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Imaging and sensing technologies are 
increasingly sophisticated with 
unprecedented levels of sensitivity and 
resolution achievable and at the same 
time sensors are reaching saturation 
levels



Single Photon Avalanche Diodes

• Single-Photon Avalanche Diode (SPAD) defines a class of photodetectors 
able to detect low intensity signals (down to the single photon) and to signal 
the time of the photon arrival with high temporal resolution (few tens of 
picoseconds).

• Latest Sony Chip available March 2022 IMX459 approximately 600 x 200 
pixels (pixel size approx. 10𝜇𝑚) for around 120 Euros

• This enables high-precision distance measuring at 15-centimeter range 
resolutions up to a distance of around 300 meters
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Applications

• Defence

• Oil & gas, underwater imaging

• Environmental sciences

• Biomedical Imaging

Long-range target identification

Pipeline inspection

Forest canopy monitoring
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Speckle Imaging in Disordered Media



Bayesian methods 

• Uncertainty management
– Noisy/incomplete measurements

– Prior information

– Quality of output

• Algorithms
– MAP/penalized MLE

– Simulation/MCMC

– Approximate methods
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Bayesian modeling 

• Observations 𝒚 related to unknown parameters of interest 𝒙
via stochastic process 𝒇(𝒚|𝒙)

• Exact model

𝑓 𝒙 𝒚, 𝜽 =
𝑓 𝒚 𝒙 𝑓 𝒙 𝜽

𝑓(𝒚|𝜽)

• Approximating distribution

𝑓 𝒙 𝒚, 𝜽 ≈ 𝑞(𝒙)

– Proximal MCMC: Moreau envelope

– VB/EP: Divergence-based
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Generative models

𝒚 = 𝑔 𝑨𝒙 + 𝒏

• Impact on uncertainty

– Linear/nonlinear forward model

– Non-Gaussian/i.i.d. noise

– Outliers
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Single-photon Lidar
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Color & 3D imaging 
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Lidar System 
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Observation model

• 𝑦𝑛,𝑡: photon count in tth bin and 𝑛th pixel

• 𝑔0 ⋅ : instrumental response

• 𝑇 : Histogram length

• 𝑏𝑛: background level

• 𝑟𝑛: target reflectivity

• 𝑡𝑛: Time-of-flight (ToF)

𝑦𝑛,𝑡 ∼ 𝒫𝑜𝑖𝑠𝑠𝑜𝑛 𝑟𝑛𝑔0 𝑡 − 𝑡𝑛 + 𝑏𝑛 , 𝑡 ∈ 1, … , 𝑇 , 𝑛 ∈ {1, … , 𝑁}
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Detection Challenges 
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1. Few detected photons

3.  No target

2. High background

4. Multiple peaks



Reconstruction using MCMC
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• Long range reconstruction (1.8 km)

• 123x96 pixels, 800 temporal bins 

• Approx. 900 photons per pixel

• Signal-to-background-ratio: 1.64

Beam direction



Reconstruction using MCMC
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Intensity Peak width

Execution time on a standard workstation: 195 s  

J. Tachella et al., "Bayesian 3D reconstruction of complex scenes from single-photon Lidar data", SIAM J. Imaging Sci., 2019.

J. Tachella et al., "3D reconstruction using single-photon Lidar data exploiting the widths of the returns", ICASSP, 2019.



Towards real-time analysis

• Complex and difficult inference problems

• Data volume/array size

• Acquisition frame rate

• Optimization ⇏ fast(er)

– Dimensionality of the data/unknowns 

– Convergence speed

• Need to rethink the inference process
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Towards real-time analysis

• Not just an implementation issue

• Parallel structures

– Statistical models (single-photon)

– Scalable denoisers

• Tools

– Plug-and-play approaches

– Point cloud denoiser (computer graphics)
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Towards real-time analysis
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201 s 1 ms 201 s 13 msExecution time:



Algorithm design

𝑓 𝒙 𝒚 ∝ 𝑓 𝒚 𝒙 𝑓(𝒙)

• MAP estimation

min
𝒙

ℎ𝒚 𝒙 + ℎ0(𝒙)

• ℎ𝑦 𝒙 = −log(𝑓 𝒚 𝒙 )

• ℎ0 𝒙 = − log 𝑓(𝒙)

• Both can be challenging (e.g., non smooth, multimodal)
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Algorithm design
min
𝒙

ℎ𝒚 𝒙 + ℎ0(𝒙)

• Splitting strategy

min
𝒙,𝒖

ℎ𝒚 𝒙 + ℎ0(𝒖) , 𝑠. 𝑡. 𝒙 = 𝒖

• Break down big problem into smaller, easier problems

• Smaller problems can often be seen as denoising problems

– Dedicated denoisers can be used

• Plug-and-play (PnP) approaches possible 

– No analytical expression for ℎ0(𝒖)

21
J. Tachella et al. “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers”, 

Nature Comms., Nov 2019. 



