Décodage et localisation AIS par satellite

Raoul PRÉVOST

Jean-Yves TOURNERET — INP-ENSEEIHT/IRIT

Martial COULON — INP-ENSEEIHT/IRIT

David BONACCI — TÉSA

Julia LEMAITRE — CNES

Jean-Pierre MILLERIOUX — CNES

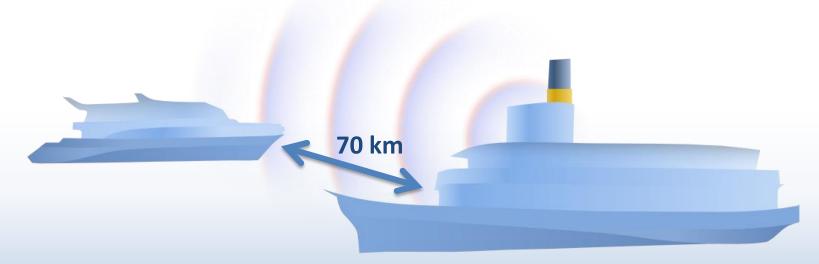
Véronique SERFATY — DGA

Jacques BLANC-TALON — DGA



Automatic Identification System

- Système automatisé d'échange d'informations entre bateaux et stations côtières
- Messages diffusés périodiquement
- Un message AIS contient
 - l'identifiant unique du navire
 - sa position
 - sa vitesse
 - sa direction

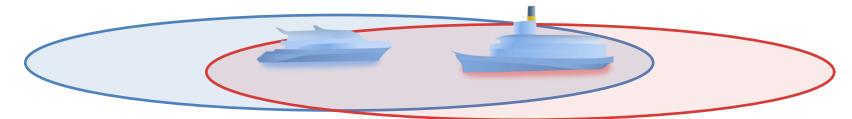

29/10/2012 2/59

Automatic Identification System

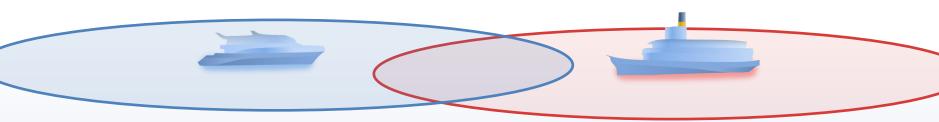
- Utilisation
 - Systèmes anticollisions
 - Surveillance du trafic
- Portée moyenne des navires : ~70 km

29/10/2012 3/59

Partage du support


- Partage temporel : SOTDMA
 - Trames d'une minute de 2250 slots (~27 ms)
 - Message AIS émis en burst dans un slot
 - Sélection d'un slot libre par écoute du support
- Aucune infrastructure
- Très peu de collisions
- Partage des slots organisé en cellules

29/10/2012 4/59



Partage organisé en cellules

Bateaux à portée l'un de l'autre

- Utilisation de slots différents
- Bateaux hors de portée

Réutilisation des slots possible

Réception par satellite

- Connaissance de la position de tous les bateaux sur Terre
 - Surveillance maritime étendue
 - Nouveaux services pour armateurs
- Déploiement plus simple que les systèmes terrestres et fonctionne en haute mer


Satellite en orbite basse : ~800 km

Système AIS non adapté

Premier problème : faible niveau de puissance

 Nécessite d'améliorer le taux de décodage

Système AIS non adapté

 Deuxième problème : collisions entre les messages des différentes cellules

 Utilisation de méthodes de réduction d'interférence

Système AIS non adapté

 Troisième problème : certains navires ne renseignent pas leur position dans leurs messages

 Localisation utilisant les paramètres des messages reçus

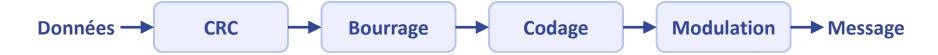
- Délai
- Effet Doppler

Plan de la présentation

- Construction des signaux AIS
- Correcteur d'erreurs
- Robustesse au bruit de phase et aux interférences

Estimation de la position des navires

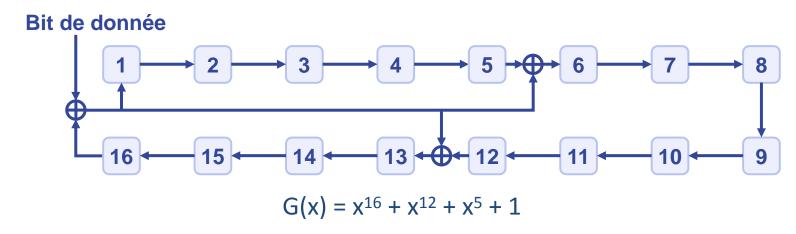
29/10/2012 10/59



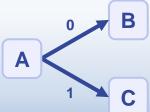
Plan de la présentation

- Construction des signaux AIS
 - Structure
 - Modulation
- Correcteur d'erreurs
- Robustesse au bruit de phase et aux interférences
- Estimation de la position des navires

