Cardiac Motion Estimation by Using Convolutional Sparse Coding

PhD(c) Nelson Diaz¹ Ph.D Adrian Basarab ³ Ph.D Jean-Yves Tourneret ³ Advisor: Ph.D Henry Arguello ²

¹Department of Electrical and Computer Engineering, ²Department of Computer Science Universidad Industrial de Santander, Bucaramanga, Colombia. ³University of Toulouse, Toulouse, Francia.

March 5, 2019

HDSP group

March 5, 2019 1 / 28

Outline

- Introduction
 - Motivation of motion estimation
 - Example of CDL in Ultrasound Imaging
 - Dictionary filters and coefficient maps
- 2 Method
 - Motion estimation algorithm
- Results
 - Experimentation setup
 - 3 Dictionaries
 - Mean Endpoint Error
 - Error maps estimation
 - Estimation motion comparison
 - Invariant-translation
 - PCA multispectral imaging
 - Invariant-translation
 - Conclusions

Motivation

• Optimal treatment of cardiac disease requires early detection of abnormalities and accurrate monitoring tools.

Introduction to convolutional sparse coding (CDL)

Fig. 1: The convolutional model description, and its composition in terms of the local dictionary \mathbf{D}_{T} .

Example of CDL in Ultrasound Imaging

 \mathbf{s}_k is modeled as a convolution between the coefficient maps \mathbf{x}_m and a set of M filters \mathbf{d}_m .

$$\mathbf{s}_k \approx \sum_{m=1}^M \mathbf{d}_m * \mathbf{x}_m \tag{1}$$

Dictionary filters and coefficient maps

A dictionary is estimated off-line by using a set of training cardiac motions denoted as $\hat{\boldsymbol{s}}.$

$$\underset{\mathbf{d}_{m},\mathbf{x}_{k,m}}{\operatorname{argmin}} \frac{1}{2} \sum_{k} \left\| \sum_{m} \mathbf{x}_{k,m} \ast \mathbf{d}_{m} - \mathbf{s}_{k} \right\|_{2}^{2} + \lambda \sum_{m} \sum_{k} \|\mathbf{x}_{k,m}\|_{1}$$
(2)
s.t. $\|\mathbf{d}_{m}\| = 1 \ \forall m = 1, ..., M$

The coefficient maps \mathbf{x}_m are computed from cardiac motions \mathbf{s}_k

$$\underset{x_m}{\operatorname{argmin}} \frac{1}{2} \left\| \sum_{m} \mathbf{x}_m * \mathbf{d}_m - \mathbf{s}_k \right\|_2^2 + \lambda \sum_{m} \|\mathbf{x}_m\|_1.$$
(3)

Eq (2) and (3) can be solved using alternating direction method of multipliers (ADMM).

Motion estimation

- A pair of successive frames (r_k, r_{k+1}) ∈ ℝ^{J×N} acquired at time instants k and k + 1
- $(\mathbf{s}_x, \mathbf{s}_y) \in \mathbb{R}^{J \times N}$ where \mathbf{s}_x and \mathbf{s}_y are the motions along the x and y axes.
- Since the motion estimation problem is considered independently the displacement vector is equal to s = s_χ or s = s_γ.
- The motion estimation field is formulated as the minimization of a cost function with energy $E_{\rm data}(\mathbf{s})$ penalized by spatial and sparse regularizations, i.e.,

$$\underset{\mathbf{x},\mathbf{s}}{\operatorname{argmin}} \{ E_{\operatorname{data}}(\mathbf{s}) + \lambda_d E_{\operatorname{sparse}}(\mathbf{s}, \mathbf{x}) + \lambda_s E_{\operatorname{spatial}}(\mathbf{s}) \}$$
(4)

Data fidelity

The ML estimator is classically computed in the negative log-domain

$$\underset{\mathbf{s}}{\operatorname{argmin}} - \ln \left[p(\mathbf{r}_{k+1}) | \mathbf{r}_k(n) \right]. \tag{5}$$

