

Estimating Spectral Responses of Spectrometers by solving a Nonlinear Inverse Problem

Jihanne EL HAOUARI, University of Toulouse, TéSA Jean-Yves TOURNERET, University of Toulouse, TéSA Herwig WENDT, University of Toulouse, CNRS Christelle PITTET, CNES Jean-Michel GAUCEL, Thales Alenia Space

May 15th, 2024

1. Introduction

<u>Context</u>

- Climate change challenges
- Need to accurately determine the CO₂ concentrations at the Earth surface
- MicroCarb mission

1. Introduction

<u>Context</u>

- Remote sensing to determine the concentration of CO₂ from the measured spectra
- Calibration process: accurate estimates of the Instrument Spectral Response Functions (ISRFs)

Numerical experim

Conclusion

1. Introduction

Estimation of the ISRFs An ill-posed problem

- For each wavelength λ_ℓ
- 1 observation $x_\ell \in \mathbb{R}^+$
- 1 ISRF $I_{\ell} \in \mathbb{R}^{N+1}$
- 1 nonlinear function f_ℓ
 - $egin{aligned} & x_\ell = f_\ell(< m{s}_{th,\ell}, m{l}_\ell >) \ & (1) \ & m{s}_{th,\ell} \ ext{known} \ & m{l}_\ell \ ext{unknown} \ & f_\ell \ ext{unknown} \end{aligned}$

Numerical experimen

Conclusion

2. ISRF estimation without radiometric errors

Forward model

$$\mathbf{x}_\ell = f_\ell()$$

 f_ℓ - unknown radiometric errors (see later)

 $egin{aligned} & x_\ell \mbox{ measurements} \ & s_{th,\ell} \mbox{ known} \ & l_\ell \mbox{ unknown} \end{aligned}$

lumerical experimen

Conclusion

2. ISRF estimation without radiometric errors

Forward model

$\textit{s}_{\ell} = <\textit{s}_{th,\ell},\textit{l}_{\ell} >$

- s_ℓ measurements $s_{th,\ell}$ known
- I_ℓ unknown

Numerical experime

Conclusion

2. ISRF estimation without radiometric errors

Assumption: ISRFs I_ℓ vary little from ℓ to $\ell+1$

Use of sliding window of L+1 measurements around λ_ℓ

Observation model (matrix form)

 $m{s}_\ell = m{S}_{th,\ell}m{l}_\ell$

Assumptions on ISRFs I_{ℓ} :

Positive valued

Nonlinear inverse problem Numerical experiments

2. ISRF estimation without radiometric errors

Gaussian model [Beirle2017]

$$I_{\ell,\beta_{\mathsf{G}}}(x) = A_{\mathsf{G}} \exp\left(-\frac{(\lambda_{\ell} - x - \mu_{\mathsf{G}})^2}{2\sigma_{\mathsf{G}}^2}\right), \quad x \in \Delta$$
(2)

 Δ wavelength grid, $\beta_{\rm G} = (A_{\rm G}, \mu_{\rm G}, \sigma_{\rm G}^2)^T$ -parameters

Super-Gaussian model [Beirle2017]

$$\mathbf{I}_{\ell,\beta_{\rm SG}}(x) = A_{\rm SG} \exp\left(-\left|\frac{\lambda_{\ell} - x - \mu_{\rm SG}}{w_{\rm SG}}\right|^{k_{\rm SG}}\right), \quad x \in \mathbf{\Delta}$$
(3)

$$eta_{\mathsf{SG}} = (m{A}_{\mathsf{SG}}, \mu_{\mathsf{SG}}, m{w}_{\mathsf{SG}}, m{k}_{\mathsf{SG}})^{\, \prime}$$
 -parameters

Numerical experime

Conclusion

2. ISRF estimation without radiometric errors

Sparse representation of ISRFs

► Dictionary $\Phi \in \mathbb{R}^{(N+1) \times N_D}$ (SVD of representative ISRFs)

$$I_{\ell} \approx I_{\ell}^{K} = \Phi \alpha_{\ell} = \sum_{k=1}^{K} \alpha_{k} \Phi_{\gamma_{k}} \qquad (4)$$
$$s_{\ell} \approx S_{th,\ell} I_{\ell}^{K} = \Psi_{\ell} \alpha_{\ell} \qquad (5)$$

where
$$\Psi_\ell = \pmb{S}_{th,\ell} \Phi_\ell \in \mathbb{R}^{(L+1) imes N_D}$$