Chaine d'émission

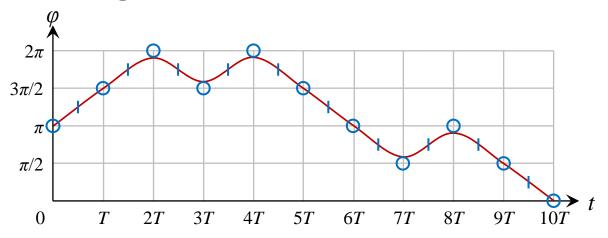


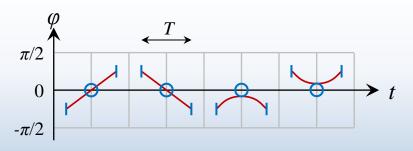
- CRC : signature des données pour la détection des erreurs de transmission
 - CRC([Données, CRC]) = constante
- Bourrage : ajout d'un bit 0 après les séquences 11111
 - Prévient l'apparition du fanion de fin dans les données
- Codage : Non return to zero inverted (NRZI)
- Modulation : Gaussian minimum shift keying (GMSK)


Calcul et propriétés du CRC

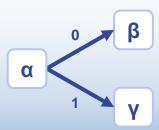
Peut être calculé itérativement

Construction d'un treillis de calcul


Treillis CRC



Codage et modulation

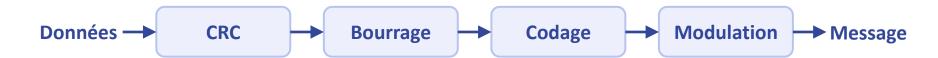

Phase d'un signal modulé en GMSK

Décomposition en une suite de segments

Plan de la présentation

Construction des signaux AIS

Correcteur d'erreurs


- Exploitation du CRC des messages
- Exploitation des contraintes des signaux AIS
- Robustesse au bruit de phase et aux interférences
- Estimation de la position des navires

29/10/2012 15/59

Comment améliorer le taux de décodage ?

Chaine d'émission

Récepteur conventionnel

29/10/2012 16/59

Correcteur d'erreurs

Exploitation du CRC

- Idée: utiliser le CRC comme source de redondance pour corriger des erreurs [MBKD10, WZG08]
- Problème : méthodes existantes incompatibles avec les bits de bourrage
- Solution : créer un nouvel algorithme
- [MBKD10] C. Marin, K. Bouchireb, M. Kieffer et P. Duhamel. « Joint exploitation of residual source information and MAC layer CRC redundancy for robust video decoding, » *IEEE Trans. Wireless Comm.*, 9(7): 2165–2175, juillet 2010.
- [WZG08] R. Wang, W. Zhao et G. B. Giannakis. « CRC-assisted error correction in a convolutionally coded system, » *IEEE Trans. Comm.*, 56(11): 1807–1815, 2008.

29/10/2012 17/59

Récepteur proposé

Récepteur conventionnel

Récepteur proposé

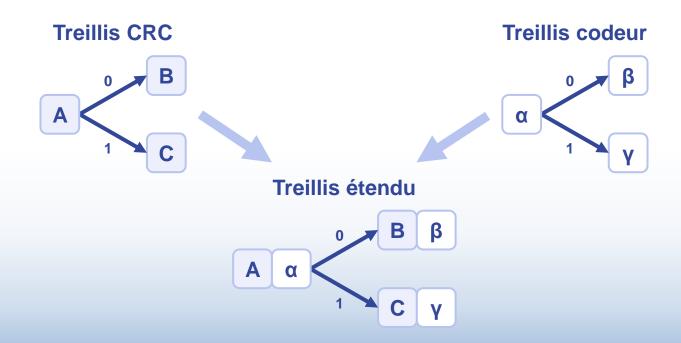
- Apports
 - Utilisation du CRC comme source de redondance
 - Aucun passage en valeurs dures (hard) entre les blocs

29/10/2012 18/59

Récepteur proposé

- Basé sur l'algorithme de Viterbi
 - Treillis étendu (composition de plusieurs treillis) [PCB+b]
 - Transitions conditionnelles [PCB+a]
- Réalisation en 3 étapes
 - 1. Construction du treillis étendu
 - 2. Prise en compte des bits de bourrage
 - Choix de l'état final

