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ABSTRACT

This work studies a new Expectation-Maximization (EM) algo-
rithm for solving the 2D-3D registration problem, which consists of
estimating the position and orientation of a camera using a 3D map
and a 2D image of the same scene. This algorithm associates each
image feature coordinate to one vector of the 3D map using the pin-
hole camera model or to a class of outliers, making the registration
robust to the presence of abnormal image features. It iteratively im-
proves the camera pose by estimating the associations between the
image features and the 3D map coordinates (using a robust mixture
model) and minimizing the reprojection errors between the image
and map points. Experimental results demonstrate that the proposed
EM algorithm achieves competitive results in both absolute posi-
tion and orientation compared to the Iterative Closest Point (ICP)
approach.

Index Terms— robust estimation, camera pose estimation, 2D-
3D registration, mixture model.

1. INTRODUCTION

Registration of 2D-3D point clouds, commonly known as camera
pose estimation, consists of estimating the position and orientation
of a camera relative to a reference frame by analyzing image fea-
tures and their correspondences with 3D reference points. This task
is critical for applications such as augmented reality [1] [2], 3D re-
construction [3] [4], robotics [5] [6] and medical imagery [7] [8]. In
the aerospace domain, camera pose estimation plays a critical role in
navigation and automated landing systems, enabling precise align-
ment and control in dynamic and challenging environments [9].

In controllable environment or/and good weather condition,
camera pose estimation involves three key steps: detecting image
features or markers [10–12], establishing correspondences between
these features and known 3D reference points [13], and solving the
Perspective-n-Point (PnP) problem to compute the camera’s posi-
tion and orientation [14]. The PnP problem is classically addressed
by minimizing the reprojection error between the 3D points in the
world reference frame and their 2D correspondences in the image.

In uncontrollable environments or adverse weather conditions,
feature associations can become ambiguous or unreliable, signifi-
cantly limiting the effectiveness of traditional registration methods
[15] [16]. Leveraging prior knowledge of a 3D model, such as road
positions (and/or fixed landmarks) that can be generated through the
fusion of different data sources (e.g., LiDAR and radar), can improve
the robustness and accuracy of the camera pose estimation. In this

context, the association between the detected image features and the
3D model is unknown, and feature detectors usually generate outliers
making this association complicated. Iterative Closest Point (ICP)
algorithms [8] provide a solution for correspondence-free registra-
tion problems. However, point clouds are never perfectly aligned,
especially when they are generated by different sensors, leading to
inaccuracies due to noise or false/out-of-date data [17].

To address the challenges related to 2D-3D registration, this pa-
per studies a new Expectation-Maximization (EM) algorithm that
performs a robust probabilistic association between the two point
clouds. It is structured as follows: Section 2 introduces a statistical
model for camera pose estimation in the presence of outliers and de-
rives an EM algorithm for estimating its parameters via maximum
likelihood (ML) estimation. Section 3 evaluates the performance of
the resulting robust EM algorithm using various experiments on syn-
thetic data. Conclusions and future works are reported in Section 4.

2. PROPOSED EM ALGORITHM

2.1. Problem Formulation

Consider two point clouds of the same scene. The first point cloud
consists of n 2D noisy position vectors detected in an image, denoted
as xi

1 ∈ R2, where i = 1, . . . , n. The second point cloud consists
of m 3D position vectors denoted as xj

2 ∈ R3, where j = 1, . . . ,m.
When the association between these two point clouds is known, the
relationship between each vector xi

1 and its 3D point xj
2 can be de-

fined using a pinhole camera model [3]:
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where the camera intrinsic matrix is defined as

K =

αx 0 x0

0 αy y0
0 0 1

 ,

with αx and αy the focal lengths in pixels along the x and y di-
rections and (x0, y0) the principal point. Note that the notation
(.)3 refers to the third component of a vector. The orientation and
position of the camera are defined by a matrix R ∈ SO(3) (the
Special Orthogonal Group) and t ∈ R3 that need to be estimated.
The model error ei,j is supposed to follow a Gaussian distribution
N (02, σ

2I2), with zero mean and covariance matrix σ2I2.