Optimization problem

 $\arg\min_{\boldsymbol{\alpha}_{\ell}} L(\boldsymbol{\alpha}_{\ell}, \mu) = \arg\min_{\boldsymbol{\alpha}_{\ell}} ||\boldsymbol{s}_{\ell} - \Psi_{\ell} \boldsymbol{\alpha}_{\ell}||_{2}^{2} + \mu ||\boldsymbol{\alpha}_{\ell}||_{0}$ (6)

Solved using Orthogonal Matching Pursuit (OMP)

Numerical experime

Conclusion

2. ISRF estimation without radiometric errors

Numerical results

Competitive performance of sparse approximation

Numerical experir

Conclusi

3. Nonlinear inverse problem

Forward model

Numerical experim

Conclusion

3. Nonlinear inverse problem

Forward model

$$\begin{aligned} \mathbf{x}_{\ell} &= f_{\ell}(\mathbf{s}_{\ell}) = f_{l}(\mathbf{S}_{th,\ell} \mathbf{I}_{\ell}) \\ &= g_{\ell}(\mathbf{S}_{th,\ell} \mathbf{I}_{\ell}; \mathbf{\theta}_{\ell}) \end{aligned}$$
(7) (8)

 $oldsymbol{ heta}_\ell$ - a parameter vector

<u>Radiometric errors</u> (function f_{ℓ})

- \blacktriangleright 1 function per pixel ℓ
- Physical phenomena modeled
 - Linear gains
 - Dark current
 - Non-linear gains

Numerical experir

Conclusion

3. Nonlinear inverse problem

Problem in presence of radiometric errors

- 1. $f_\ell = g_\ell(\cdot; oldsymbol{ heta}_\ell)$ only depends on the pixel ℓ , not on the spectrum
- 2. $g_{\ell}(\cdot; \theta_{\ell})$ is differentiable
- 3. Use of Q theoretical spectra
- 4. $\pmb{x}_\ell^{(q)} \in \mathbb{R}^{L+1}$, q=1,...,Q

 $\mathsf{Find}\;(\hat{\theta}_\ell,\hat{\textbf{\textit{I}}}_\ell) = \arg\min_{\theta_\ell,\textbf{\textit{I}}_\ell}||\textbf{\textit{x}}_\ell - g_\ell(\textbf{\textit{S}}_{th,\ell}\textbf{\textit{I}}_\ell;\theta_\ell)||_2^2$

 $m{S}_{th,\ell}$ known $m{x}_\ell$ - measurements

Numerical experiments

Conclusion

3. Nonlinear inverse problem

Optimization problem

$$(\hat{\boldsymbol{l}}_{\ell}, \hat{\boldsymbol{\theta}}_{\ell}) = \arg\min_{(\boldsymbol{l}_{\ell}, \boldsymbol{\theta}_{\ell})} \sum_{q=1}^{Q} ||\boldsymbol{x}_{\ell}^{(q)} - g_{\ell}(\boldsymbol{S}_{th,\ell}\boldsymbol{l}_{\ell}; \boldsymbol{\theta}_{\ell})||^2 \qquad (9)$$

Use of sparse representation to model I_ℓ

Numerical experir

Conclusior

3. Nonlinear inverse problem

Notations for the Q theoretical spectra

▶
$$\mathbf{x}_{\ell} = [\mathbf{x}_{\ell}^{(1)}, ..., \mathbf{x}_{\ell}^{(Q)}] \in \mathbb{R}^{Q(L+1)}$$

•
$$s_{\ell} = [s_{\ell}^{(1)}, ..., s_{\ell}^{(Q)}] \in \mathbb{R}^{Q(L+1)}$$

$$\blacktriangleright \ \Psi_{\ell} = [\Psi_{\ell}^{(1)}, ..., \Psi_{\ell}^{(Q)}] \in \mathbb{R}^{Q(L+1) \times (N_{\mathrm{D}}+1)}$$

