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a b s t r a c t

For ECG interpretation, the detection and delineation of P and T waves are challenging
tasks. This paper proposes sequential Bayesian methods for simultaneous detection,
threshold-free delineation, and waveform estimation of P and T waves on a beat-to-beat
basis. By contrast to state-of-the-art methods that process multiple-beat signal blocks, the
proposed Bayesian methods account for beat-to-beat waveform variations by sequentially
estimating the waveforms for each beat. Our methods are based on Bayesian signal
models that take into account previous beats as prior information. To estimate the
unknown parameters of these Bayesian models, we first propose a block Gibbs sampler
that exhibits fast convergence in spite of the strong local dependencies in the ECG signal.
Then, in order to take into account all the information contained in the past rather than
considering only one previous beat, a sequential Monte Carlo method is presented, with a
marginalized particle filter that efficiently estimates the unknown parameters of the
dynamic model. Both methods are evaluated on the annotated QT database and observed
to achieve significant improvements in detection rate and delineation accuracy compared
to state-of-the-art methods, thus providing promising approaches for sequential P and T
wave analysis.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The electrocardiogram (ECG) represents the electrical
activity of the heart, which corresponds to repetitions of
a cardiac cycle, i.e., a heartbeat. Each beat consists of a QRS
complex surrounded by P and T waves that are associated
with the mechanical phases occurring during a cardiac cycle.
Most of the clinically useful information can be derived from
the wave intervals, amplitudes, and morphology. Therefore,
the development of efficient and robust methods for auto-
matic ECG delineation (determining the locations of the peaks
and boundaries of the individual waves) has become a major
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challenge for the biomedical signal processing community.
Among the ECG waves, the QRS complex is relatively easy to
detect and is thus generally used as a reference within the
cardiac cycle. For P and T wave detection and delineation,
most algorithms perform QRS detection first and then define
temporal search windows before and after the QRS location
points in which they assume the P and T waves are located.
Subsequently, an appropriate strategy is used to enhance the
distinctive features of each wave in order to locate the wave
peaks and boundaries.

In the last two decades, a variety of techniques have
been proposed for automatically detecting and delineating
P and T waves [1–8]. These techniques are based on
adaptive filtering [1], low-pass differentiation [2], wavelet
transform [3,4], action potential models [5], pattern recog-
nition [6], extended Kalman filters [7], or evolutionary
optimization [8]. However, because of the low slope and
amplitude of the P and T waves as well as the presence of
noise, interference, and baseline fluctuation, P and T
wave detection and delineation remain challenging tasks.
Furthermore, in addition to the locations of the wave
peaks and boundaries, the shapes and amplitudes of P
and T waves have also been shown to contain important
information about numerous pathologies [9].

A Bayesian model was recently proposed to simulta-
neously solve the P and T wave delineation and waveform
estimation problems [10,11]. This model was based on
prior distributions for the unknown parameters (wave
locations and amplitudes [10] as well as waveform and
local baseline coefficients [11]). Several Gibbs-type sam-
plers were then proposed to estimate the model para-
meters. However, the Bayesian model of [10,11] relied on
a non-overlapped multiple-beat processing window.
More precisely, the shapes of the P and T waves within a
multiple-beat processing window were assumed to be
equal, whereas their amplitudes and locations were
allowed to vary from one beat to another. Due to the
pseudo-cyclostationary nature of the ECG signal, the P and
T waveforms in a given beat are usually similar but not
exactly equal to those of the adjacent beats. Therefore, the
performance of P and T wave delineation can be expected
to improve if the waveforms are estimated in a beat-to-
beat manner that allows for temporal variations of wave-
form morphology across the beats. A beat-to-beat proces-
sing mode is also advantageous for an on-line operation
with reduced memory requirements and rapid adaptation
to changing signal characteristics.

In this paper, we present and study Bayesian methods
that enable simultaneous P and T wave delineation and
waveform estimation on a beat-to-beat basis. First, a beat-
to-beat Bayesian model is proposed which modifies the
multiple-beat-window-based model studied in [10,11] by
introducing dependencies among waveform coefficients.
Instead of assigning a white Gaussian prior to the temporal
sequence of waveform coefficients, we use a prior “with
memory” that depends on the estimates of the previous
beat. A Gibbs sampler with a block constraint, referred to as
block Gibbs sampler (BGS), is then used for estimating the
parameters of the resulting beat-to-beat model. Simula-
tion results show that the proposed sequential model
and processing improve the convergence behavior of the

samplers proposed in [10,11] as well as the accuracy of
estimating the locations, amplitudes, and shapes of the P
and T waves. The improved convergence behavior can be
explained by a considerable reduction of the parameter
dimension, since only one beat is processed at any time
instant instead of multiple beats.

In the second part of this paper, we present a sequential
Monte Carlo method that takes into account all the
information contained in the past rather than only that
of the previous beat. The principle of this method is to
exploit the sequential nature of the ECG signal by defining
an appropriate dynamic model. This model adapts to the
morphology variations across the ECG beats by using a
random walk model for the waveform coefficients. A
particle filter is then employed to estimate the unknown
parameters of the proposed model. Despite the simplicity
of the particle filter principle, its main drawback is its
computational complexity, especially for a large state dimen-
sion. In practice, if the state dimension is high, many random
samples are necessary to achieve a good accuracy of the
estimates. However, this problem can be alleviated for non-
linear models containing a subset of parameters which are
linear and Gaussian, conditional upon the other parameters. In
this case, using the technique of Rao-Blackwellization [12] or
marginalization [13], the linear/Gaussian parameters can be
optimally estimated through standard linear Gaussian filter-
ing. In our case, the state equations are linear with respect to a
subset of the unknown parameters. Thus, we propose to use a
marginalized particle filter (MPF) that generates particles in
the space of the “nonlinear” parameters and runs one Kalman
filter for each of these particles to estimate the “linear”
parameters. A comparison between the proposed sequential
BGS, the proposed MPF, and state-of-the-art methods shows
that both of the proposed methods provide significant
improvements in terms of estimation performance for the
locations, amplitudes, and shapes of the P and T waves.
Moreover, the MPF method typically exhibits a better perfor-
mance than the BGS method for estimating the shapes of the
P and T waveforms, at the price of a higher computational
complexity.

