

Onboard IP router for critical aeronautical communications in a heterogeneous environment

PhD Defense

Alexandre TRAN NGUYEN

Janvier 2021

President: André-Luc BEYLOT

Examiners: Hakima CHAOUCHI Isabelle CHRISTMENT Cong Duc PHAM Nader MBAREK Jury Members

Supervisors : Alain PIROVANO Nicolas LARRIEU Stéphane PELLESCHI Alain BROSSARD

ENAC Outline

- 1 The evolution of aeronautical communications
- 2 Managing Aircraft IP mobility
- 3 Multilink: A method to estimate the link quality
- 4 Conclusion and perspectives

Outline

1 The evolution of aeronautical communications

- From voice to datalink communication
- The aeronautical applications
- Evolution of the communication means
- Towards the ATN/IPS network

2 Managing Aircraft IP mobility

3 Multilink: A method to estimate the link quality

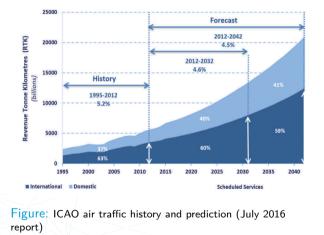
4 Conclusion and perspectives

Outline

1 The evolution of aeronautical communications

From voice to datalink communication

- The aeronautical applications
- Evolution of the communication means
- Towards the ATN/IPS network
- 2 Managing Aircraft IP mobility


3 Multilink: A method to estimate the link quality

4 Conclusion and perspectives

to respond to the air traffic growth

Consequences:

- voice channel congestion
- decrease aircraft separation standard

Solution

 need for new datalink communication systems to improve the safety

Outline

1 The evolution of aeronautical communications

- From voice to datalink communication
- The aeronautical applications
- Evolution of the communication means
- Towards the ATN/IPS network
- 2 Managing Aircraft IP mobility
- 3 Multilink: A method to estimate the link quality
- 4 Conclusion and perspectives

Different types of onboard applications (ICAO annex 10)

Non safety-related applications

- APC (Aircraft Passenger Communications): video, calls , ...
- AAC (Airlines Administrative Communications): crew/passenger information

Safety-related applications

- ATSC (Air Traffic Services Communications): for air traffic control, navigation, weather forecast, aircraft location.
- AOC (Airlines Operational Communications): related to aircraft operability, maintenance, so on.

www.enac

Different types of onboard applications (ICAO annex 10)

Non safety-related applications

- APC (Aircraft Passenger Communications): video, calls , ...
- AAC (Airlines Administrative Communications): crew/passenger information

Safety-related applications

- ATSC (Air Traffic Services Communications): for air traffic control, navigation, weather forecast, aircraft location.
- AOC (Airlines Operational Communications): related to aircraft operability, maintenance, so on.

www.enac.t

Outline

1 The evolution of aeronautical communications

- From voice to datalink communication
- The aeronautical applications
- Evolution of the communication means
- Towards the ATN/IPS network
- 2 Managing Aircraft IP mobility

3 Multilink: A method to estimate the link quality

4 Conclusion and perspectives

ATN²subnetworks

Systems	Capacity	Range/Coverage
VDLm2 ¹	31.5 kbps per	200km
	station	
HFDL	1.8 kbps per	2500 km
	station	
Iridium	2.4 kbps per	global
	aircraft	
Inmarsat H+	100 kbps in	latitude $<$ 80 $^{\circ}$
	total	

Table: Characteristics of the current air-ground datalink subnetworks

	Systems	Capacity	Range/Coverage
	LDACS	2.3 Mbps per	200 km
		station	
Ì	AeroMACS	30 Mbps per	short range
		station	
ĺ	Iridium Next	100 kbps in	global
		total	
ĺ	Inmarsat SBB	432 kbps in total	latitude $<$ 80 $^\circ$

Table: Characteristics of the future air-ground datalink subnetworks in the ATN/IPS