Straightforward computations exploiting the Rayleigh statistics of ultrasound imaging detailed in [1] lead to the following data fidelity term

$$E_{\text{data}}(\mathbf{s}) = -2d(\mathbf{s}) + 2\log[e^{2d(\mathbf{s})} + 1] + C$$
(6)

where

$$d(\mathbf{s}) = \frac{1}{b} \sum_{n=1}^{N} [\mathbf{r}_{k+1}(n + \mathbf{s}(n)) - \mathbf{r}_{k}(n)],$$

n indicates the pixel index, $\mathbf{s} = [s(1), \dots, s(N)]^T$ is the vectorized motion, and $\mathbf{r}_k = [r_k(1), \dots, r_k(N)]^T$ is the vectorized ultrasound image in frame k, and $C = -\log(2\sigma^4/b)$ is a known constant

Regularization term

The spatial regularization term promotes the smoothness of the motion estimation field and is defined as

$$E_{\text{spatial}}(\mathbf{s}) = \|\nabla \mathbf{s}\|_2^2$$
 (7)

The proposed sparse regularization determines the motion \mathbf{s}_k that is best represented as a convolution between M filters \mathbf{d}_m and the coefficient maps \mathbf{x}_m , i.e,

$$E_{\text{sparse}}(\mathbf{s}) = \left\| \mathbf{s}_k - \sum_{m=1}^M \mathbf{x}_m * \mathbf{d}_m \right\|_2^2.$$
 (8)

Motion estimation algorithm

Input: $\mathbf{r}_{b,1}, \mathbf{r}_{b,2}, \lambda_s, \lambda_d, K, J, \lambda, \rho$ $\widetilde{\mathbf{s}}_0 = \mathsf{LAD}\mathsf{dist}$ motions, $\widehat{\mathbf{s}}_0 = \mathsf{LAD}\mathsf{prox}$ motions Output: s 1: function MEFCDL($\mathbf{r}_{b,1}, \mathbf{r}_{b,2}, \lambda_s, \lambda_d, K, J, \lambda, \rho, \widetilde{\mathbf{s}}_0, \mathbf{\hat{s}}_0$) $\mathbf{d}_m \leftarrow \text{Computes the dictionary by solving (2)}$ 2: 3: $\mathbf{x}_m \leftarrow$ Computes the coefficient maps by solving (3) for $k \leftarrow 1, K$ do 4: for $i \leftarrow 1, J$ do 5: $\operatorname{argmin}_{s} \{ E_{\text{data}}(\mathbf{r}_{b,1}, \mathbf{r}_{b,2}, \mathbf{s}_{i-1}) +$ 6: $\lambda_{s} \| \nabla \mathbf{s}_{i-1} \|_{2}^{2} + \lambda_{d}(k) \| \mathbf{s}_{i-1} - \sum_{m} \mathbf{d}_{m} * \mathbf{x}_{m} \|_{2}^{2} \}$ s.t. $\|\mathbf{d}_m\| = 1 \ \forall m$ Motion estimation \triangleright (Estimated motion field) 7: return s

Experimentation setup

Table 1: Parameters for each step of algorithm 7, dictionary learning, sparse coding, and cardiac motion estimation.

Step	Parameters	Values	
	Database	LADdist	
	Filter size	16 imes 16	
Dictionary	Filters number	M = 48	
learning	Sparsity term	$\lambda = 0.001$	
	Number of iteration	500	
Sparse	Database	LADprox	
coding	Number of iteration	500	
Cardiac	Regularization parameter	$\lambda_s = 0.75$	
motion	Sparsity term (Systole)	$\lambda_d = \{1 imes 10^{-6} imes 10^{-3}\}$	
estimation	Sparsity term (Diastole)	$\lambda_{d} = \{1 \times 10^{-9} \times 10^{-2}\}$	

Results

Experimentation setup

Parameters λ and ρ

	$ ho_{0} = 25$	$ ho_1 = 50$	$ ho_2 = 100$	$ ho_{3} = 150$
$\lambda_0 = 0.05$	28.9992	29.2101	28.6905	29.3802
$\lambda_1 = 0.1$	24.9587	24.9932	25.2910	25.2395
$\lambda_2 = 0.2$	20.9748	21.1248	21.2963	21.3028
$\lambda_3 = 0.3$	18.7247	18.8688	18.8703	18.8667
$\lambda_4 = 0.5$	16.1208	16.1271	15.9824	16.0115

Table 2: Image quality (PSNR) with 100 iteration of (CBPDN) for different choices of λ and ρ by using the motion horizontal ground-truth.