The paper is organized as follows. Section 2 describes the
proposed beat-to-beat Bayesian model for the non-QRS signal
components and a BGS that generates samples distributed
according to the posterior of this Bayesian model. Section 3
presents a dynamic model based on the proposed beat-to-
beat Bayesian framework and an associated MPF. The detec-
tors and estimators used for P and T wave detection, estima-
tion, and delineation are discussed in Section 4. Section 5
reports the results of numerical simulations performed on the
standard annotated QT database [14]. These results allow the
performance of the two proposed methods to be compared
with that of state-of-the-art algorithms. Finally, Section 6
presents conclusions and suggests future work.

2. Beat-to-beat Bayesian model and block Gibbs sampler

2.1. Signal model for one non-QRS interval

It is common to partition ECGs into QRS complexes and
non-QRS intervals. Non-QRS intervals are located between
the end of a QRS complex and the subsequent QRS onset,
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and they potentially contain P and T waves. In this paper,
we assume that the locations of the non-QRS intervals
have been determined by a preliminary QRS detection step
using, e.g., the Pan–Tompkins algorithm [15], and that
baseline wanderings have been removed by, e.g., the
median filtering technique proposed in [16]. As shown in
Fig. 1, the non-QRS interval J n associated with the nth
beat consists of two complementary subintervals: a T
search interval J T;n, which may contain a T wave, and a
P search interval J P;n, which may contain a P wave. The
temporal lengths of the intervals J n, J T;n, and J P;n will
be denoted by Nn, NT;n, and NP;n, respectively. Note that
NT;nþNP;n ¼Nn. The lengths NT;n and NP;n can be deter-
mined by a cardiologist or simply as fixed percentages of
Nn. In this work, we choose NT;n ¼NP;n ¼Nn=2 for simpli-
city. Our goal is to estimate the locations, amplitudes, and
shapes of the P and T waves within their respective search
intervals J T;n and J P;n. Note that only the locations of the
wave peaks are constrained to lie within their respective
search intervals.

2.1.1. Convolution model
The baseline-free signal in the non-QRS interval J n can be

approximated by two pulses representing the P and T waves
(see Fig. 1). Similar to the blind deconvolution problem
in [17,18], the T wave is modeled by the convolution of
an unknown binary “indicator sequence” bT;n ¼ ðbT;n;1…
bT;n;NT;n ÞT indicating the wave locations (bT;n;k ¼ 1 if there is
a wave at the kth possible location, bT;n;k ¼ 0 otherwise) with
an unknown T waveform hT;n ¼ ðhT;n;� L… hT;n;LÞT . Analogous
definitions for the P wave yield bP;n ¼ ðbP;n;1… bP;n;NP;n ÞT and
hP;n ¼ ðhP;n;�L⋯ hP;n;LÞT . Here, the waveform length 2Lþ1 is
chosen as a fixed percentage of Nn that is large enough to
accommodate the actual supports of the P and T waves.
Within each indicator vector bT;n and bP;n, at most one entry is
nonzero because at most one wave may occur in any given
search interval. According to this model, the nth non-QRS
signal component can be expressed as follows:

xn;k ¼ ∑
NT;n

j ¼ 1
hT;n;k� jbT;n;jþ ∑

Nn

j ¼ NT;n þ1
hP;n;k� jbP;n;j�NT;n

þen;k ð1Þ

with kAJ n ¼ f1;…;Nng: Here, en;k denotes white Gaussian
noise with unknown variance s2e;n. Furthermore, we have set
hT;n;k ¼ hP;n;k ¼ 0 for k=2f�L;…; Lg.

2.1.2. Waveform expansion
Following [19,20], we represent the P and T waveforms

by a basis expansion using discrete-time versions of
Hermite functions. Thus, the waveform vectors can be
written as

hT;n ¼HαT;n; hP;n ¼HαP;n ð2Þ

where H is a ð2Lþ1Þ � G matrix whose columns are the
first G Hermite functions (with Gr2Lþ1), suitably
sampled and truncated to length 2Lþ1, and αT;n and αP;n

are unknown coefficient vectors of length G. By using
these expansions, the number of unknown parameters can
be significantly reduced (from 2Lþ1 to G for each wave-
form). More specifically, the ECG signals involved in our
study were sampled with a sampling frequency of 250 Hz.
Considering a heart rate of around 60 beats per minute,
that makes on average 250 samples for each beat. We used
20 Hermite coefficients for each P and T wave plus two
wave location parameters and one noise variation para-
meter. Thus, the ratio between the number of parameters
to be estimated and the available data (used for the
estimation) is approximately 0.2. Note that the amplitudes
of the P and T waves are absorbed into the coefficient
vectors αT;n and αP;n. This is a difference from the model in
[10,11], where the amplitudes were defined for each beat
individually whereas the P and T waveforms were fixed for
multiple beats.

2.1.3. Vector formulation
Using (2), we obtain the following vector representa-

tion of the non-QRS signal in (1):

xn ¼ BT;nHαT;nþBP;nHαP;nþen ð3Þ

where xn ¼ ðxn;1…xn;Nn ÞT , BT;n is the Nn � ð2Lþ1Þ Toeplitz
matrix with first row ðbT;n;Lþ1… bT;n;1 0… 0Þ and first col-
umn ðbT;n;Lþ1… bT;n;NT;n 0… 0ÞT , BP;n is the Nn � ð2Lþ1Þ
Toeplitz matrix with last row ð0… 0 bP;n;NP;n… bP;n;NP;n �LÞ
and last column ð0… 0 bP;n;1…bP;n;NP;n � LÞT , and en ¼ ðen;1…
en;Nn ÞT is a Gaussian vector with zero mean and covariance
matrix s2e;nINn , with INn denoting the identity matrix of size
Nn � Nn.

2.2. Likelihood function, prior, and posterior

According to the parametrization introduced in Section
2.1, the unknown parameters for the nth non-QRS interval
J n are given by the random vector θn9ðbT

T;n b
T
P;n α

T
T;n

αT
P;n s

2
e;nÞT . Note, in particular, that the noise variance s2e;n

may vary from one beat to another. Bayesian detection/
estimation relies on the posterior distribution, pðθnjxnÞp
pðxnjθnÞpðθnÞ, where p means “equal up to a positive
factor that does not depend on θn,” pðxnjθnÞ is the like-
lihood function, and pðθnÞ is the prior distribution of θn.
The next two subsections present the likelihood function
and priors considered in this study.