Algorithm design

min
𝒙,𝒖

ℎ𝒚 𝒙 + ℎ0(𝒖) , 𝑠. 𝑡. 𝒙 = 𝒖

• PnP increasingly used for image restoration

• Here, 𝒙 includes a 3D point cloud

– 2D surfaces within a 3D volume

– Voxel-based methods computationally intensive

• Proposed solution: point cloud denoisers from the computer graphics 
community (e.g. APSS)

– More structured prior 

– Scalable 

22G. Guennebaud, & M. Gross, “ Algebraic point set surfaces“, ACM Trans. Graph. 26, 23 (2007).
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J. Tachella et al. “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers”, Nature Comms., Nov 2019. 

• Image-based PnP strategy for the reflectivity and background profiles
• Point cloud-based PnP using off-the-shelf point cloud denoisers (e.g. local sphere fitting)

RT3D algorithm
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Real-time (50 fps) 3D reconstruction from 32 x 32 pixels

Multiple surfaces per pixel

Distance: 300 m 

RT3D algorithm



Algorithm design

min
𝒙,𝒖

ℎ𝒚 𝒙 + ℎ0(𝒖) , 𝑠. 𝑡. 𝒙 = 𝒖

• PnP generally used for better priors/denoising

• Can also be used for the data-fidelity term

– Computational complexity

– Robustness to model mismatch (e.g., outliers)

• How to design ℎ𝒚 𝒙 while keeping a Bayesian interpretation?
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Pseudo Bayesian estimation

• MLE can be obtained by minimizing the KL divergence between 

the empirical data distribution መ𝑓 𝑦 and a parametric distribution 

𝑓𝒙 𝑦

𝐾𝐿 መ𝑓 𝑦 ||𝑓𝒙 𝑦

– Robust estimator can be obtained by changing the divergence

• 𝑓 𝒙 𝒚 can be obtained by solving a penalized KL divergence 

minimization problem 

Q. Legros et al., “Robust depth imaging in adverse scenarios using single-photon Lidar and beta-divergences“, SSPD Conference 2020



Pseudo Bayesian estimation
• By changing the similarity measure we can obtain a pseudo-

likelihood ሚ𝑓 𝒚 𝒙 and a pseudo posterior 
ሚ𝑓 𝒙 𝒚 ∝ ሚ𝑓 𝒚 𝒙 𝑓(𝒙)

• Here we chose

– Simple model which omits background

– 𝛽-divergence which is robust to high background levels

• How to ensure scalability for dynamic scenes?

– Variational inference

27

Q. Legros et al. “Robust 3D reconstruction of dynamic scenes from single-photon lidar using Beta-divergences”, to appear in IEEE Trans. 

Image Processing.



Online 3D reconstruction

• ሚ𝑓 𝒙 𝒚 usually not standard

• Approximation by Gaussian distribution 𝑞(𝒙)

𝑞 𝒙 = argmin
𝑝(𝒙)

𝐾𝐿 ሚ𝑓 𝒙 𝒚 || 𝑝(𝒙)

• Reduces to moment matching

• Assumed density filtering / Expectation-Propagation

• Only means and variances propagated over time
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Expectation-Propagation

𝐼𝑛 𝑒𝑠𝑠𝑒𝑛𝑐𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑏𝑦 𝑎 𝑠𝑖𝑚𝑝𝑙𝑒𝑟 𝑜𝑛𝑒

𝑓 𝒚, 𝒙|𝜽 = 𝑓 𝒚 𝒙 𝑓 𝒙 𝜽
𝑞 𝒙 ∝ 𝑞1 𝒙 𝑞0 𝒙 : user-defined

• Based on the reverse KL-divergence

min
𝑍, 𝑞(𝒙)

𝐾𝐿 𝑓(𝒚, 𝒙|𝜽) || 𝑍𝑦,𝜃𝑞(𝒙)

𝑍𝒚,𝜽 ≈ 𝑓(𝒚|𝜽)