²Aeronautical Telecommunication Network ¹VHF Datalink mode 2

The evolution of aeronautical communications

Outline

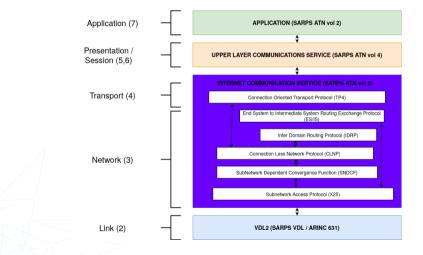
1 The evolution of aeronautical communications

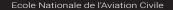
- From voice to datalink communication
- The aeronautical applications
- Evolution of the communication means
- Towards the ATN/IPS network
- 2 Managing Aircraft IP mobility

3 Multilink: A method to estimate the link quality

4 Conclusion and perspectives

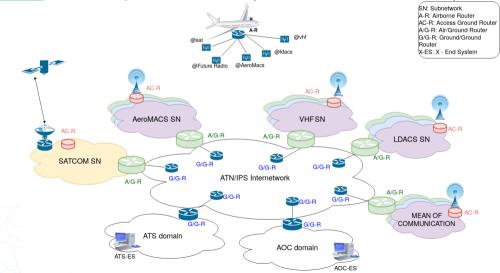
The evolution of aeronautical communications


The French civil Aviation University



www.enac.fr

The ATN/OSI network (from the 2000s)



The ATN/IPS network (from end of the 2020s)

The evolution of aeronautical communications

ÊNAC

Challenges in the new ATN/IPS

Addressing

To assign a unique global **@IPv6** to the aircraft bind to its **@ICAO**.

IP Mobility

To handle seamlessly the aircraft reachability while it is moving between subnetworks.

Multilink

To be able to use the simultaneous air/ground links to improve the QoS.

Security

To provide different layers of security for the end-to-end communication.

The evolution of aeronautical communications

The French civil Aviation University

Challenges in the new ATN/IPS

Addressing

To assign a unique global **@IPv6** to the aircraft bind to its **@ICAO**.

IP Mobility

To handle seamlessly the aircraft reachability while it is moving between subnetworks.

Multilink

To be able to use the simultaneous air/ground links to improve the QoS.

Security

To provide different layers of security for the end-to-end communication.

The evolution of aeronautical communications

The French civil Aviation University

Challenges in the new ATN/IPS

Addressing

To assign a unique global **@IPv6** to the aircraft bind to its **@ICAO**.

IP Mobility

To handle seamlessly the aircraft reachability while it is moving between subnetworks.

Multilink

To be able to use the simultaneous air/ground links to improve the QoS.

Security

To provide different layers of security for the end-to-end communication.

The evolution of aeronautical communications

The French civil Aviation University

Challenges in the new ATN/IPS

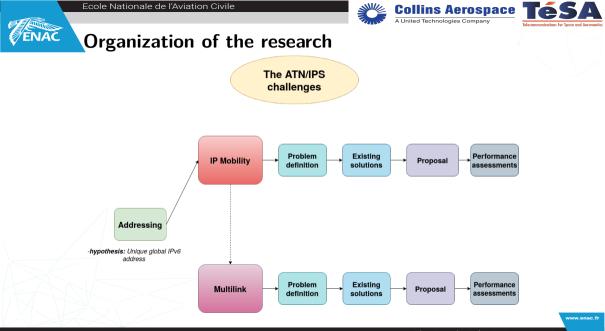
Addressing

To assign a unique global **@IPv6** to the aircraft bind to its **@ICAO**.

IP Mobility

To handle seamlessly the aircraft reachability while it is moving between subnetworks.

Multilink


To be able to use the simultaneous air/ground links to improve the QoS.

Security

To provide different layers of security for the end-to-end communication.