2.2.1. Likelihood function
Using (3) and the fact that en;k is white and Gaussian

with variance s2e;n, the likelihood function (viewed as

Fig. 1. Signal model for the beat-to-beat processing scheme.
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a function of xn) is obtained as

pðxnjθnÞ ¼N ðBT;nHαT;nþBP;nHαP;n; s2e;nINn Þ ð4Þ
where N ðμ;CÞ denotes the multivariate Gaussian probabil-
ity density function with mean vector μ and covariance
matrix C.

2.2.2. Prior distributions
Wave indicators: The indicators bT;n;k are subject to a

block constraint: within J T;n, there is one T wave (thus1,
JbT;n J ¼ 1) or none (thus, JbT;n J ¼ 0), the latter case being
very unlikely. Therefore, we define the prior of bT;n as

pðbT;nÞ ¼
p0 if JbT;n J ¼ 0
p1 if JbT;n J ¼ 1
0 otherwise

8><
>: ð5Þ

where p1 ¼ ð1�p0Þ=NT;n and p0 is chosen very small.
Similarly, within J P;n, there is one P wave or none; there-
fore, the prior of bP;n is defined as in (5), with p1 ¼ ð1�p0Þ=
NP;n. The wave indicator vectors bT;n and bP;n for different
search intervals (i.e., different values of n) are assumed to
be statistically independent.

Waveform coefficients: The waveform coefficient vectors
αT;n and αP;n for the nth non-QRS interval J n are supposed
to depend on the respective coefficient vectors in the
ðn�1Þth non-QRS interval J n�1. Consider the T wave as
an example. The prior of αT;n is defined as

pðαT;njbT;n;αT;n�1Þ ¼
δðαT;n�αT;n�1Þ if JbT;n J ¼ 0
N ðαT;n�1;s2αIGÞ if JbT;n J ¼ 1

(
ð6Þ

where δð�Þ is the Dirac delta function. For the variance
s2α , we choose a value that yields a reasonable variability of
the waveform coefficients from one interval to another.
Note that when there is no T wave in the search interval
(JbT;n J ¼ 0), the prior sets αT;n equal to αT;n�1, i.e., the
waveform coefficients are equal to those in the previous
interval J T;n�1. The prior of the P waveform coefficient
vector αP;n is defined in an analogous way, with αT;n�1

replaced by αP;n�1. These definitions of the priors of αT;n

and αP;n introduce a memory in the statistical model for
the P and T waveforms and, in turn, induce a sequential
processing.

Noise variances: The noise variances s2e;n are modeled as
independent random variables distributed according to an
inverse gamma distribution pðs2e;nÞ ¼ IGðξ; ηÞ, where ξ and η
are fixed hyperparameters defining a vague prior (as in [21]).

We note at this point that the Gaussian priors of αT;n

and αP;n are conjugate priors with respect to the Gaussian
likelihood function (4), i.e., the resulting full conditional
distributions (required in the Gibbs sampler) are also
Gaussian [22, p. 97]. A similar remark applies to the
inverse gamma prior of s2e;n. The choice of conjugate priors
yields a considerable simplification of our detection/esti-
mation algorithm.

Joint prior: Since there are no known relations between
ðbT;n;αT;nÞ, ðbP;n;αP;nÞ, and s2e;n, all these sets of parameters
are assumed to be a priori statistically independent. There-
fore, the joint prior for the total parameter vector

θn ¼ ðbT
T;n b

T
P;n α

T
T;n α

T
P;n s

2
e;nÞT factors as

pðθnjαT;n�1;αP;n�1Þ ¼ pðαT;njbT;n;αT;n�1Þ pðbT;nÞ
�pðαP;njbP;n;αP;n�1Þ pðbP;nÞ pðs2e;nÞ: ð7Þ

2.2.3. Posterior distribution
The posterior distribution of the parameter vector θn is

obtained by using Bayes' rule, i.e.,

pðθnjxn;αT;n�1;αP;n�1ÞppðxnjθnÞpðθnjαT;n�1;αP;n�1Þ ð8Þ
where the right-hand term can be further expressed and
factored using (4) and (7). Because the proposed method
works sequentially and all estimates from the previous
beat are available, we can substitute the estimates α̂T;n�1

and α̂P;n�1 for αT;n�1 and αP;n�1 in pðθnjxn;αT;n�1;αP;n�1Þ
when estimating θn based on (8). Due to the complexity of
the posterior distribution, we propose to use a Monte Carlo
(sample-based) detection/estimation method. More speci-
fically, we propose a BGS that generates samples asymp-
totically distributed according to pðθnjx; α̂T;n�1; α̂P;n�1Þ (see
Section 2.3). From these samples, the discrete parameters
bT;n and bP;n are then detected by means of the sample-
based maximum a posteriori (MAP) detector, and the
continuous parameters αT;n, αP;n, and s2e;n are estimated
by means of the sample-based minimum mean square
error (MMSE) estimator, as described in Section 4.

2.3. Block Gibbs sampler for beat-to-beat wave extraction

The proposed BGS for the nth non-QRS interval J n is
summarized in Algorithm 1. Note that the interval index
n is omitted for all parameters to simplify the notation,
while the index n�1 is kept to avoid any ambiguity.
The term “block Gibbs sampler” is used to reflect the
block constraints related to the wave indicator vectors bT

and bP, which are encompassed in the corresponding
priors (see (5)). To see that Algorithm 1 is a valid
Gibbs sampler, note that the sampling steps for bT and
αT are equivalent to jointly sampling bT and αT from
pðbT;αTjbP; α̂T;n�1;αP; s2e ; xÞ, and similarly for bP and αP.
Closed-form expressions of the sampling distributions
used in Algorithm 1 are presented and derived in the
technical report [23].

Algorithm 1. Block Gibbs sampler.