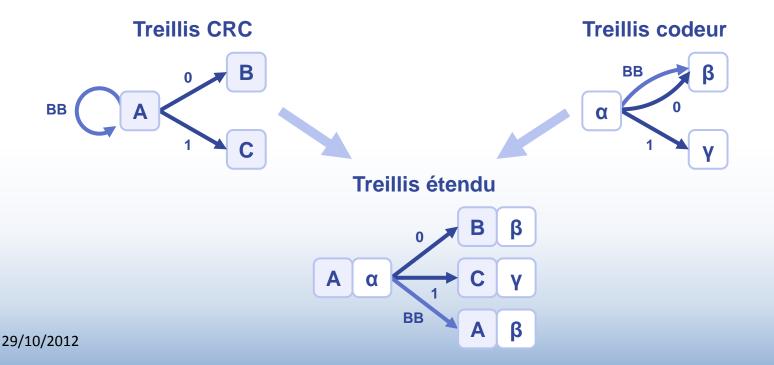
[PCB+a] R. Prévost et al. « A Viterbi algorithm with conditional transitions. » Brevet déposé.


[PCB+b] R. Prévost et al. « Multi-encoding error correction with extended trellis. » Brevet déposé.

29/10/2012 19/59

Étape 1 : le treillis étendu

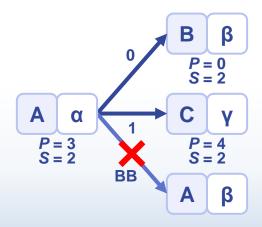
- États étendus composés de
 - Un état du calculateur de CRC
 - Un état du codeur/modulateur

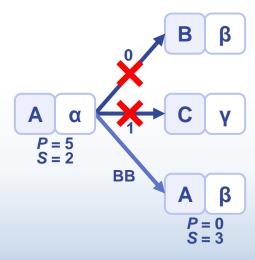


Étape 2 : les bits de bourrage (1)

21/59

- Introduction de transitions spécifiques
 - L'état du CRC reste identique
 - Bit de bourrage identique au bit 0 pour le codeur




Étape 2 : les bits de bourrage (2)

- Introduction de deux variables d'état
 - − P : le nombre de bits 1 reçus juste avant l'état
 - − S : le nombre de bits de bourrage reçu avant l'état

Bit d'information

Bit de bourrage

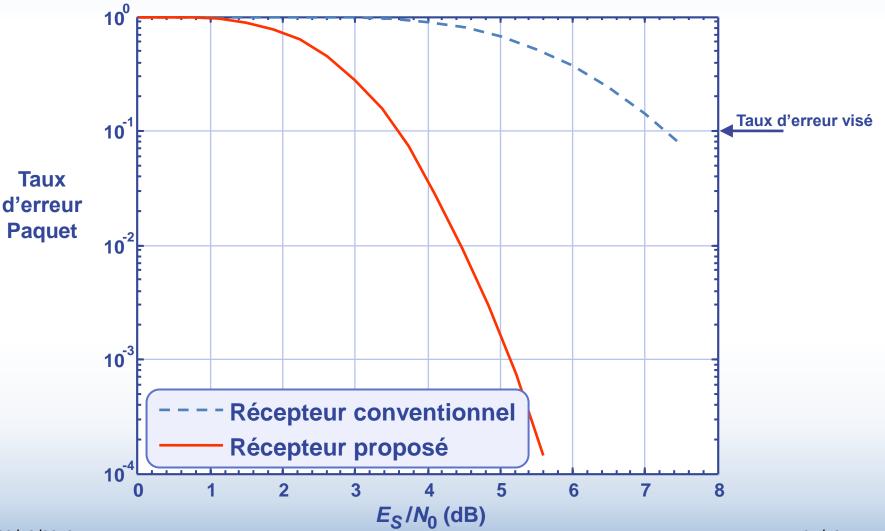
Étape 3 : état final du treillis

 L'état final minimise la distance entre les symboles estimés et le signal reçu

- Deux contraintes
 - Nombre de bits d'information en accord avec le standard (utilisation de la variable S)
 - État final du CRC correct

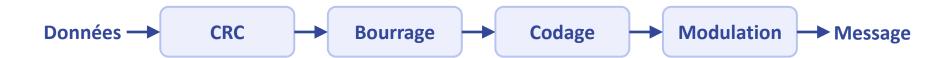
29/10/2012 23/59

Simulations


- Complexité de l'algorithme
 - États par symbole : $4 \times 2^{16} = 262 \ 144$
 - Transitions par symbole : $3 \times 2^{18} = 786432$
 - Symboles par message: 188
 - États dans le treillis : 49 283 072
 - Transitions dans le treillis : 147 849 216

− Temps de décodage d'un message : ~2 secondes

Taux


Simulations

Comment encore améliorer le taux de décodage ?