The evolution of aeronautical communications

The French civil Aviation University

14

www.enac.t

Outline

1 The evolution of aeronautical communications

2 Managing Aircraft IP mobility

- Problem definition
- Comparison of different IP mobility solutions
- Description of the P-LISP solution
- Performance assessments
- Conclusions

3 Multilink: A method to estimate the link quality

4 Conclusion and perspectives

1 The evolution of aeronautical communications

2 Managing Aircraft IP mobility

Problem definition

Outline

- Comparison of different IP mobility solutions
- Description of the P-LISP solution
- Performance assessments
- Conclusions

3 Multilink: A method to estimate the link quality

4 Conclusion and perspectives

Managing Aircraft IP mobility

The French civil Aviation University

The ATN/IPS network: a heterogeneous environment

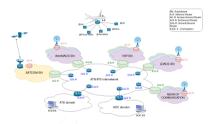


Figure: The ATN/IPS infrastructure

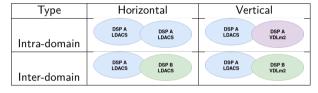


Table: Handover scenarios

Challenge

To handle seamlessly the different handover scenarios by keeping the same aircraft IPv6 address.

^C Outline

1 The evolution of aeronautical communications

2 Managing Aircraft IP mobility

Problem definition

Comparison of different IP mobility solutions

- Description of the P-LISP solution
- Performance assessments
- Conclusions

3 Multilink: A method to estimate the link quality

4 Conclusion and perspectives

Managing Aircraft IP mobility

The French civil Aviation University

Network IP mobility solutions assessment

Protocols	HIP	BGP	MIPv6	PMIPv6	G-LISP ³
Session continuity	\oplus	\oplus	\oplus	\oplus	\oplus
Inter-domain handover	\oplus	\oplus	\oplus	\ominus	\oplus
Intra-domain handover	\ominus	\ominus	\oplus	\oplus	\ominus
Multihoming	\odot	\odot	\oplus	\oplus	\oplus
End-to-end delay	\oplus	\oplus	\oplus	\odot	\oplus
Scalability	\odot	\ominus	\oplus	\oplus	\oplus
Protocol overhead	\oplus	\oplus	\oplus	\oplus	\oplus
Protocol signalling	\odot	\ominus	\oplus	\oplus	\oplus
Routing update	\oplus	\odot	\oplus	\oplus	\odot
Deployment	θ	\oplus	\oplus	\oplus	\oplus

Table: Candidate protocols to fulfill mobility requirements for the ATN/IPS (optimal \bigoplus , acceptable \oplus , average \odot and non compliant \ominus)

³Ground- Locator/Identifier Separation Protocol

Proposed solution for ATN/IPS

Protocols	HIP	BGP	MIPv6	PMIPv6	G-LISP	P-LISP ⁴
Session continuity	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus
Inter-domain handover	\oplus	\oplus	\oplus	θ	\oplus	\oplus
Intra-domain handover	θ	\ominus	\ominus	\oplus	\ominus	\oplus
Multihoming	\odot	\odot	\oplus	\oplus	\oplus	\oplus
End-to-end delay	\oplus	\oplus	\ominus	\odot	\oplus	\oplus
Scalability	\odot	Θ	\oplus	\oplus	\oplus	\oplus
Protocol overhead	\oplus	\oplus	\ominus	\oplus	\oplus	\oplus
Protocol signalling	\odot	\ominus	\oplus	\oplus	\oplus	\oplus
Routing update	\oplus	\odot	\oplus	\oplus	\odot	\oplus
Deployment	θ	\oplus	\oplus	\oplus	\oplus	\oplus

Table: Candidate protocols to fulfill mobility requirements for the ATN/IPS (optimal \bigoplus , acceptable \oplus , average \odot and non compliant \ominus)

⁴Proxy-LISP

1 The evolution of aeronautical communication

2 Managing Aircraft IP mobility

Problem definition

Outline

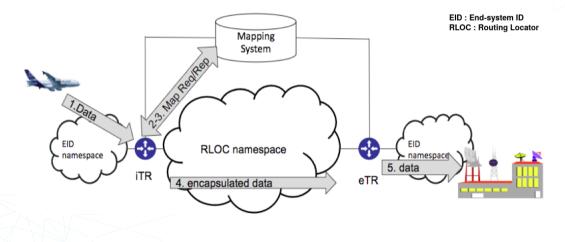
Comparison of different IP mobility solutions