Sample bT from pðbTjbP ; α̂T;n�1;αP ; s2e ; xÞ
Sample αT from pðαTjbT ;bP ; α̂T;n�1 ;αP ;s2e ; xÞ
Sample bP from pðbPjbT ; α̂P;n�1;αT ; s2e ; xÞ
Sample αP from pðαPjbT ;bP ; α̂P;n�1 ;αT ; s2e ; xÞ
Sample se

2
from pðs2e jbT ;bP;αT ;αP; xÞ

3. Dynamic beat-to-beat Bayesian model and
marginalized particle filter

Section 2 presented a beat-to-beat Bayesian model that
describes dependencies among waveform coefficients. A
prior “with memory” (depending on the previous esti-
mates of the P and T waveforms) was assigned to the
current beat. In this section, elaborating on [24], an MPF
method [25] is proposed to take into account all the1 J � J denotes the ℓ2 norm, i.e., JxJ2 ¼ xTx.
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information contained in the past of the current beat to be
processed. First, we present a dynamic model as a basis for
performing simultaneously P and T wave delineation and
waveform estimation on a beat-to-beat basis. This
dynamic model is similar to the Bayesian model intro-
duced in Section 2. However, it adapts to the morphology
variations across the ECG beats by using a random walk
model for the waveform coefficients. Then, following
the sequential Monte Carlo principle, an MPF is used to
estimate the unknown parameters of the proposed model.
The idea is to generate particles only for the states
appearing nonlinearly in the dynamics and run one Kal-
man filter for each of these particles to estimate the
“linear” parameters.

3.1. Dynamic signal model for non-QRS intervals

As in Section 2, we assume that the locations of the
non-QRS intervals have been determined and baseline
wanderings have been removed by a preprocessing stage.
The signal model is the same as in Section 2.1, except for
the following two differences.

First, the model (1) is split into its T and P parts:

xn;k ¼ ∑
NT;n

j ¼ 1
hT;n;k� jbT;n;jþen;k; kAJ T;n ¼ f1;…;NT;ng ð9Þ

xn;k ¼ ∑
NP;n

j ¼ 1
hP;n;k� j�NT;n

bP;n;jþen;k; kAJ P;n ¼ fNT;nþ1;…;Nng:

ð10Þ
Using (2), we obtain the following representation of the
signal vector xT;n ¼ ðxn;1⋯xn;NT;n ÞT corresponding to the T
wave interval in (9):

xT;n ¼ ~BT;nHαT;nþeT;n ð11Þ
where ~BT;n comprises the first NT;n rows of BT;n defined in
Section 2.1.3. A similar representation can be obtained for
the signal vector xP;n ¼ ðxn;NT;n þ1⋯xn;Nn ÞT corresponding to
the P wave interval in (10) using ~BP;n, which comprises the
last NP;n rows of BP;n.

Second, the variance of the noise en;k has not been
included in the parameter vector (as in the proposed BGS)
since it would increase significantly the computational com-
plexity of the algorithm. In our simulations, the noise variance
was estimated in a preprocessing step using the BGS
(although other methods could be used as well). Thus,
eT;n ¼ ðen;1… en;NT;n ÞT and eP;n ¼ ðen;NT;n þ1…en;Nn ÞT are Gaus-
sian vectors with zero mean and covariance matrix s2e INT;n and
s2e INP;n , respectively, s

2
e being the estimated noise variance.

3.2. Likelihood function, posterior, and prior

Using the modified signal model from Section 3.1,
the likelihood function—now taking into account all beat
indices up to n—factors as

pðx1:njθ0:nÞ ¼ pðxT;1:njbT;0:n;αT;0:nÞ pðxP;1:njbP;0:n;αP;0:nÞ: ð12Þ
Here, e.g., x1:n9ðxT1…xTnÞT and θ0:n9ðθT0…θTnÞT . As before
(cf. Section 2.2.2), we assume that the T wave parameters
are independent of the P wave parameters. Therefore,

using (12), the joint posterior distribution can be written

pðθ0:njx1:nÞppðbT;0:n;αT;0:njxT;1:nÞpðbP;0:n;αP;0:njxP;1:nÞ:
This allows us to split the estimation problem into two
independent problems related to the P and T waves. In the
following, only the T wave dynamic model and estimation
problem are discussed, and the subscript T is omitted for
notational convenience.

Due to the parametrization (11), the state vector for the
nth T wave interval is given by θn ¼ ðbT

n αT
nÞT . Note that θn is

now short for θT;n, and thus different from the θn used, e.g.,
in Section 2.2. For the indicator vector bn, we use the prior
in (5) with p0 ¼ p1 ¼ 1=ðNT;nþ1Þ. This prior is a uniform
distribution on the set of all possible bn such that Jbn J ¼ 1
or Jbn J ¼ 0. Indicator vectors bn for different beat indices
n are assumed to be statistically independent. Since the
ECG waveforms are usually similar for two consecutive
beats, we propose to assign a random walk prior to the T
waveform coefficient vector αn, i.e.,

αn ¼ αn�1þvn�1 ð13Þ
where αn�1 denotes the T waveform coefficient vector of the
ðn�1Þth beat and the vectors vn �N 0; s2αIG

� �
are statistically

independent (of each other and of α0:n) additive white
Gaussian noise vectors. This leads to the conditional prior
pðαnjαn�1Þ ¼ N ðαn�1; s2αIGÞ, which is the same as in the
second case of (6). Note that here, in contrast to (6), the
coefficient vector changes even if Jbn J ¼ 0. The variance s2α
depends on how fast the waveform coefficients are expected
to change with time. Since the non-QRS components are
normalized by dividing by the amplitude of the respective R
peak, we have to account for possible significant variations of
the waveforms with time. We therefore propose to use a large
value of s2α , which corresponds to a non-informative condi-
tional prior of αn. Note that the value of s2α can be further
adjusted by an expert or by calculating the ECG waveform
variance of an example ECG segment in an off-line parameter
selection procedure as in [26]. Because of (13) and the
independence of vn for different n as well as of α0:n, the
waveform coefficient vector αn is conditionally independent,
given αn�1, of all previous coefficient vectors α0:n�2, i.e.,
pðαnjα0:n�1Þ ¼ pðαnjαn�1Þ.