Chaine d'émission

Récepteur conventionnel

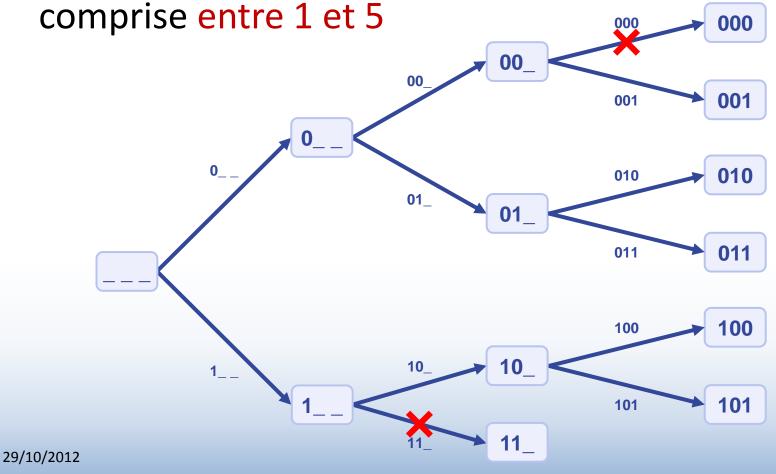
29/10/2012 26/59

Exploitation des contraintes

- Idée : utiliser les contraintes du système AIS
 - Champ réservé = '000'
 - Positions du navire et du récepteur cohérentes
 - Vitesse maximale des navires limitée
- Avec un message précédent décodé
 - Nouvelle position proche de la précédente
 - Identifiant du navire connu

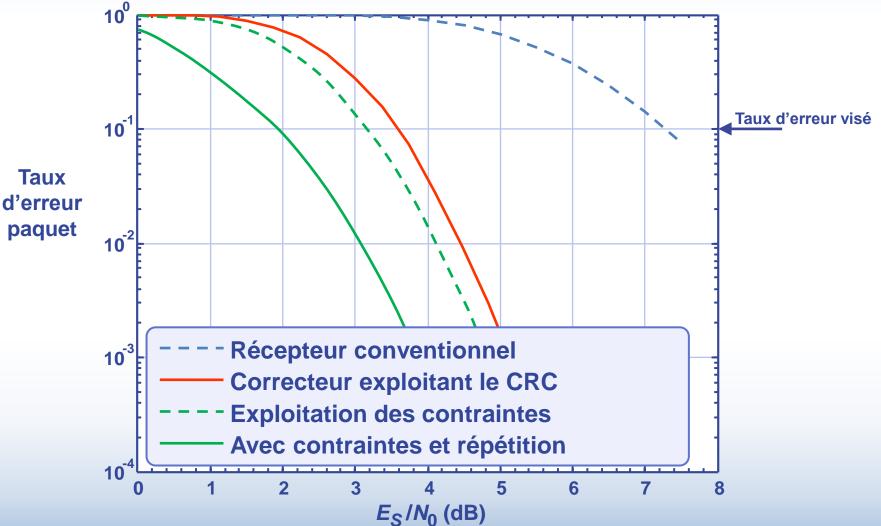
Application

- Champs à valeur unique
 - Désactivation de transitions dans le treillis


- Champs à intervalle limité
 - Enregistrement de la valeur du champ dans un registre le long du chemin
 - Application de la contrainte sur le registre

29/10/2012 28/59

Treillis modifié


Exemple pour un champ de 3 bits de valeur

29/59

Simulations

Plan de la présentation

- Construction des signaux AIS
- Correcteur d'erreurs
- Robustesse au bruit de phase et aux interférences
 - Réduction d'interférence
 - Estimation des paramètres
 - Suivi de phase
- Estimation de la position des navires

Réduction d'interférence

- Exigence : complexité calculatoire réduite
- Idée : retirer la puissance moyenne des interférences de la distance de l'algorithme de Viterbi [PMR05]
- Signal reçu

$$r_u(t) = s_u(t) + \sum_{j \neq u} A_j s_j (t - T_j) e^{-i(2\pi F_j t + \Phi_j)} + n_u(t)$$

Distance conventionnelle

$$d^{2} = \sum_{k=1}^{K} \left| r_{u,k} - m_{u,k} \right|^{2}$$

[PMR05] M. Pukkila, G. P. Mattellini, and P. A. Ranta, « Constant modulus single antenna interference cancellation for GSM, » *IEEE Trans. Veh. Technol.*, 2005.