Description of the P-LISP solution

- Performance assessments
- Conclusions

3 Multilink: A method to estimate the link quality

4 Conclusion and perspectives

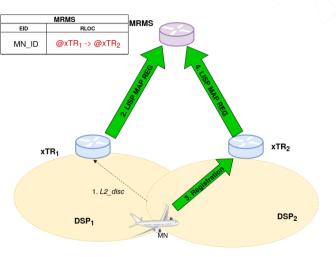

Managing Aircraft IP mobility

The French civil Aviation University

P-LISP Packet Routing

www.enac.fr

ENAC

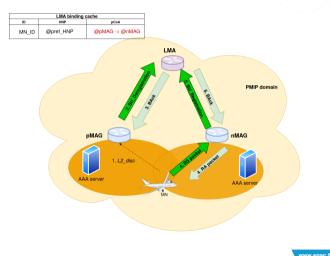


www.enac.f

P-LISP inter-domain handover management

Network entities

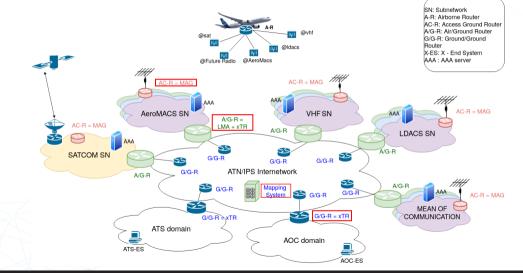
- Mapping system (MRMS server): to maintain the mapping between the MN's RLOC and the MN's EID.
 Publish/subscribe mechanism added for EID-to-RLOC update announcement.
- Tunnel Router (xTR): to inform the MRMS of the MN location and to forward packets from/to the MN by UDP encapsulation.



P-LISP intra-domain handover management

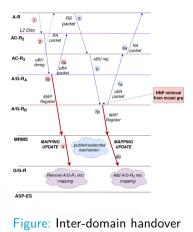
Network entities

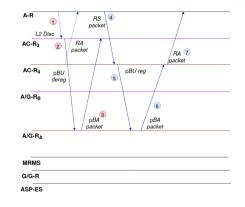
- **Local Mobility Anchor** (LMA):
 - forwards packets outside the domain and to the MN's attached MAG.
 - attributes a HNP (Home Network Prefix) to the aircraft and share this information via multicast group.
- Mobile Access Gateways (MAGs): interconnect the MN to the subnetwork and manage the MN's signalling.



www.enac.fr

Deployment of the solution for the ATN/IPS




Managing Aircraft IP mobility

ÊNAC

Handover sequence diagrams for P-LISP

Figure: Intra-domain handover

www.enac.fr

ENAC

1 The evolution of aeronautical communication

2 Managing Aircraft IP mobility

Problem definition

Outline

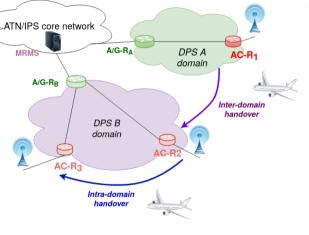
- Comparison of different IP mobility solutions
- Description of the P-LISP solution
- Performance assessments
- Conclusions

3 Multilink: A method to estimate the link quality

4 Conclusion and perspectives

A United Technologies Company

www.enac.fr


Handover scenarios

Simulation parameters

- Aircraft at speed 250 m/s
- 2 service providers
- overlapping area: 50km
- inter+intra-domain handover
- simulation time : 20min

MIPv6/PMIPv6 comparison

- end-to-end delay
- handover delay

Development of the framework in OMNeT++

Protocol Development

- ATS traffic model from NASA study. ⁵
- G-LISP for IPv6 based on ANSA framework
- PUSH mechanism for MRMS
- PMIPv6 based on xMIPv6 of the INET framework
- multicast group for HNP
- Layer 2 handover management
- simulation of VdIm2-link delay

Application	ATS Traffic
Layer	
Transport	UDP
Layer	
Network	IPv6 /
layer	P-LISP /
	PMIPv6
Link layer	CSMA / L2
	handover
	manager
Physical	Ideal Radio
Layer	

