Random Access Techniques for Satellite Communications

Selma Zamoum, Marie-Laure Boucheret, Jérôme Lacan, Mathieu Gineste, Jean-Baptiste Dupé.

TéSA, INP/ENSEEIHT, ISAE-SUPAERO, Thales Alenia Space, CNES, Toulouse, France

June 05th, 2019

ThalesAlenia

TéSA seminar 05/06/2019

Space

INP

ENSEEIHT 7

Outline

- 1. Introduction and context
- 2. Synchronous Aloha Random Access techniques
- 3. First problem statement
- 4. Proposed solution: Random SPOTiT
- 5. Second problem statement
- 6. Proposed solution: Smart SPOTiT
- 7. Ongoing related work
- 8. Conclusion and future work

Introduction and context

Satellite systems

- Television, telephony, navigation, observation...
- Hard to reach areas, disasters, maritime...

Return link access method

- Random Access for signaling information.
- DAMA for packet transmission.

DAMA can be unsuitable to implement

- Sporadic short packets transmission (heavy signaling).
- Resource limitation and under-utilization for big users communities applications.

Synchronous Aloha Random Access techniques

Characteristics:

- Multiple packet replicas transmission.
- Successive Interference Cancellation at reception.

Synchronous Aloha Random Access techniques

Characteristics:

CRDSA's deadlock and role of MARSALA

A deadlock for CRDSA

Solution: MARSALA

- 1. Localize replicas with correlations.
- 2. Combine replicas of the same packet before decoding.

SIR comparison when packets are equipowered

Before MARSALA:

$$SIR_{BM} = \frac{P_{U_5}}{P_{U_1}} = 1$$

After combination of MARSALA:

$$SIR_{WM} = \frac{4 \times P_{U_5}}{P_{U_1} + P_{U_6}} = 2$$

Random Access Techniques for Satellite Communications

Problematic: complexity related to replicas localization

Number of data correlations for one packet
decoding on the slot of reference
$$N_{\text{MARSALA}}^{\text{Corr}(1),1} = \underbrace{(N_{\text{S}}-1)}_{\text{Global localization}} + \underbrace{\sum_{i=1}^{N_{\text{R}}-2} (N_{\text{R}}-1) \times N_{\text{Coll}}^{\text{Ref}}(1) - i}_{\text{Replicas association}}$$

 N_S : number of slots, N_R : number of replicas, N_{Coll}^{Ref} : number of collided packets on the reference time slot.

Random Access Techniques for Satellite Communications

Problematic: complexity related to replicas localization

Number of data correlations for one packet decoding on the slot of reference

$$N_{\text{MARSALA}}^{\text{Corr}(1),1} = \underbrace{(N_{\text{S}}-1)}_{\text{Global localization}} + \underbrace{\sum_{i=1}^{N_{\text{R}}-2} (N_{\text{R}}-1) \times N_{\text{Coll}}^{\text{Ref}}(1) - i}_{\text{Replicas association}}$$

 N_S : number of slots, N_R : number of replicas, N_{Coll}^{Ref} : number of collided packets on the reference time slot.

System parameters

- QPSK modulation.
- 3GPP turbo coding of rate 1/3.
- Packet payload of 150 symbols.
- Gold code preambles.
- AWGN channel, $E_S/N_0 = 10$ dB.
- Same power for all packets.
- 100 time slots per frame.

8/27

Random SPOTIT: Shared POsition Technique for Interfered random Transmissions:

Goal:

Reduce the localization complexity.

Tracks:

- Design a system that requires less correlations in the localization process.
- Use a two replicas system for complexity matter.

Proposed solution:

- Rely on a shared information concerning packets locations between the receiver and each of the transmitters using a PRNG.
- Use the CRDSA multiple preambles system with good auto and cross correlation properties.
- Complementary to CRDSA.

Random SPOTiT

Transmission

Random SPOTiT: complexity

Number of data correlations for one packet decoding, using a preamble p

$$N_{\text{SPOTiT}}^{\text{Corr}(1),p} = (N_{\text{R}} - 1) \times N_{\text{pot}}^{\text{Ref}}(p)$$

 N_{Call}^{Ref} : Number of potential users using the detected preamble p that can transmit on the reference time slot.