Unique interférent

Signal reçu

$$r_u(t) = s_u(t) + A_I s_I(t - T_I) e^{-i(2\pi F_I t + \Phi_I)} + n_u(t)$$

• En considérant $|s_I(t)| = 1$ $|r_u(t) - s_u(t)| \approx |A_I s_I(t - T_I) e^{-i(2\pi F_I t + \Phi_I)}| \approx A_I$

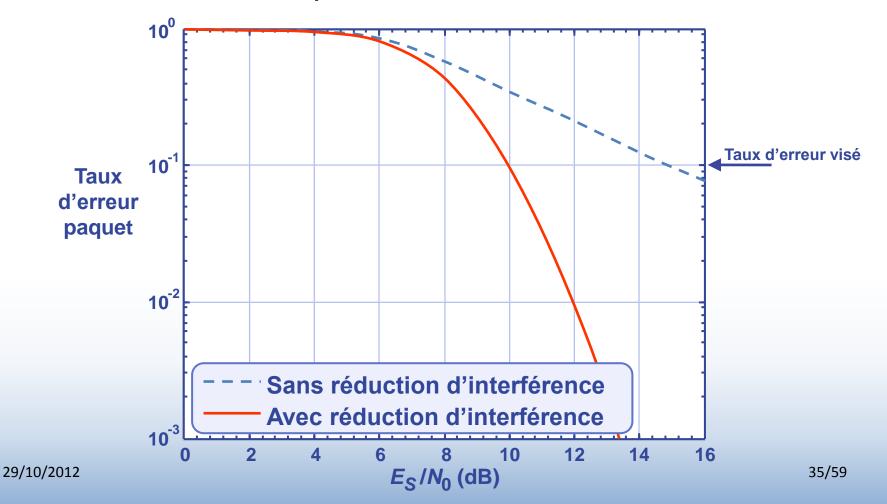
Nouvelle métrique

$$d^{2} = \sum_{k=1}^{K} \left| \left| r_{u,k} - m_{u,k} \right| - A_{I} \right|^{2}$$

Multiples interférents

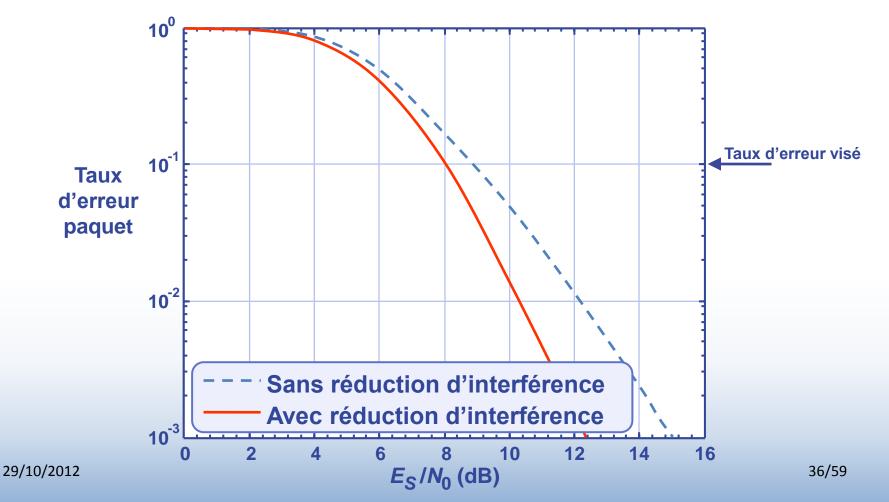
Extension de l'approche mono-interférent

$$d^{2} = \sum_{k=1}^{K} \left| \left| r_{u,k} - m_{u,k} \right| - \sqrt{P_{u}} \right|^{2}$$