⁵Ribeiro and al. "A framework for dimensionning vdl-2 air-ground network"

www.enac.f

End-to-end delay

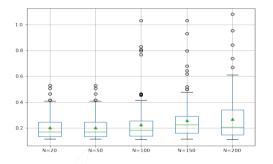


Figure: E2E delay (s) wrt cell load for P-LISP

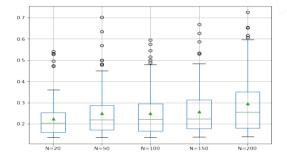
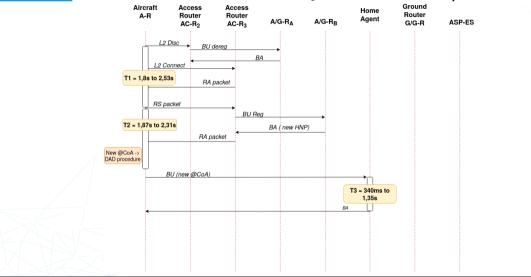


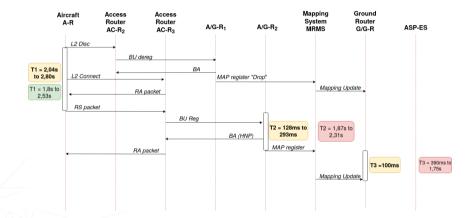
Figure: E2E delay (s) wrt cell load for MIP/PMIP

Results


Packets are forwarded via an optimal route instead of the MIP/PMIP solution.

www.enac.fr

Inter-domain handover delay for the MIPv6/PMIPv6



Managing Aircraft IP mobility

Inter-domain handover delay for the P-LISP

NAC

Comparison with standard requirements

End-to-end delay

Delay respected in best case scenarios (aircraft and CN in same continent)

Service	Delay (in s)	Msg exchanged	e2e delay P-LISP (in s)	e2e delay MIP/ PMIPv6 (in s)
ACL	3.0	4	0.78	0.86
COTRAC	5.0	7	1.37	1.51
FLTPLAN	30	18	3.51	8.87

Table: End-to-end delay comparison with the service requirements

Handover delay

- P-LISP reduces by twice the handover delay (from 6.2s to 3.15s)
- For almost all types of applications, the delay is respected even after a handover. (COTRAC: 1.37s + 3.15s = 4.52s)

w enac fi

Comparison with standard requirements

End-to-end delay

Delay respected in best case scenarios (aircraft and CN in same continent)

	Delay (in s)	Msg exchanged	e2e delay P-LISP (in s)	e2e delay MIP/ PMIPv6 (in s)
ACL		4		
COTRAC		7	1.37	1.51
FLTPLAN		18	3.51	8.87

Table: End-to-end delay comparison with the service requirements

Handover delay

- P-LISP reduces by twice the **handover delay** (from 6.2s to 3.15s)
- For almost all types of applications, the delay is respected even after a handover. (COTRAC: 1.37s + 3.15s = 4.52s)

w.enac.fi 33

Outline

1 The evolution of aeronautical communications

2 Managing Aircraft IP mobility

- Problem definition
- Comparison of different IP mobility solutions
- Description of the P-LISP solution
- Performance assessments
- Conclusions

3 Multilink: A method to estimate the link quality

4 Conclusion and perspectives

Managing Aircraft IP mobility

www.enac.f

www.enac

Conclusions

Development of an IP mobility solution for ATN/IPS

- P-LISP based on the G-LISP enhanced with the PMIPv6 and routing update mechanism.
- **2** No major flaws:
 - adequate for both intra and inter-domain handovers.
 - signalling is minimum over the radio links.
 - no need for additional protocols onboard.
- **3** Development of a simulation model under OMNeT++.
- 4 Performs better than a MIPv6/PMIPv6 approach.

www.enac.t

1 The evolution of aeronautical communications

- 2 Managing Aircraft IP mobility
- 3 Multilink: A method to estimate the link quality
 - Problem definition

Outline

- Link quality information: how to gather ?
- Proposal: Active link probing
- Statistical tools for link quality estimation
- Performance assessments
- Conclusions