EP:  better at preserving the marginals
29



Online 3D reconstruction
• Projection:

𝑞(𝑡−1) 𝒙
𝑡−1 ≈ ሚ𝑓 𝒙𝑡−1 𝒚𝑡−1, … , 𝒚0 usually not standard

• GMM-based prediction: 

𝑓 𝒙𝑡 = ∫ 𝑓 𝒙𝑡 𝒙𝑡−1 𝑞(𝑡−1) 𝒙
𝑡−1 d𝒙𝑡−1

– GMM allowing new surfaces and surfaces leaving the scene 
(birth/death processes)

• Pseudo-posterior inference
ሚ𝑓 𝒙𝑡|𝒚𝑡 , … , 𝒚0 ∝ ሚ𝑓(𝒚𝑡|𝒙𝑡)𝑓 𝒙𝑡

30Y. Altmann et al. “Fast online 3D reconstruction of dynamic scenes from individual single-photon detection events”, IEEE Trans. Image Processing, 2019.



Robust online 3D reconstruction

31

• 3D reconstruction (5000 

fps) from 32x32 pixels

• At most 1 surface per 

pixel

Q. Legros et al. “Robust 3D reconstruction of dynamic scenes from single-photon lidar using Beta-divergences”, IEEE Trans. Image Processing, 

2020.



Robust online 3D reconstruction

Q. Legros et al. “Robust 3D reconstruction of dynamic scenes from single-photon lidar using Beta-divergences”, IEEE Trans. Image Processing, 

2020.



Robust online 3D reconstruction
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Red curve: depth posterior mean 

Blue region: credible interval

Q. Legros et al. “Robust 3D reconstruction of dynamic scenes from single-photon lidar using Beta-divergences”, IEEE Trans. Image Processing, 

2020.



Radionuclide detection

• Radiation portal monitors

– Freight

– Airports

• Challenges

– Background

– Shielding
35

Source: 
https://en.wikipedia.org/wiki/Radiation_Portal_Monitor

Source: www.airport-suppliers.com/supplier/arktis-radiation-
detectors-ltd/



Bayesian model 

𝒚 = 𝑨𝒙 + 𝒏

• 𝒚|𝝀 ~ 𝒫𝑜𝑖𝑠𝑠𝑜𝑛(𝝀), with 𝝀 = 𝑨𝒙
• 𝑨: spectral library of radiation sources 

• 𝒙: Abundance vector

• Challenges

– Multiplicative noise

– Positivity of 𝒙
– Sparsity of 𝒙
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Approximate inference

• Spike and slab prior

– Bernoulli-truncated Gaussian distributions

– Multimodal posterior distribution

• Simulation-based estimation

– Non-standard conditional distributions

• Variational inference using expectation-propagation

37

J. Hernández-Lobato, D. Hernández-Lobato, A. Suárez, “Expectation propagation in linear regression models with spike-and-slab 

priors“. Mach. Learn. 99, 2015.

Y. Altmann et al. “Expectation-propagation for weak radionuclide identification at radiation portal monitors “. Sci Rep 10, 6811, 2020.



Results

38

• 9 mixtures 

• Library of 11 sources

• Comparison with ℓ1-

norm based methods

Abundance RMSEs



Results

39
Approximate marginal probabilities of source presence



Speckle Imaging in Disordered Media



Experimental System 
courtesy of Miles Padget and Peter Mekhail, University of Glasgow



Problem Definition

• Calibration:  record a set of intensity speckle patterns to form a 

sensing matrix A (each row of A is an intensity speckle pattern).

• Imaging: project the same speckle patterns (i.e. the sensing 

matrix A) onto the image of interest x and record the intensity 

measurements y. 

• Use Bayesian inference techniques to recover the image of 

interest from the noisy measurements. 

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



Problem Formulation

• The speckle imaging problem can be formulated as: y = Ax + n 

– y is the measurement vector which represents the total intensity 
of the speckle patterns projected onto the image of interest x

– n is i.i.d. Gaussian noise with known variance σ2

– A is the sensing matrix where each row represents an intensity 
speckle pattern 

• The Inverse imaging problem is then: p(x|y,A) ∝ p(y|x,A) p(x) 

– Likelihood is y| x,A ∼ N(y|Ax,σ2I) 

– Prior (e.g. smoothness, sparsity)



Algorithm Design

• Sampling methods (MCMC)

• MAP Estimation

ෝ𝒙 = 𝑎𝑟𝑔𝑚𝑖𝑛 −log{𝑝(𝒚| 𝒙, 𝑨)} − log{𝑝(𝒙)}

• Approximate Bayesian methods: 

– Variational Bayes (VB)

– Expectation propagation (EP) 



Imaging results with EP



Is our approach Robust in this context?