	$ ho_0 = 25$	$ ho_1 = 50$	$ ho_{2} = 100$	$ ho_{3} = 150$
$\lambda_0 = 0.05$	26.9361	27.2072	27.2159	27.3542
$\lambda_1 = 0.1$	22.8906	22.8575	22.9179	23.1302
$\lambda_2 = 0.2$	19.2978	19.2049	19.3376	19.3352
$\lambda_3 = 0.3$	17.3294	17.4144	17.4043	17.3599
$\lambda_4 = 0.5$	15.1404	15.2372	15.2145	15.1526

Table 3: Image quality (PSNR) with 100 iteration of (CBPDN) for different choices of λ and ρ by using the motion horizontal ground-truth.

3 dictionaries, 3 scenarios

PhD(c) Nelson Diaz

HDSP group

Mean Endpoint Error

This error is defined for the *n*th pixel as

$$e_n = \sqrt{[\mathbf{s}_x(n) - \mathbf{\hat{s}}_x(n)]^2 + [\mathbf{s}_y(n) - \mathbf{\hat{s}}_y(n)]^2}, \tag{9}$$

where $\mathbf{s}_x(n)$, $\mathbf{s}_y(n)$, $\mathbf{\hat{s}}_x(n)$, $\mathbf{\hat{s}}_y(n)$ are the true and estimated (horizontal and vertical) motions at pixel *n*.

Error maps estimation

Error maps estimation

Estimation motion comparison

PhD(c) Nelson Diaz

HDSP group

Clustering the PC of **x** (kmeans with 2 classes)

PCA for multispectral imaging 1

• Implement the principal component transform to compress and reconstruct multispectral images.

PCA for multispectral imaging 2

• Understand the applications of satellital images in agriculture, geology and surveillance (you will need to understand which is the structure multispectral images)

Understand the mathematics that PCA involves.

Compute the mean vector $\mathbf{m}_x = \frac{1}{K} \sum_{k=1}^{K} \mathbf{x}_k$ and the covariance matrix $\mathbf{C}_x = \frac{1}{K} \sum_{k=1}^{K} \mathbf{x}_k \mathbf{x}_k^T - \mathbf{m}_k \mathbf{m}_k^T$ Let **A** a matrix whose rows are formed from the eigenvectors of \mathbf{C}_x ordered in descending order,

$$\mathbf{y} = \mathbf{A}(\mathbf{x} - \mathbf{m}_{x}) \tag{10}$$

Because the rows of **A** are orthonormal vectors, it follows that $\mathbf{A}^{-1} = \mathbf{A}^{T}$, and any vector **x** can be recovered from its corresponding **y** by using the expression

$$\mathbf{x} = \mathbf{A}^T \mathbf{y} + \mathbf{m}_{\mathbf{x}} \tag{11}$$

Using just k eigenvectors

$$\hat{\mathbf{x}} = \mathbf{A}_k^T \mathbf{y} + \mathbf{m}_x \tag{12}$$

Principal components

• Six principal component images, obtained using equation (5).

Results

Clustering the PC of **x** (kmeans with 2 classes)

High-correlation between \mathbf{x} and \mathbf{s}

Results

Clustering the PC of **x** (kmeans with 6 classes)

Products

• It was submitted the paper entitled: Cardiac motion estimation by using convolutional sparse coding.

Conclusions and future work

- A new method for cardiac motion estimation in ultrasound imaging was presented.
- In the future will be studied the sparse decomposition for anomaly detection and cardiac tissue classification.

Questions?

Conclusions

Thanks for your attention!