1 The evolution of aeronautical communications

2 Managing Aircraft IP mobility

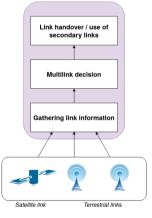
3 Multilink: A method to estimate the link quality

Problem definition

Outline

- Link quality information: how to gather ?
- Proposal: Active link probing
- Statistical tools for link quality estimation
- Performance assessments
- Conclusions

4 Conclusion and perspectives



Multilink properties

- Why multilink is necessary ?
 - To offload the traffic when congestion occurs (use of secondary links).
 - To avoid the delay introduced by the link establishment when a vertical handover occurs.
 - To better manage the overall network resource.

Multilink (ML) algorithm

- **Step 1**: Retrieves link information for the decision algorithm
- **Step 2**: Decision algorithm (fuzzy logic, MADM, Game theory, ...)
- Step 3: Handover/Offload execution (mobility protocols)

1 The evolution of aeronautical communications

2 Managing Aircraft IP mobility

3 Multilink: A method to estimate the link quality

Problem definition

Outline

Link quality information: how to gather ?

- Proposal: Active link probing
- Statistical tools for link quality estimation
- Performance assessments
- Conclusions

4 Conclusion and perspectives

Gathering link quality information

In the literature

- the 802.21 Media Independent Handover (MIH)
- the Access Network Discovery and Selection Function (ANDSF)

Link information available in aeronautical networks

- VDLm2: SQP parameter (signal quality)
- others (HF, Satcom): Link status (ON/OFF)

Requirements for the ATN/IPS

- Dynamic link selection taking into account the quality of the subnetwork access.
- Compatible with all the existing and the future subnetwork accesses.
- With a low cost implementation onboard.

www.enac.t 40

1 The evolution of aeronautical communications

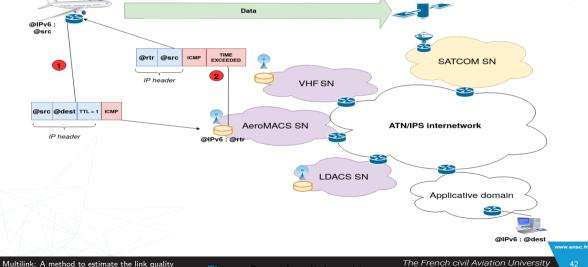
2 Managing Aircraft IP mobility


3 Multilink: A method to estimate the link quality

Problem definition

Outline

- Link quality information: how to gather ?
- Proposal: Active link probing
- Statistical tools for link quality estimation
- Performance assessments
- Conclusions


4 Conclusion and perspectives

Retrieve the state of the radio link via the RTT

1 The evolution of aeronautical communications

2 Managing Aircraft IP mobility

3 Multilink: A method to estimate the link quality

Problem definition

Outline

- Link quality information: how to gather ?
- Proposal: Active link probing
- Statistical tools for link quality estimation
- Performance assessments
- Conclusions

4 Conclusion and perspectives

w ense f

3 methods to determine the link quality

Goal: predict link quality in terms of the used capacity (GOOD-MEDIUM-BAD) **Input** : past values of the RTTs

Hidden Markov Model (HMM)

- learning parameters: matrix A and B, initial probability
- learning method: forward algorithm

Threshold based algorithm

- 2 features: a current value and a historical value of the RTTs
- learning parameters : feature(min,max) through link technology knowledge

Long Short Term Memory Neural Network(LSTM)

- learning method: supervised learning
- architecture: a single layer for 1 step prediction, and a 2-layer for multiple step prediction

1 The evolution of aeronautical communications

2 Managing Aircraft IP mobility

3 Multilink: A method to estimate the link quality

Problem definition

Outline

- Link quality information: how to gather ?
- Proposal: Active link probing
- Statistical tools for link quality estimation
- Performance assessments
- Conclusions

www.ense

Based on air traffic replays

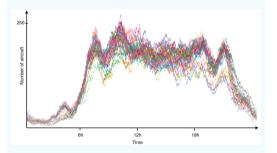


Figure: Air traffic in february 2020 over the Maastricht region

Link quality assessment

- Cell's used capacity is directly linked to the number of aircraft
- daily scenario
- SAPIENT framework: collaboration with University of Pisa
- Link technology assessment: LDACS and VDLm2
- Supervised training: label data from link access technology