• What happens when the configuration of the fibre changes? 

• New measurements y will no longer correspond to the pre-

recorded sensing matrix A! 

• What happens if we image with the A computed during 

calibration? 



Imaging results with EP



Our solution is not Robust!
• This implies we need to re-record the sensing matrix A for each 

new configuration of the fibre!!! 

• Solution

– Build an Agnostic imaging system using Autoencoder 
approach

– Leverage a variational autoencoder with Gaussian mixture 
latent space



Autoencoders

• Autoencoders are designed to reproduce their 

input, especially for images.  

– Key point is to reproduce the input from a 

learned encoding.  

https://www.edureka.co/blog/autoencoders-tutorial/



Variational Autoencoder (VAE)

• Key idea:  make both the encoder and the decoder probabilistic.

• The latent variables, z, are drawn from a probability distribution 

depending on the input, x, and the reconstruction is chosen 

probabilistically from z.  

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



VAE Encoder
• The encoder takes input and returns parameters for a probability 

density (e.g. Gaussian)                : gives the mean and co-variance 
matrix.  

• We can sample from this distribution to get random values of the 
lower-dimensional representation z.

• Implemented via a neural network:  each input x gives a vector mean 
and diagonal covariance matrix that determine the Gaussian density

• Parameters 𝜃 for the NN need to be learned – need to set up a loss 
function.  

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



VAE Decoder

• The decoder takes latent variable z and returns parameters for a 

distribution.                gives the mean and variance for each pixel 

in the output. 

• Reconstruction    is produced by sampling.  

• Implemented via neural network, the NN parameters 𝜙 are 

learned.  

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



Gaussian Mixture Variational Auto Encoder 

(GMVAE)
c∼p(c), z∼p(z|c), x∼p(x|z)

Where c follows a categorical distribution with k classes. p(z| c) is a Gaussian 
conditioned on c, and marginally p(z) follows a Gaussian mixture distribution with k 
classes. 

Loss = reconstruction error+KL(q(z|y, c)||p(z|c))+KL(q(c|y)||p(c)) 



Experiment
• 24000 images of size 64x64 pixels from 8 classes of the fashion-MNIST 

dataset (3000 images per class). 

• Record 4096 measurements for each image for 6 different displacements of 
a MMF (the displacements are 50, 60, 70, 80, 90 and 100 degrees). The 
measurements are reshaped to size 64x64. 

• Training dataset is of size 144000x64x64. 

• Test on measurements corresponding to a new displacement (75 degrees). 

• Testing dataset is of size 10000x64x64; measurements corresponding to 
1000 test image for 10 classes of the fashion-MNIST dataset (8 trained-on 
classes and 2 new classes). 



Results
2D projections of training data - PCA (left) and t-SNE (right): 



Results
2D projections of latent space of training data - PCA (left) and t-SNE (right): 



Results
Classification accuracy = 85.8%, computational time = 0.1sec for 1000 images 



Results
Reconstruction results for new displacement (75) - test images from trained-on classes 
- first row of each class: ground-truth; second row of each class: estimated 



Results
Reconstruction results for new displacement (75) - test images from trained-on classes 
- first row of each class: ground-truth; second row of each class: estimated 



Reconstruction results for new displacement (75) - test images from trained-on classes 
- first row of each class: ground-truth; second row of each class: estimated 

Results



Observations….
• Low illumination regime

– Large uncertainties 

– Non-Gaussian regime

• Variational methods for faster inference

– Tractable approximations

– PnP for scalability

• Tradeoff accuracy/robustness

– Model mismatch (e.g. shielding, turbulence)

• Guarantees with PnP approaches... 
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Conclusions

To fully exploit technological advances means we need to go beyond the 
traditional decoupled imaging pipeline requiring separate consideration of

• device physics

• signal processing, and 

• end-user application

and rethink imaging as an integrated sensing and inference model

• Some open questions…

– How can we best combine data driven and (physical) model-based 
approaches?

– How to adapt to nonstandard acquisition systems, e.g. event-based 
cameras?

– What can we do with little or no ground truth data?

– What are the limits? 
62
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Contact: S.Mclaughlin@hw.ac.uk,Y.Altmann@hw.ac.uk

Thanks for your attention!