3.3. A marginalized particle filter for beat-to-beat
wave analysis

Our goal is to estimate jointly the discrete-valued
indicator vector bn and the waveform vector αn, i.e., to
estimate the state vector θn. In a Bayesian framework, all
inference is based on the posterior distribution of the
unknown parameters given the set of available observa-
tions, expressed as pðθ0:njx1:nÞ. Particle filters (PFs) are a
class of methods well-suited to perform the estimation of
the hybrid state vector θ0:n. They approximate the target
distribution by an empirical distribution

p̂ðθ0:njx1:nÞ ¼ ∑
Ns

i ¼ 1
wðiÞ

n δðθ0:n�θðiÞ0:nÞ; where ∑
Ns

i ¼ 1
wðiÞ

n ¼ 1:

The weights wðiÞ
n and the particles θðiÞ0:n are classically

obtained by sequential importance sampling and a selec-
tion (resampling) step to prevent degeneracy [25].
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3.3.1. Development of the MPF
While the classical PFs are fairly easy to implement, a

main drawback is that, in practice, the required number of
particles increases quickly with the state dimension. The MPF
can reduce the number of parameters estimated by the PF
and therefore allows fewer particles to be used. More specifi-
cally, the MPF takes advantage of linear Gaussian sub-
structures in the state parameters θn to decrease the variance
of the state estimates. The key idea is to split θn into two parts
θLn and θNLn , where θLn denotes the state parameters with
conditionally linear dynamics and θNLn denotes the nonlinear
state parameters. We can then marginalize out θLn and
generate particles distributed according to pðθNLn jx1:nÞ using
a PF. The particles are finally used to compute the MAP
estimator of θNLn . In parallel, each particle is associated with a
Kalman filter (KF) that computes recursively the mean and
covariance matrix of the Gaussian distribution pðθLnjθNLn ; x1:nÞ.

It can be observed from (11) that both the discrete
vector bn and the continuous vector αn enter linearly in the
observation xn, given the respective other parameter. Since
only continuous parameters can be handled by the KF, we
choose θLn ¼ αn and θNLn ¼ bn.The KF and the PF correspond
to two factors of the joint posterior according to the
following factorization:

pðb0:n;α0:njx1:nÞ ¼ pðα0:njb0:n; x1:nÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
KF

pðb0:njx1:nÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
PF

: ð14Þ

The marginal distribution of the discrete parameters is
approximated by

p̂ðb0:njx1:nÞ ¼ ∑
Ns

i ¼ 1
wðiÞ

n δ½b0:n�bðiÞ
0:n� ð15Þ

where Ns is the number of particles and δ[.] denotes the
discrete-time unit sample. Then, by inserting (15) in (14)
and summing out b0:n, the posterior distribution of the
continuous parameters can be approximated by

p̂ðα0:njx1:nÞ ¼ ∑
Ns

i ¼ 1
wðiÞ

n pðα0:njbðiÞ
0:n; x1:nÞ: ð16Þ

Integrating out α0:n�1 yields

p̂ðαnjx1:nÞ ¼ ∑
Ns

i ¼ 1
wðiÞ

n pðαnjbðiÞ
0:n; x1:nÞ: ð17Þ

It can be shown that pðα0:njbðiÞ
0:n; x1:nÞ in (16) and pðαnjbðiÞ

0:n;

x1:nÞ in (17) are Gaussian. Therefore, (16) and (17) repre-
sent mixtures of Gaussian distributions. Note that one KF is
associated with each particle bðiÞ

0:n with i¼ 1;…;Ns. Further-
more, in practice, only the marginal distribution p̂ðαnjx1:nÞ
is updated (rather than p̂ðα0:njx1:nÞ). The MPF recursions
are summarized in Algorithm 2, presented for the T wave
case. The different steps involved in this algorithm are
detailed in the rest of this section.

Algorithm 2. Marginalized particle filter.
fInitializationg
for i¼ 1;…;Ns do

Set bðiÞ
0 ¼ 0NT;n�1, P

ðiÞ
0 ¼ 0G�G , and wðiÞ

0 ¼ 1, and choose a suitable

initialization of the waveform coefficients α̂ ðiÞ
0 (see Section 5.1.1).

end for
fTime recursiong
for n¼ 1;2;… do

for i¼ 1;…;Ns do

fKF and PF propagationg
KF prediction for αðiÞ

n (see (18))

Sample bðiÞ
n � Prðbn ¼ βkjbðiÞ

0:n�1 ; x1:nÞ (see(19))
KF correction for αðiÞ

n (see (20))
Calculate weights (see (21) and (22))

~w ðiÞ
n ¼wðiÞ

n�1∑kAJ T;n
pðxnjbðiÞ

n ¼ βk;b
ðiÞ
0:n�1 ; x1:n�1ÞPrðbðiÞ

n ¼ βkÞ
end for
fWeight normalizationg
for i¼ 1;…;Ns do

wðiÞ
n ¼ ~w ðiÞ

n =∑Ns
j ¼ 1

~w ðjÞ
n

end for
fState estimationg
Estimate bn and αn (see (23))
fParticle resamplingg
Calculate N̂eff ¼ 1=∑Ns

i ¼ 1ðw
ðiÞ
n Þ2

if N̂eff r0:7 � Ns then
Resample using systematic sampling scheme [25, p. 11]

end if
end for

3.3.2. Kalman filter prediction

At time n, the previous MMSE state estimate is α̂ðiÞ
n�1 ¼

Efαn�1jx1:n�1;b
ðiÞ
0:n�1g and its covariance matrix is PðiÞ

n�1 ¼
Covfαn�1jx1:n�1;b

ðiÞ
0:n�1g. We define the predicted state

vector α̂ðiÞ
njn�19Efαnjx1:n�1;b

ðiÞ
0:n�1g and its covariance

PðiÞ
njn�19Covfαnjx1:n�1;b

ðiÞ
0:n�1g. Using (13), it can be shown

that the prediction step of the KF can be written as

α̂ðiÞ
njn�1 ¼ α̂ðiÞ

n�1; PðiÞ
njn�1 ¼ PðiÞ

n�1þs2αIG: ð18Þ

Note that the predicted state vector and its covariance

computed by the KF, α̂ðiÞ
njn�1 and PðiÞ

njn�1, will be directly
used to propagate the particles and compute their impor-
tance weights, as explained presently (see (20)).