Probe inter-arrival time dimensioning

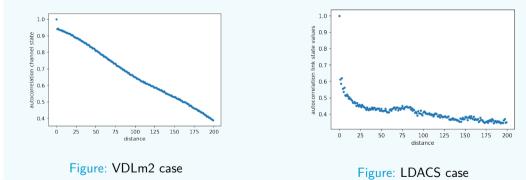
				-
Traffic	Packet per sec	packet	throughput	% of
type		size	(B/s)	bandwidth
		(B)		at PIAC
ATS	0.008	44	0.35	0.3
AOC	0.004	286	1.14	1
Burst	0.24	286	68.64	62
Ping	0.05	64	3.2	3

Table: LDACS scenario

Traffic	Packet per sec	packet	throughput	% of
type		size	(B/s)	bandwidth
		(B)		at PIAC
ATS	0.008	44	0.35	2
AOC	0.004	286	1.14	7.2
Burst	0.04	286	11.44	72.6
Ping	0.017	64	1.08	6.8

Table: VDLm2 scenario

www.enac.fr 47


Δ

The HMM method: results

Link state autocorrelation

Not able to predict the quality of the link in both scenarios.

Multilink: A method to estimate the link quality

www.enac.f 48

www.enac.f

Threshold algorithm: VDLm2 result

Classification over 3 link states (GOOD - MEDIUM - BAD)

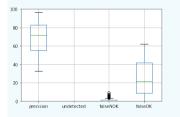


Figure: Average RTT vs RTT

Figure: Exponential Weighted average($\alpha = 0.1$) vs RTT

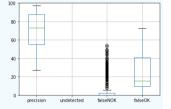


Figure: Rolling standard deviation vs RTT

The Rolling Standard deviation gets the best overall results.

Comparison with the LSTM model

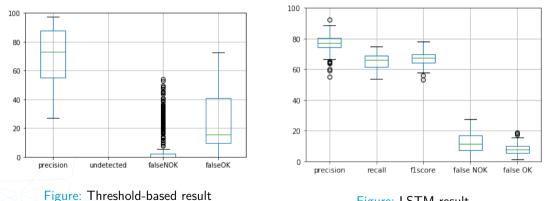
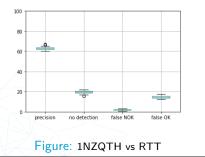


Figure: LSTM result

www.enac.fr 50



Threshold algorithm: LDACS results

1NZQTH: metric based on the history of RTT

$$\sigma(RTT) = \begin{cases} \frac{RTT(ms) - 180}{60} & \text{if } RTT(ms) > 180\\ 0 & \text{else.} \end{cases}$$

• 1NZQTH : first quantile of $\sigma(RTT)_i$ with a non zero value.

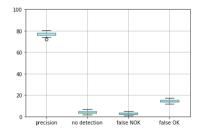


Figure: 1NZQTH vs average RTT

Multilink: A method to estimate the link quality

(1)

www.enac.fr

www.enac.f

Comparison with the LSTM model

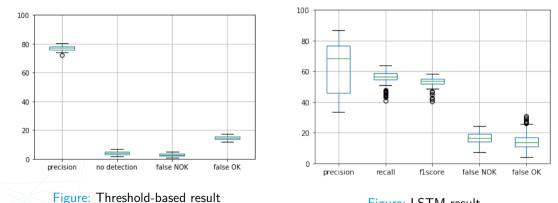
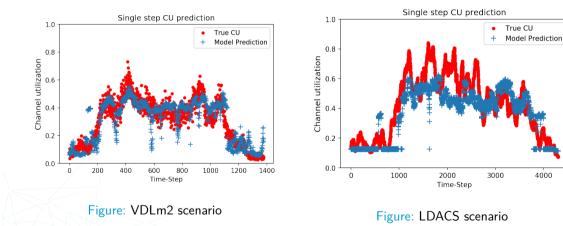
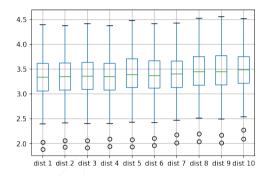



