PhD(c) Nelson Diaz HDSP group March 5, 2019 13 / 28



Results Mean Endpoint Error

Mean Endpoint Error

(a) (b) (c)

This error is defined for the nth pixel as

en =
√

[sx(n)− ŝx(n)]2 + [sy (n)− ŝy (n)]2, (9)

where sx(n), sy (n), ŝx(n), ŝy (n) are the true and estimated (horizontal
and vertical) motions at pixel n.
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Results Error maps estimation

Error maps estimation

Frame 5 motion error DL method Frame 5 motion error CDL proposed
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Results Estimation motion comparison

Estimation motion comparison

Frame 5 ground-truth zoom version Frame 5 DL zoom version

Frame 5 ground-truth Frame 5 DL

Frame 5 CDL zoom version

Frame 5 CDL
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Results Invariant-translation

Clustering the PC of x (kmeans with 2 classes)

-10 0 10 20 30

1st principal component

-15

-10

-5

0

5

10

15

2d
n 

pr
in

ci
pa

l c
om

po
ne

nt

Cluster Assignments, frame 5

1

2

Clusters

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

PhD(c) Nelson Diaz HDSP group March 5, 2019 17 / 28



Results Invariant-translation

PCA for multispectral imaging 1

Implement the principal component transform to compress and
reconstruct multispectral images.
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Results PCA multispectral imaging

PCA for multispectral imaging 2

Understand the applications of satellital images in agriculture,
geology and surveillance (you will need to understand which is the
structure multispectral images)
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Results PCA multispectral imaging

Understand the mathematics that PCA involves.

Compute the mean vector mx = 1
K

∑K
k=1 xk and the covariance

matrix Cx = 1
K

∑K
k=1 xkx

T
k −mkm

T
k Let A a matrix whose rows are

formed from the eigenvectors of Cx ordered in descending order,

y = A(x−mx) (10)

Because the rows of A are orthonormal vectors, it follows that
A−1 = AT , and any vector x can be recovered from its corresponding
y by using the expression

x = ATy + mx (11)

Using just k eigenvectors

x̂ = AT
k y + mx (12)

PhD(c) Nelson Diaz HDSP group March 5, 2019 20 / 28



Results PCA multispectral imaging

Principal components

Six principal component images, obtained using equation (5).
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Results Invariant-translation

Clustering the PC of x (kmeans with 2 classes)
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Results Invariant-translation

High-correlation between x and s

Motion estimation, frame 5
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Results Invariant-translation

Clustering the PC of x (kmeans with 6 classes)
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Results Invariant-translation

Products

It was submitted the paper entitled: Cardiac motion estimation by
using convolutional sparse coding.
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Results Conclusions

Conclusions and future work

A new method for cardiac motion estimation in ultrasound imaging
was presented.

In the future will be studied the sparse decomposition for anomaly
detection and cardiac tissue classification.
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Results Conclusions

Questions?
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Results Conclusions

Thanks for your attention!
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