3.3.3. Importance distribution for the indicators
It is well known that the choice of the importance

distribution is a critical issue in the design of efficient PF
algorithms. To generate samples in relevant regions of the
state space, i.e., corresponding to a high likelihood pðxnjθnÞ,
a natural strategy consists of taking into account informa-
tion from the most recent observations xn. The importance
distribution that is optimal in the sense that it minimizes
the variance of the importance weights is qðbnjbðiÞ

0:n�1;

x1:nÞ ¼ pðbnjbðiÞ
0:n�1; x1:nÞ [27]. Thus, the optimal importance

distribution for bn is obtained as

Prðbn ¼ βkjbðiÞ
0:n�1; x1:nÞppðxnjbn ¼ βk;b

ðiÞ
0:n�1; x1:n�1ÞPrðbn ¼ βkÞ ð19Þ

where βk for kAJ T;n ¼ f1;…;NT;ng is an NT;n � 1 vector
whose kth entry is 1 and all remaining entries are zero.
Note that β0 is the all-zero vector, which represents the
case where there is no T wave. It can be shown that, for
b0:n given, α0:n and x1:n are jointly Gaussian. It follows that
the distribution pðxnjbn ¼ βk;b

ðiÞ
0:n�1; x1:n�1Þ in (19) is a

Gaussian one. According to (11), its mean x̂ðiÞ
n;k and covar-

iance matrix SðiÞn;k can be computed from the KF prediction
(18) as follows:

x̂ðiÞ
n;k ¼ ~Bn;kHα̂ðiÞ

njn�1

SðiÞn;k ¼ ~Bn;kHP
ðiÞ
njn�1H

T ~B
T
n;kþs2e INT;n
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where ~Bn;k is the matrix ~Bn that corresponds to bn ¼ βk.
Note that contrary to the standard PF, the importance
distribution for the indicators no longer depends on the
coefficient vector α0:n, which has been marginalized out.
On the other hand, it depends on the past sequence b0:n�1.

3.3.4. Kalman filter correction
After receiving the observation xn for beat index n,

the predicted waveform coefficients α̂ðiÞ
njn�1 can be updated

for each generated wave indicator particle bðiÞ
n . The KF

correction procedure can be written as

SðiÞn ¼ ~B
ðiÞ
n HPðiÞ

njn�1H
T ð ~BðiÞ

n ÞT þs2e INT;n ð20aÞ

K ðiÞ
n ¼ PðiÞ

njn�1H
T ð ~BðiÞ

n ÞT ðSðiÞn Þ�1 ð20bÞ

α̂ðiÞ
n ¼ α̂ðiÞ

njn�1þK ðiÞ
n ðxn� ~B

ðiÞ
n Hα̂ðiÞ

njn�1Þ ð20cÞ

PðiÞ
n ¼ ðIG�K ðiÞ

n
~B
ðiÞ
n HÞPðiÞ

njn�1 ð20dÞ

where ~B
ðiÞ
n is the matrix ~Bn that corresponds to bn ¼ bðiÞ

n .

3.3.5. PF weight computation
When the optimal importance distribution is used to

propagate the particles, the weights satisfy the following
recursion:

wðiÞ
n pwðiÞ

n�1pðxnjx1:n�1;b
ðiÞ
0:n�1Þ: ð21Þ

Here, pðxnjx1:n�1;b
ðiÞ
0:n�1Þ is the normalization constant of

(19), i.e.,

pðxnjx1:n�1;b
ðiÞ
0:n�1Þ

¼ ∑
kAJ T;n

pðxnjbðiÞ
n ¼ βk;b

ðiÞ
0:n�1; x1:n�1ÞPrðbðiÞ

n ¼ βkÞ: ð22Þ

4. P and T wave detection, estimation, and delineation

In this section, we discuss sample-based wave detec-
tion, parameter estimation, and wave delineation for the
two proposed methods.

4.1. Block Gibbs sampler

We will denote by S9fbðiÞ
T ;bðiÞ

P ;αðiÞ
T ;αðiÞ

P ; s2ðiÞe gNs

i ¼ 1 the set
of samples produced by our BGS after a burn-in period.
(The burn-in period is the initial period of sampler itera-
tions during which the sampler converges; the samples
produced by the sampler during the burn-in period are not
used for detection/estimation [28, p. 5].)

For detecting and locating P and T waves, we use the
following sample-based blockwise MAP detector for the
wave indicators bT and bP:

b̂T ¼ arg max
iA f1;…;Nsg

pSðbðiÞ
T Þ; b̂P ¼ arg max

iA f1;…;Nsg
pSðbðiÞ

P Þ:

Here, pSðbTÞ is a sample-based approximation of the
posterior probability pðbTjx; α̂T;n�1; α̂P;n�1Þ. More specifi-
cally, pSðbTÞ is defined as the number of samples bðiÞ

T in S
that equal the respective value of bT, normalized by the

total number of samples, Ns. Analogous considerations
apply to pSðbPÞ.

The detection step described above is followed by
sample-based estimation of the waveform coefficients αT

and αP and of the noise variance s2e . Let us combine these
parameters into the parameter vector θ�b9 ðαT

T αT
P s2e ÞT .

Furthermore, we define the set I as the set of sample
indices iAf1;…;Nsg such that bðiÞ

T ¼ b̂T and bðiÞ
P ¼ b̂P. To

estimate θ�b, we use the sample mean

θ̂�b ¼
1
jI j∑iAI

θðiÞ�b

where θðiÞ�b9ðαðiÞT
T αðiÞT

P s2ðiÞe ÞT and jI j denotes the number of
elements in I . This can be interpreted as a sample-based
approximation of the MMSE estimator (note that
the MMSE estimator is given by the posterior mean
Efθ�bjx;bT;bP; α̂T;n�1; α̂P;n�1g). Thus, θ̂�b depends on b̂T,
b̂P, α̂T;n�1, and α̂P;n�1.