In case of two replicas per packet

$\frac{\text{MARSALA}}{N_{\text{MARSALA2}}^{\text{Corr}(1)} = (N_{\text{S}} - 1)} \qquad \qquad \frac{\text{Random SPOTiT}}{N_{\text{SPOTiT},2}^{\text{Corr}(1),p} = N_{\text{pot}}^{\text{Ref}}(p)}$

Random SPOTiT: Performance

Number of data correlations

Packet Loss Ratio

Equipowered packets of 150 symbols, 100 time slots per frame, 3GPP turbo coding of rate 1/3, QPSK modulation gold code preambles, AWGN channel, $E_S/N_0 = 10$ dB, 2 replicas/packet.

Problematic: loop phenomenon

SIR =
$$\frac{4 \times P}{4xP + P + P}$$

Cas d'equiPuissance

$$SIR = \frac{2}{3}$$

Higher packet error rate with a floor.

Random Access Techniques for Satellite Communications

14/

Smart SPOTiT: Principle

Goal:

 Manage and eliminate data loops between packets with packet simple localization.

Tracks:

- Design a manageable system that can provide a smart distribution with a one time signaling information at the logon phase.
- Use a two replicas per packet system.

Proposed solution:

- Rely on a power of two system and cyclic shifting to define the optimal distribution.
- This will make sure no loops are created and that one of the two replicas has no other collision with a packet having the same preamble.

Smart SPOTiT: parameters

 N_S : number of time slots per frame.

$$N_P = \frac{N_S}{2}$$
 : number of preambles.

 N_R : number of replicas.

$$N_U = \frac{N_S \times (N_S - 1)}{2}$$
 : number of

users.

 $N_L = log_2(N_S)$: number of

distribution levels.

Distribution of time slots positions for each level

$N_S =$	8
$N_P =$	4
$N_R =$	2
$N_L =$	3
$N_U =$	28
P1	

P2

P3

P4

Level 1 Slots set: {0..3..7} Preamble groups: 4 groups of 4 users Group 1 Group 2 Group 3 Group 4 U1 0 4 U₅ 0 5 Ug 06 U13 06 U2 1 5 U₆ 1 6 U10 17 U14 1 7 U₃ 2 6 U7 2 7 U₁₁ 2 4 U₁₅ 24 U4 U₁₂ 3 7 U₈ 3 4 3 5 U₁₆ 35 P₁ P₂ P_3 Level 2 Slots set: {0..1..3} and {4..5..7} Preamble groups: 4 groups of 2 users Group 1 Group 2 Group 4 Group 3 U17 0 2 U₁₉ 0 3 4 6 U21 U22 U₁₈ U₂₀ 1 2 5 7 1 3 P_2 P₄ Pa Level 3 Slots set: {0..1}, {2..3}, {4..5} and {6..7} Preamble groups: 4 groups of 1 users Group 1 Group 2 Group 3 Group 4 U₂₅ 0 1 U₂₆ 2 3 U₂₇ 4 5 U₂₈ P₁ P_2 P_3

Random Access Techniques for Satellite Communications

TéSA seminar 05/06/2019

17/2

Selma Zamoum

Worst case scenario of the frame structure

P1 P2 P3 P4

Worst case scenario for the blue preamble

P1

P2 P3

P4

Worst case scenario for the blue preamble

P1

P2 P3

P4

Smart SPOTiT: Performance

Packet Loss Ratio

Throughput (bits/symbol)

Equipowered packets of 150 symbols, 100 time slots per frame, 3GPP turbo coding of rate 1/3, QPSK modulation gold code preambles, AWGN channel, $E_S/N_0 = 10$ dB, 2 replicas/packet.

Ongoing related work

- Detailed complexity evaluation of Random SPOTiT: Total number of preamble and data correlations per frame, select the least complex scheme.
- Design of a non power of two Smart SPOTIT with non standard parameters: select among the different schemes the simplest one.
- Define an asynchronous extension of Random SPOTIT that goes along with ACRDA.

Conclusion and future work

Conclusion

- Shared knowledge regarding replicas positions + Pseudo orthogonal preambles.
- Reduced complexity related to the number of localization correlations without degrading performance.
- A deterministic approach for random transmissions.
- Loop elimination with a maximum number of users and a simple packet localization.
- Disappearance of the error floor and thus better PLR performance.

Thank you for your attention ©