 \bullet P_{u} est la puissance moyenne des interférences

$$P_{u} = \sum_{j \neq u} A_{j}^{2}$$

Simulations


1 interférent et C/I = 4 dB

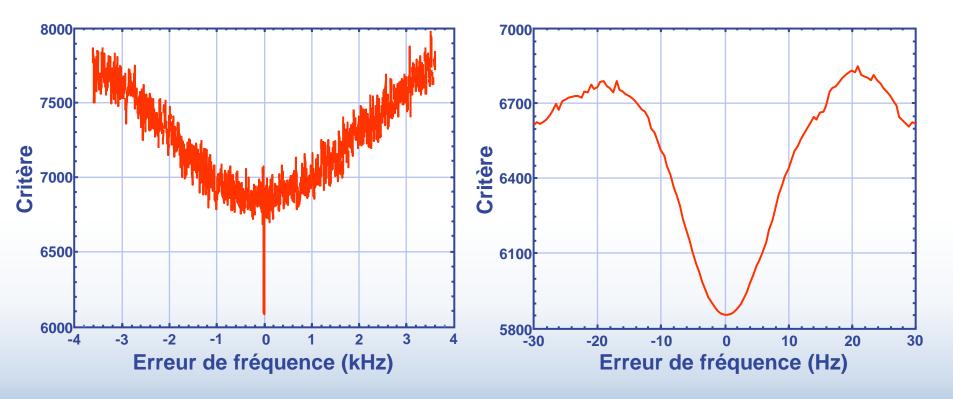
Simulations

4 interférents et C/I = 6 dB

Paramètres des signaux

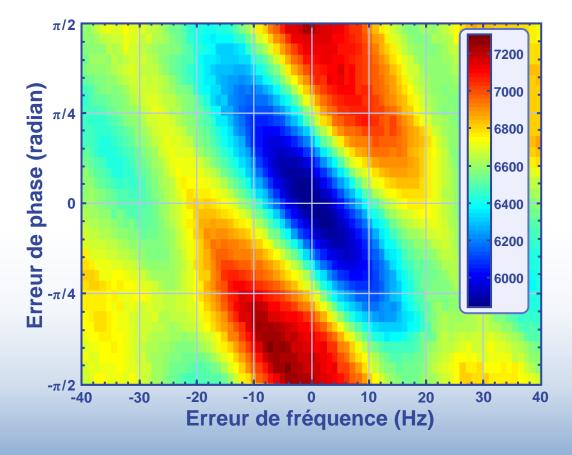
- Fréquence
 - Effet Doppler
 - Précision des modulateurs
- Phase
 - Phase initiale
 - Bruit de phase
- Indice de modulation GMSK
- Instant de début

Estimation des paramètres


- Idée: minimiser la distance résiduelle de l'algorithme de Viterbi pour estimer un ou plusieurs paramètres
- Apport : exploite les propriétés du CRC pour optimiser l'estimation
- Minimisation de

$$d^{2}(\boldsymbol{\theta}) = \sum_{k=1}^{K} \left| r_{u,k} - m_{u,k}(\boldsymbol{\theta}) \right|^{2}$$

Estimation de la fréquence


• Critère en fonction de l'erreur de fréquence avec $E_S/N_0 = 5 \text{ dB}$

Estimations simultanées

• Critère en fonction des erreurs de fréquences et de phase avec $E_S/N_0 = 5$ dB

Suivi de phase

- Exigence : complexité calculatoire réduite
- Idée: permettre à la phase d'évoluer d'un symbole au suivant indépendamment sur chaque chemin du treillis
- Fonction de distance

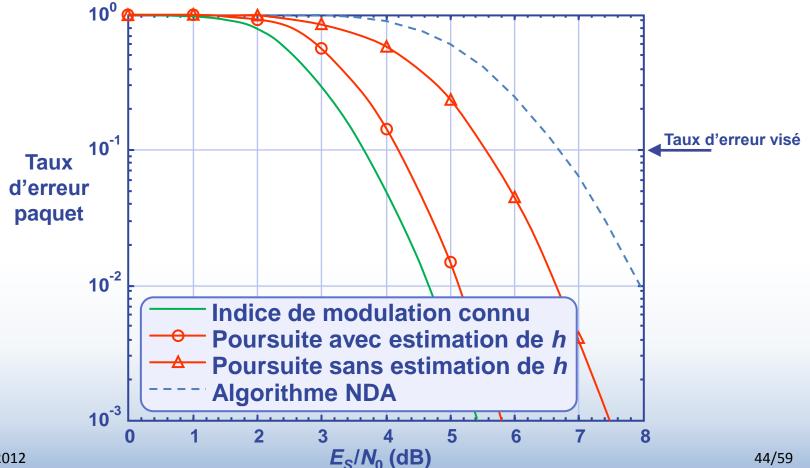
$$d^{2} = \sum_{k=1}^{K} \left| e^{-i\phi_{k}} r_{u,k} - m_{u,k} \right|^{2}$$

avec

$$\phi_k \in [\phi_{k-1} - \Delta \phi; \phi_{k-1} + \Delta \phi]$$

Optimisation


- Sans interférence
 - Solution optimale analytique
- Avec interférence
 - Pas de solution analytique simple
- Optimisation proposée
 - Recherche de la phase dans un ensemble discret
 - Stocker dans un tableau les valeurs précalculées