2.2. A robust registration model for 2D-3D registration

This section introduces a 2D-3D registration model for cases where
the associations between the 2D and 3D points are unknown and
potential outliers are present in the scene. A uniform distribution
defined in the image area is introduced to account for the presence
of outliers resulting from the detection algorithm [18]:

p(xi
1|outlier) =

1

∆
1I(x

i
1), (2)

where ∆ denotes the image area in square pixels and 1I is the indi-
cator function defined on the image area I .

To tackle the data association problem, inspired by [17], we in-
troduce a matrix A ∈ {0, 1}n×(m+1), where each element ai,j in-
dicates the association between the detected 2D feature xi

1 and the
3D reference point xj

2, i.e., ai,j = 1 when xi
1 is associated with xj

2,
ai,j = 0 if xi

1 and xj
2 are not associated (with i, j = 1, ...,m) and

ai,m+1 = 1 if xi
1 is an outlier in the first point cloud. Since each

2D point of the first point cloud is associated with at most one 3D
point of the second point cloud, each row of A satisfies the constraint∑m+1

j=1 aij = 1. The prior distribution for the different associations
is defined as follows:

P (ai,m+1 = 1) = ρo, P (ai,j = 1) =
1− ρo
m

, j = 1, ...,m, (3)

where m is the number of 3D points, and ρo is the proportion of
outliers in the set of measurements x1. This prior reflects a non-
informative distribution for the feature associations (i.e., each 2D
feature xi

1 has the same probability of being asssociated with any of
the m 3D points xj

2), and ρo is the outlier probability, which has to
be adjusted by the user to control the robustness of the model.

The registration problem consists of estimating the rotation ma-
trix R and the translation vector t (that are related to the orientation
and position of the camera), i.e., Θ = (R, t), from the 2D measure-
ments X1 = {x1

1, ...,x
n
1 } and the 3D vectors X2 = {x1

2, ...,x
m
2 }

for an unknown latent association matrix A.

2.3. Likelihood and Complete Likelihood

The marginal likelihood of the proposed model is defined as:

L(X1|Θ,X2) =
∑
A∈Ψ

p (X1,A | Θ,X2) , (4)

where Ψ denotes the set of all valid association matrices. The total
number of valid associations is (m + 1)n, which makes the MLE
computationally intractable. To address this challenge, we investi-
gate a new EM algorithm to estimate Θ based on the so-called com-
plete likelihood defined as:

Lc(X1,A|Θ,X2) = p(X1 | A,X2,Θ)P (A |X2,Θ)

=

n∏
i=1

m∏
j=1

[
p(xi

1|xj
2,Θ)P (ai,j)

]ai,j

×
n∏

i=1

[
p(xi

1|outlier)P (ai,m+1)
]ai,m+1

.

(5)

2.4. EM algorithm

The EM algorithm is an iterative approach used to compute maxi-
mum likelihood estimates in models with latent variables. The al-
gorithm alternates between Expectation (E) and Maximization (M)
steps defined from the complete likelihood [19]. For the proposed
model, the (t+ 1)-th iteration is defined as:

• E-step: Compute Q(Θ | Θ(t)), the expected value of the
complete log-likelihood given the observed data and the cur-
rent parameter estimate Θ(t):

Q(Θ | Θ(t)) = EA|X1,X2,Θ(t) [logLc(X1,A | Θ,X2)] ,
(6)

• M-step: Update the parameter estimate by maximizing
Q(Θ | Θ(t)) with respect to Θ:

Θ(t+1) = argmax
Θ

Q(Θ | Θ(t)). (7)

The complete log-likelihood for the proposed model results from (5):

logLc(X1,A | Θ,X2) =
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+
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ai,m+1 log(ρ0).

(8)

E-Step (Expectation)

A ray casting algorithm [20] is used to determined the set of visible
features of the 3D map X2 at a given camera pose Θ(t). According
to Bayes theorem, the conditional distribution of ai,j | xi

1,x
j
2,Θ

(t)

can be defined for any (i, j) ∈ {1, ..., n} × {1, ...,m} as:

γ
(t)
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j
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with
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(10)
Moreover, the outlier probabilities are defined for i = 1, ..., n as:
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(11)
Simple computations resulting from (6), (8) and (10) lead to:

Q(Θ | Θ(t)) =

n∑
i=1

m∑
j=1

γ
(t)
i,j log p(x

i
1 | xj

2,Θ) +K, (12)

where K is a constant independent of Θ.