Figure: LSTM result

LSTM for trend prediction

www.enac.fr


4000

Multilink: A method to estimate the link quality

ENAC

LSTM for multi-step prediction results

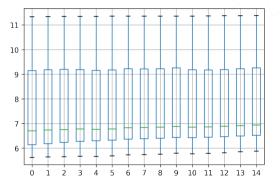


Figure: Euclidian distance wrt step prediction (VDLm2 scenario)

Figure: Euclidian distance wrt step prediction (LDACS scenario)

Performances are stable regarding the step prediction. A small degradation for the LDACS scenario.

Multilink: A method to estimate the link quality

www.enac.t

1 The evolution of aeronautical communications

2 Managing Aircraft IP mobility

3 Multilink: A method to estimate the link quality

Problem definition

Outline

- Link quality information: how to gather ?
- Proposal: Active link probing
- Statistical tools for link quality estimation
- Performance assessments
- Conclusions

4 Conclusion and perspectives

www.enac

Enable the aircraft to assess the quality of secondary links

- With an active link probing method (ICMP packets).
- Three methods for link quality prediction:
 - **1** HMM: not suited due to the high data correlation.
 - 2 Threshold-based: good single prediction except for BAD link quality.
 - **3** LSTM: single prediction not so good but is able to predict the trend and over future states.
- Recommendation for the ATN/IPS: method 2 onboard the aircraft for its accuracy and low cost implementation.

1 The evolution of aeronautical communications

- 2 Managing Aircraft IP mobility
- 3 Multilink: A method to estimate the link quality
- 4 Conclusion and perspectives

www.enac.fr

ENAC Summary

Aircraft IP mobility

- P-LISP solution: global solution for managing aircraft IP mobility with no major flaws.
- Implementation of mobility protocols in OMNeT++ dedicated framework.
- Better performances than the standard MIPv6/PMIPv6 for handover and end-to-end delay.

www.enac.fr

ENAC Summary

Aircraft IP mobility

- P-LISP solution: global solution for managing aircraft IP mobility with no major flaws.
- Implementation of mobility protocols in OMNeT++ dedicated framework.
- Better performances than the standard MIPv6/PMIPv6 for handover and end-to-end delay.

Aircraft multilink properties

- Propose a way to provide link quality information to the onboard router, independent from the subnetworks access.
- Assess three statistical methods to predict the link quality.
- Implement our solution in a dedicated framework.
- Obtain interesting results that can be used for a multilink decision algorithm.

www.enac.t

Around aircraft IP mobility

- Virtual interface needed for the vertical inter-domain handover.
- To port the solution to the SAPIENT framework.
- To define other scenarios for the performance assessments.

Around aircraft IP mobility

- Virtual interface needed for the vertical inter-domain handover.
- To port the solution to the SAPIENT framework.
- To define other scenarios for the performance assessments.

Around the multilink opportunities

- To extend our dataset with others air traffic data.
- A ground centralized approach to collect and share link information.
- Multilink decision algorithm with our link quality information.
- HMM of higher order for link prediction.

www.enac.t

International conferences

- A. Tran, A. Pirovano, N. Larrieu, A. Brossard and S. Pelleschi, "IP Mobility in Aeronautical Communications", Nets4 13th International Workshop on Communication Technologies for Vehicles Nets4Aircraft and UAV session ser. Communication Technologies for Vehicles – 13th International Workshop Nets4CarsINets4Trains/Nets4Aircraft 2018
- A. Tran, A. Pirovano and N. Larrieu, "Managing aircraft mobility in a context of the ATN/IPS network," 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, CA, USA, 2019

Journal paper

• **A. Tran**, A. Pirovano and N. Larrieu, "Air-ground link quality prediction in the ATN/IPS network", (submitted in *Journal of Aerospace Information systems, AIAA*), Jan 2021)

w.enac.fr

ENAC