The final step is wave delineation (localization of the
peaks and boundaries of the P and T waves). Because of the
convolution model (1), our detection/estimation problem
is affected by a time-shift ambiguity [17,29]. Following
[17], we resolve this ambiguity by performing an appro-
priate time shift after generating the waveform samples in
the block Gibbs sampler. This time shift ensures that the
maximum of the waveform is located at the center k¼ 0
of the waveform support interval f�L;…; Lg and, thus, the
location of a nonzero detected indicator b̂T;k ¼ 1 or b̂P;k ¼ 1
directly indicates the peak of the respective T or P wave. A
detailed description of an algorithm for resolving the time-
shift ambiguity is also provided in [29].

It is broadly accepted that the turning points defined by
the largest local maximum of the curvature of the estimated
waveform on each side of the detected wave peak are good
estimates of the wave boundaries [6,30]. The curvature of
the estimated T waveform ĥT;k is defined as [6]

κT;k9
ĥ
″
T;k

½1þðĥ 0
T;kÞ2�3=2

; kAf�L;…; Lg

where ĥ
0
T;k and ĥ

″
T;k are discrete-time counterparts of the

first and second derivatives (e.g., ĥ
0
T;k is defined as the

difference ĥT;k� ĥT;k�1). Using the turning points for deli-
neation avoids the use of rigid detection and delineation
thresholds. Fig. 2 illustrates the method by showing
the delineation results obtained for three different T wave
morphologies. Simulation results for the proposed BGS will
be presented in Section 5.

4.2. Marginalized particle filter

In the MPF, the sample-based blockwise MAP estimator
is used for estimating the binary sequence bn, while the
sample-based MMSE estimator is used for estimating the
waveform coefficients αn:

b̂n ¼ arg max
iA f1;…;Nsg

p̂ðbðiÞ
n jx1:nÞ; α̂n ¼ ∑

Ns

i ¼ 1
wðiÞ

n α̂ðiÞ
n : ð23Þ

Here, p̂ðbðiÞ
n jx1:nÞ is obtained by marginalizing (15) and the

estimate α̂n is the mean of the Gaussian mixture (17) with α̂ðiÞ
n

computed recursively using (20c).
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The wave delineation consists of determining the
peaks and boundaries of the detected P and T waves. As
mentioned in Section 4.1, because the time-shift ambi-
guity is removed, the nonzero wave indicator estimated
by the MPF directly indicates the center of the corre-
sponding waveform time window. Thus, the peak of the
respective T or P wave is indicated by the location of the
maximum of the estimated waveform. Furthermore, the
wave boundaries can be located by applying the delinea-
tion criterion described in Section 4.1 to the estimated
waveforms.

5. Simulation results

5.1. Simulation setup

Both of the proposed Bayesian wave detection/estima-
tion/delineation methods were evaluated on the QT
database (QTDB), which was previously used in several
other studies [14]. The QTDB provides a reference for
validating automatic wave-boundary estimation meth-
ods. It is a two-channel database containing cardiologist
annotations for at least 30 beats per dataset for both
channels. It includes 105 datasets from the widely used
MIT-BIH arrhythmia database, the European ST-T data-
base, and some other well-known databases. The cardiol-
ogist annotations of the QTDB were performed using two
leads, whereas the proposed delineation methods work
on a single-channel basis. To compare the single-channel
delineation results produced by our methods with the
manual annotations of the QTDB, we chose for each T or P
wave the channel where the detected wave peak location
was closer to the annotated one (as suggested in [4,30]).
In a preprocessing step, the QRS complexes were detected
and the borders of the non-QRS intervals J n were
determined using the Pan–Tompkins algorithm [15].
(The same preprocessing step was performed in [10,11].)
In another preprocessing step, baseline wanderings were
removed. P and T search intervals J T;n and J P;n were then
defined as the first and second half of J n. Both of the
proposed methods sequentially process one non-QRS
interval J n after another.

5.1.1. BGS setup
For each non-QRS interval J n, the BGS generated 100

samples according to the conditional distributions speci-
fied in Algorithm 1. The first 40 samples constituted
the burn-in period, and the remaining 60 were used for
detection/estimation (thus, Ns ¼ 60). The fixed hyperpara-
meters involved in the prior distributions were chosen as
p0 ¼ 0:01, s2α ¼ 0:01, ξ¼ 11, and η¼ 0:5; these values allow
for an appropriate waveform variability from one beat to
another and provide a noninformative prior for the noise
variance s2e;n. Note that the non-QRS components were
normalized using the corresponding R peak values to
handle different amplitude resolutions. For the first non-
QRS interval (n¼ 1), the previous waveform coefficient
estimates α̂T;0 and α̂P;0 were initialized with the coefficient
vector α for which h is closest to the 2Lþ1 Hann window
[31], with an amplitude equal to half the R peak amplitude.
The waveform length was chosen as 2Lþ1¼Nn=3, which
is large enough to accommodate the actual support of the
T or P wave.

Because the proposed beat-to-beat BGS method pro-
cesses only one non-QRS interval at any given time, both
its memory requirements and its computational complex-
ity are smaller than those of the window-based method
of [10]. For instance, for the proposed method using 100
sampler iterations, the processing time per beat is approxi-
mately 0.3 s using a nonoptimizedMATLAB implementation
running on a 3.0-GHz Pentium IV computer, compared to
about 2 s for the method of [10]. Note that this computation
time could be further reduced by developing implementa-
tions on digital signal processors.

5.1.2. MPF setup
In the MPF method, the fixed hyperparameters involved

in the prior distributions were chosen as s2α ¼ 0:01 and
s2e ¼ 0:1. The chosen value of s2α allows for an appropriate
waveform variability from one beat to another. The chosen
value of se

2
was obtained from a previous estimation of the

noise level, using the mean value estimated by the BGS
method, but could be taken from any other noise estimator.
The non-QRS components were again normalized using the
corresponding R peak values to handle different amplitude

Tpeak

Tonset
Tend

Tpeak
Tpeak

Tonset

Tonset

Tend

Tend

Fig. 2. Delineation results obtained for three different T wave morphologies. Solid blue line: estimated T waveform, dotted red line: corresponding
curvature. The crosses indicate the estimated peak and boundary locations. (a) Normal sinus T wave from QT database (QTDB) [14] dataset sel17453
channel 1; (b) ascending T wave from QTDB sele0203 channel 1; (c) biphasic T wave from QTDB sele0603 channel 1. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)
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resolutions. The waveform vector ĥ0 ¼Hα̂0 was initialized
as in the BGS method.