M-Step (Maximization)

The M-step maximizes the function Q(Θ | Θ(t)) defined in (12)
with respect to Θ = (R, t). This maximization problem reduces to
minimizing the weighted reprojection error, i.e.,

argmin
Θ

L(Θ(t))︷ ︸︸ ︷
n∑

i=1

m∑
j=1

γi,j
σ2
∥xi

1 − π(R(t)xj
2 + t(t))∥2︸ ︷︷ ︸

r2i,j(Θ
(t))

, (13)



where π is the projection operation appearing in (1), L denotes the
loss function, and ri,j is the residual corresponding to the i, j-th
association, leading to the vector of residuals r = [r1,1, ..., rn,m].
Given the nonlinear nature of this problem, we adopt a variant of the
EM algorithm known as gradient EM, whose convergence has been
investigated in many works [21–23]. This approach replaces the M-
step of the EM algorithm by one iteration of a gradient algorithm
such as the Gauss-Newton algorithm. For the cost function defined
in (13), the Gauss-Newton algorithm updates R and t as follows:

Θ(t+1) = Θ(t) +∆Θ. (14)

with
∆Θ = −(J⊤J)−1J⊤r, (15)

where J is the Jacobian matrix of the reprojection residuals with re-
spect to the parameters R and t. In this work, the matrix R has been
parametrized using the Rodrigues formula [24], which allows the
matrix J to be computed. The Gauss-Newton iterations are repeated
until convergence, i.e., when ∥∆Θ∥ is below a predefined threshold
τ , or until a maximum number of iterations nmax is reached, yielding
Algorithm 1.

Algorithm 1 EM Algorithm

Input: map, X1, σ2, ρo, nmax, τ , Θ(0)

Output: Θ(f)

while nit < nmax and ∥∆Θ∥ > τ do
X2 ← ray-casting

(
map,Θ(t−1)

)
Expectation step
for (i, j) ∈ {1, ..., n} × {1, ...,m} do

γi,j ← P (ai,j = 1 | xi
1,x

j
2,Θ

(t−1)) ▷ (10)
end for
Maximization step
for (i, j) ∈ {1, ..., n} × {1, ...,m} do

ri,j ← ri,j(Θ
(t−1)) ▷ (13)

end for
Θ(t) ← Gauss-Newton

(
r,Θ(t−1)

)
nit ← nit + 1

end while
Θ(f) ← Θ(t)

3. SIMULATION RESULTS

Several experiments were conducted to assess the performance of
the proposed EM algorithm. This algorithm requires to adjust three
key components: the initial camera pose Θ(0) = (R(0), t(0)), the
noise variance σ2 (that is related to the uncertainty of the measure-
ments) and the probability of outliers ρo. The initial pose Θ(0) can
be obtained from a Kalman filter prediction, with or without incor-
porating additional sensors. The user must specify σ2 and ρo, which
depend on the characteristics of the detection algorithm.

This section studies a crossroad scenario illustrated in Fig. 1.
The camera is mounted on a drone and positioned at [120, 200, 60]
meters along the x, y, and z axes, with an orientation described by
Euler angles [0◦,−60◦,−170◦] representing rotations around these
axes. Fig. 1 shows the 3D map with road positions represented
as a sparse point cloud. A ray-casting algorithm has been used to
determine which points are visible or not by the camera (indicated
by blue and black crosses). The corresponding 2D point cloud has
been acquired by the fixed camera providing the detections displayed
in Fig. 2 (blue and red points).

Fig. 1. 3D point cloud for a road map. Blue and black crosses indi-
cate visible and non visible road points from the camera’s pose.

3.1. ICP algorithm

The ICP algorithm will be used as a benchmark to solve the 2D-
3D point cloud registration problem investigated in this paper. The
reprojection error for this algorithm is defined as:

n∑
i=1

min
j=1,...,m

1

σ2
∥xi

1 − π(Rxj
2 + t)∥2, (16)

where the reprojection error is computed by finding the closest
match for each 3D point. To ensure robustness against outliers, a
RANSAC-based approach [25] is incorporated, making the registra-
tion process not strongly corrupted by erroneous correspondences
or noise. The matrix R and translation t are updated using the
Gauss-Newton method, as in the M-step of the EM algorithm.