Optimisation

- Pour 360 valeurs possibles de phase
 - $-360 \times 8 = 2880$ phases précalculées par symbole

- Surcout calculatoire lors de l'application de l'algorithme de Viterbi
 - Une lecture dans le tableau par transition

• Indice de modulation h = 0.45 au lieu de 0.5

Plan de la présentation

- Construction des signaux AIS
- Correcteur d'erreurs
- Robustesse au bruit de phase et aux interférences
- Estimation de la position des navires
 - Méthode des moindres carrés
 - Exploitation d'un modèle de déplacement
 - Filtre de Kalman étendu

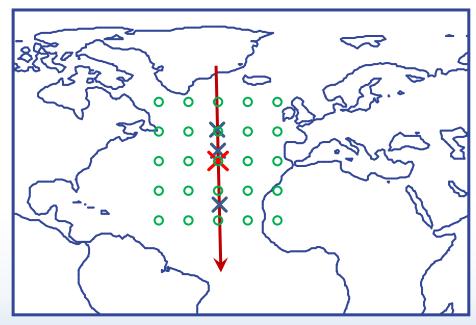
29/10/2012 45/59

Méthode des moindres carrés

- Estimation de
 - la longitude du navire
 - sa latitude
 - sa fréquence d'émission

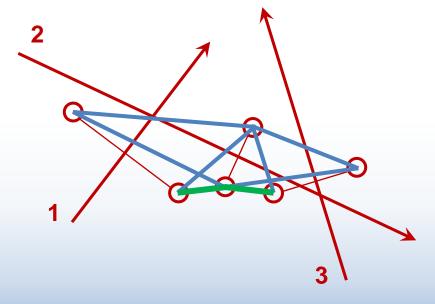
- Paramètres mesurés
 - Délais de propagation des messages
 - Décalages Doppler de la porteuse des signaux

Méthode des moindres carrés

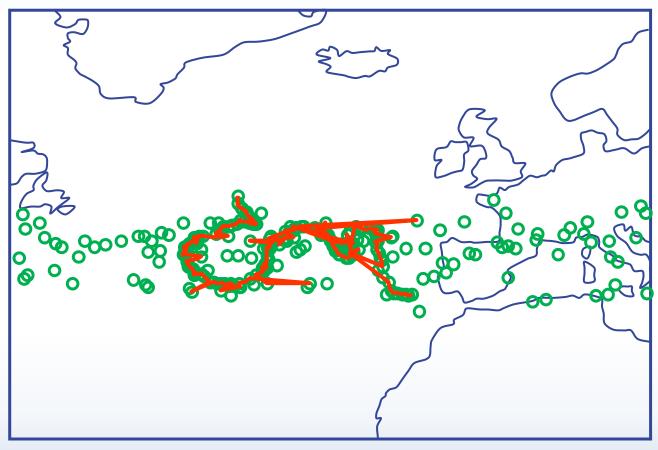

- Minimisation d'un critère représentant la distance entre
 - Les paramètres mesurés
 - Les paramètres théoriques pour une certaine position
- Minimisation itérative du critère suivant la méthode de Gauss-Newton

Initialisation

 Points d'initialisations répartis suivant une grille autour de la position du satellite



- → Trace du satellite
 - ★ Emplacements lors de la réception des messages
 - X Moyenne des emplacements de réception
 - Points d'initialisation

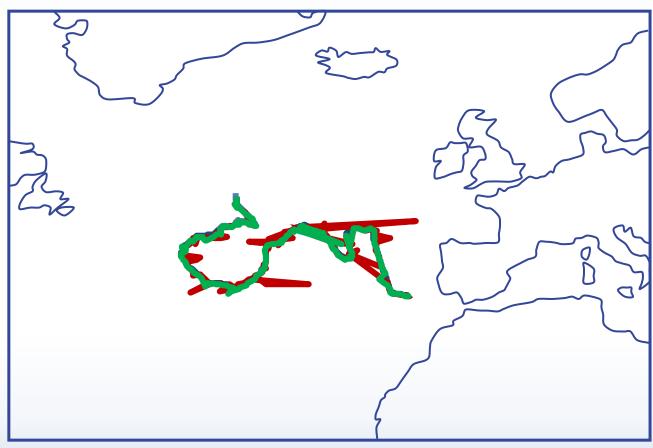


Ambigüité de positionnement

- Trace du satellite rectiligne
 - Symétrie des valeurs du critère
 - Impossible de savoir de quel côté de la trace se trouve le navire
- Levée de l'ambigüité
 - Minimisation de la distance parcourue par le navire
 - Utilisation d'un algorithme de Viterbi