Numerical experim

Conclusion

3. Nonlinear inverse problem

Iterative estimation method

- Initial ISRF estimation
 - $g_{\ell} = \text{identity}$
 - $\hat{s}_{\ell} = \Psi_{\ell} \hat{\alpha}_{\ell}$ (OMP)
- Step 1: Estimation of radiometric errors
 - $\bullet \ \hat{\theta}_{\ell} = \arg\min_{\theta_{\ell}} ||x_{\ell} g_{\ell}(\Psi_{\ell} \hat{\alpha}_{\ell}; \theta_{\ell})||_{2}^{2}$
- Step 2: Correction of radiometric errors
 - $\hat{\boldsymbol{s}}_{\ell} = \arg\min_{\boldsymbol{s}_{\ell}} ||\boldsymbol{x}_{\ell} \boldsymbol{g}_{\ell}(\boldsymbol{s}_{\ell}; \hat{\boldsymbol{\theta}}_{\ell})||_{2}^{2}$

Step 3: Re-estimation of â_ℓ from corrected measurements
 ŝ_ℓ = Ψ_ℓâ_ℓ (OMP)

Numerical exper

Conclusic

3. Nonlinear inverse problem

Simplification for separable nonlinearity

General forward model

$$\boldsymbol{x}_{\ell} = g_{\ell}(\boldsymbol{S}_{th,\ell} \boldsymbol{I}_{\ell}; \boldsymbol{\theta}_{\ell})$$
(10)

Separable model for g_ℓ

$$g_{\ell}(z,\boldsymbol{\theta}) = \sum_{p=0}^{P} g_{\ell}^{(p)}(z) \ \theta_{\ell}(p) \tag{11}$$

Application to forward model

$$\boldsymbol{x}_{\ell} = \sum_{p=0}^{P} g_{\ell}^{(p)}(\boldsymbol{S}_{th,\ell} \boldsymbol{I}_{\ell}) \ \theta_{\ell}(p)$$
(12)

Numerical exper

Conclusion

3. Nonlinear inverse problem

Example: polynomial model

$$g_{\ell}^{(p)}(z) = z^{p}, \quad p = 0, ..., P$$
 (13)

Application to forward model

$$\mathbf{x}_{\ell} = \sum_{p=0}^{P} (\mathbf{S}_{th,\ell} \mathbf{I}_{\ell})^{p} \ \theta_{\ell}(p)$$
(14)

Iterative estimation method

Step 1: Radiometric errors - polynomial coefficients

 θ_ℓ = arg min_{θℓ} ||x_ℓ − Σ^P_{p=0}(S_{th,ℓ}I_ℓ)^p θ_ℓ(p)||²₂

Step 2: Correction - zeroes of polynomials

 *ŝ*_ℓ = arg min_{sℓ} ||*x*_ℓ − ∑^P_{ρ=0} *s*^P_ℓ θ_ℓ(p)||²₂

Numerical experiments

Conclusion

4. Numerical experiments

Data description

Simulated data for MicroCarb mission

Theoretical spectra obtained with 4A/OP radiative transfer software

 Radiometric errors modeled as polynomials of degree 3

Numerical experiments

Conclusion

4. Numerical experiments

Estimation performance vs polynomial orders ($P \in 1, 2, 3, 4$)

Numerical experiments

Conclusion

4. Numerical experiments

Nonlinear case versus linear case

Numerical experiments

Conclusion

4. Numerical experiments

Nonlinear case versus linear case

similar performance for $K \in \{1, ..., 7\}$

Introduction	ISRF	estimation	without	radiometric	error
000	0000	00			

Numerical ex

Conclusion

Conclusion

- ISRF estimation using a sparse representation
- Joint estimation of measurement nonlinearities and the ISRF using an iterative algorithm
- Competitive performance

Prospects

- Analyses of other degradations (spectral shifts, stray light...)
- Potential interest of machine learning methods (neural networks) to learn the nonlinearities from data