3.2. Synthetic Dataset

This section compares the performance of the EM and ICP algo-
rithms. The evaluation is conducted on a dataset generated with
n = 200 nominal 2D observations (blue points), a noise variance
of σ2 = 25, and an outlier probability of ρo = 10%. The initial
pose for both algorithms is fixed at a position t = [125, 195, 65]
with orientations ϕ = [3◦,−57◦,−167◦], as shown in Fig. 2. For
the ICP algorithm, the number of iterations was fixed empirically
to 100. For the EM algorithm, the maximum number of iterations,
nmax, and the convergence threshold, τ , are set to 100 and 10−3.

Outliers are detected using the posterior probability of associa-
tion to the outlier class defined in (11), i.e., a 2D point i is classified
as an outlier if its posterior probability is such that γi,m+1 > 0.5.
Figure 2 illustrates the inliers (blue points), outliers (points with or-
ange circles), and the 2D projections corresponding to the estimated
poses obtained from both algorithms (green and purple crosses for
ICP and EM). Table 1 provides quantitative results in terms of po-
sition and orientation mean square errors (MSEs) showing that the
EM algorithm is very competitive when compared to ICP.

Fig. 3 finally shows typical evolutions of the loss function (13)
and the absolute errors of the pose parameters ((tx, ty, tz) for the
position and (ϕx, ϕy, ϕz) for orientation) versus the number of iter-
ations, illustrating the algorithm convergence.



Fig. 2. Comparison between EM and ICP algorithms. Blue and red
points indicate the inliers and outliers forming the 2D point cloud.
The green and purple crosses are the projections of 3D points using
the estimated poses of ICP Θ̂ICP and EM Θ̂EM. Points circled in
orange are identified as outliers by the EM algorithm.

Table 1. MSEs for position and orientation

Algorithm Position Orientation

EM 1.82× 10−2 2.65× 10−2

ICP 13.08 4.15
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Fig. 3. Loss L and absolute errors for each pose parameter versus
the number of iterations of the EM algorithm.

3.3. Monte-Carlo simulations

Monte-Carlo simulations allow the performance of the proposed al-
gorithm to be quantified when varying the hyperparameters. The
data were generated as in Section 3.2. A first experiment evaluates
the robustness of the proposed EM algorithm to the probability of
outliers ρo in comparison with RANSAC ICP. Fig. 4 shows that the
proposed EM algorithm provides lower MSEs of Θ than ICP for all
values of ρo. The higher the proportion of outliers, the larger the
performance gap between EM and ICP.

The performance of the EM algorithm for different noise vari-
ances is displayed in Fig. 5a (data generated without outliers), con-
firming that the EM algorithm is very competitive when compared
to ICP. The influence of the initial pose Θ(0) on the EM algorithm is
shown in Fig. 5b, showing the MSE of the estimator of Θ for a range
of initial poses around the ground truth. The closer the initial pose to
the ground truth, the more accurate the estimated pose, as expected.

Finally, it is interesting to note that the execution time of the pro-
posed EM algorithm is much smaller than for RANSAC-ICP, by a
factor close to 80 (the total execution times for the two algorithms
are tEM = 0.31s and tICP = 25.35s).
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Fig. 4. Boxplots for the MSEs of the vector of positions and orien-
tations Θ = (t,ϕ) for different values of ρo.
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Fig. 5. MSE of the estimates of (t,ϕ) versus σ (left) and (dϕ, dt)
(right), where dϕ and dt are the Euclidean distances between the
values of ϕ and t for initial and ground truth poses.

4. CONCLUSION

This paper studied a new robust EM algorithm for the registration
of 2D and 3D point clouds. A mixture model was considered to
model the presence of outliers, and a latent association matrix was
introduced to solve the association problem between the two point
clouds. The proposed EM algorithm requires to adjust three key pa-
rameters: the probability of outliers, the noise variance, and the ini-
tial pose. Experimental results demonstrated that the EM algorithm
is very competitive when compared to the vanilla ICP algorithm.
Including extensions of the ICP algorithm [26] in the comparison
would be interesting, even if the generalization of these algorithms to
2D-3D registration is challenging. Future work includes automatic
hyperparameter estimation, developing an online EM algorithm for
real-time applications and deriving Rao-Cramer bounds to evaluate
the optimal estimation performance.
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