O Positions estimées du navire
 Trajectoire estimée du navire

29/10/2012 50/59

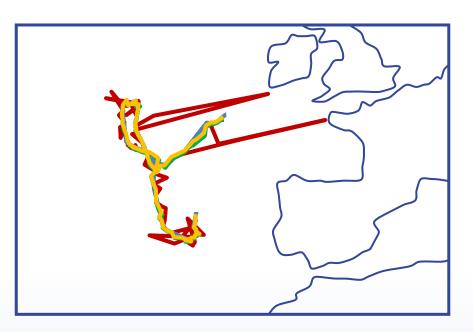

Exploitation d'un modèle de déplacement

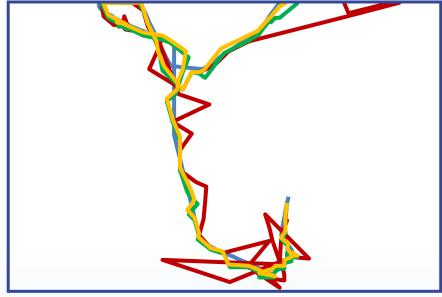
- Les navires ne changent pas souvent de direction
- Modèle aléatoire à direction privilégiée
- Prédiction de la position du navire
 - Position précédente
 - Vitesse estimée
 - Direction estimée

 Prédiction utilisée comme une mesure supplémentaire lors du calcul du critère

29/10/2012 51/59

- Trajectoire réelle du navire
- Trajectoire estimée sans modèle de déplacement
- Trajectoire estimée avec un modèle de déplacement




Filtre de Kalman étendu

- Méthode des moindres carrés complexe
- Estimation par filtrage de Kalman étendu possible grâce au modèle de déplacement
- Fonctionnement
 - Utilisation du modèle pour prédire la position
 - Utilisation des mesures pour corriger la prédiction

Comparaison des estimateurs

- Trajectoire réelle du navire
- Méthode des moindres carrés
- Moindres carrés avec modèle de déplacement
- Filtre de Kalman étendu

29/10/2012 54/59

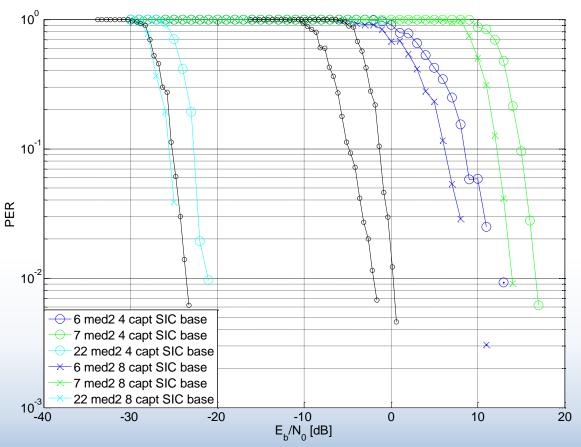
- Simulation globale de 2 mois
 300 bateaux et 5 satellites
- 433 081 passages de satellite

Estimateur	Erreur moyenne	Écart-type de l'erreur
MC optimaux	49,0 km	177,3 km
MC estimés	49,6 km	180,2 km
MC avec prédiction	19,5 km	52,9 km
Filtre de Kalman étendu	18,7 km	40,8 km

29/10/2012 55/59

Conclusions

- Correcteurs d'erreurs basés sur le CRC et les contraintes
- Méthode d'estimation des paramètres exploitant la distance résiduelle du correcteur
- Technique de poursuite de la phase intégrée au correcteur
- Localisation des navires utilisant les paramètres des signaux et un modèle de déplacement


Perspectives

- Optimisation du correcteur
 - Ne considérer que certains bits du CRC
- Estimation des paramètres le long des chemins
 - Estimer l'indice de modulation
- Utiliser la position estimée pour améliorer le correcteur
 - Position estimée utilisée comme une contrainte

Perspectives

Exploiter plusieurs antennes en réception

29/10/2012 58/59

Merci

Raoul.Prevost@tesa.prd.fr