An important issue with PF methods is the number of
particles. Using the estimated parameters, we recon-
structed the non-QRS part of the signal (based on the
noiseless parts of models (9) and (10)) and compared it to
the original signal non-QRS part. This allowed us to
compute a normalized mean square error (NMSE) to assess
the quality of the estimation. Table 1 shows the NMSE
versus the number of particles Ns. As can be seen, benefit-
ing from the optimal importance distribution derived in
Section 3.3.3, good estimation performance can be

obtained with a moderate number of particles. We chose
Ns ¼ 200 particles for all the following simulations in order
to guarantee an NMSE close to �40 dB. For the MPF
method using 200 particles, the processing time per beat
is approximately 0.5 s using a nonoptimized MATLAB
implementation running on a 3.0-GHz Pentium IV
computer.

5.2. Qualitative analysis

In this section, we first show the posterior distributions
as well as estimation and delineation results obtained
by the proposed beat-to-beat BGS method on a typical
example. Then, we present a qualitative comparison of the
proposed BGS and MPF methods with state-of-the-art
methods on several representative ECG segments.

Fig. 3(a) shows two consecutive beats from the QTDB
dataset sele0136. The corresponding sample-based esti-
mates of the marginal posterior probabilities of having a T

Table 1
Normalized mean square error (NMSE) versus number of particles used
in the MPF method.

Ns 10 50 100 200 300
NMSE (dB) �25 �31 �34 �40 �42

Fig. 3. Simulation results obtained with the proposed BGS method. (a) Two consecutive beats from QTDB dataset sele0136; (b) estimated marginal
posteriors PSðbk ¼ 1Þ; (c) estimated P and T waveforms (dotted red line) compared with the original P and T waveforms (blue) and delineation results. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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or P wave at a given location k, PSðbT;n;k ¼ 1Þ and
PSðbP;n;k ¼ 1Þ, are depicted in Fig. 3(b). (For kAJ T,
PSðbk ¼ 1Þ equals the probability PSðbTÞ of the specific
hypothesis bT that contains a 1-entry at location k, and
similarly for kAJ P.) Fig. 3(c) shows the actual P and T
waveforms and their estimates obtained by the proposed
BGS method for each search interval, along with the
corresponding delineation results (i.e., the estimated wave
onsets, peaks, and ends, which were determined as
described in Section 4). One can observe noticeable differ-
ences between the two consecutive T waveforms (at time
instants 4.92 s and 6.10 s), as well as between the two
consecutive P waveforms (at time instants 5.64 s and
6.83 s). This confirms the pseudo-cyclostationary nature
of the ECG signal and justifies our introduction of a beat-
to-beat processing scheme that allows for beat-to-beat
variations of the P and T waveforms. The results displayed
in Fig. 3(c) show that the BGS algorithm is able to estimate
these P and T waveforms with good accuracy.

Next, we present a qualitative comparison of the
proposed BGS and MPF methods with the multi-beat

method of [10] (based on a partially collapsed Gibbs
sampler (PCGS)) to highlight the benefits of beat-to-beat
processing. To evaluate the methods under real physiolo-
gical noise conditions, we added muscular activity noise
from the MIT-BIH noise stress test database. The estimated
non-QRS signal components obtained with the different
methods are displayed in Figs. 4 and 5 for eight successive
beats of a segment of QTDB dataset sele0136. The original
ECG signal is also shown for comparison. It can be seen
that the proposed beat-to-beat methods (BGS and MPF)
provide closer agreements with the original ECG signal
when compared to the multi-beat method, especially at
the onsets and ends of the waves, which is a desirable
property for wave delineation. These results show that,
contrary to the multi-beat method of [10], the beat-to-beat
BGS and MPF methods are able to capture the changes
affecting the P and T waveforms. Additional results are
available in a technical report [23]. In particular, both
proposed methods are compared with the method of [7]
(which is based on an extended Kalman filter) and are
shown to be able to handle specific pathologies such as

Fig. 4. Four consecutive segments from QTDB dataset sele0136 (blue) superimposed with their reconstructions using the estimated parameters (dotted
red). (a) PCGS multi-beat method of [10]; (b) proposed beat-to-beat BGS method; (c) proposed beat-to-beat MPF method. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)
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premature ventricular contractions, a pathology in which
parts of the T waves are crossing the interval border and
the P waves are missing.

5.3. Quantitative analysis

Next, we provide a quantitative performance comparison
of the two proposed methods with the multi-beat method
of [10] and three alternative methods [2,4,5], based on an
exhaustive evaluation performed on the entire QTDB. For a
quantitative analysis of the performance of P and T wave
detection, as in [2,4,5,10,11], we computed the sensitivity (also
referred to as detection rate) Se¼ TP=ðTPþFNÞ and the positive
predictivity Pþ ¼ TP=ðTPþFPÞ, where TP denotes the number
of true positive detections (wave was present and was
detected), FN stands for the number of false negative detec-
tions (wave was present but was missed), and FP for the
number of false positive detections (wave was not present
but was detected). The performance of wave delineation
was measured by the average (denoted as m) and standard
deviation (denoted as s) of the time differences between the

results of the considered method and the corresponding
cardiologist annotations. The indicated time values (in ms)
are based on a sampling frequency of 250 Hz. The quantities
m and s were computed separately for the wave onset times
tP;on and tT;on, the wave peak times tP;peak and tT;peak, and the
wave end times tP;end and tT;end. We note that while the QTDB
includes annotations made by two cardiologists, we consid-
ered only those of the first cardiologist, who provided
annotations for at least 30 beats per dataset.

Table 2 shows the results for Se, Pþ , and m7s obtained
for the entire QTDB. It can be seen that the two proposed
methods detect the P and T waves annotated by the
cardiologist with high sensitivity: the sensitivity Se is
100% for the T waves and 99.93% or 99.95% for the P
waves. Similarly good results were obtained for the posi-
tive predictivity Pþ , which is between 98.01% and 99.30%
for the T waves and 99.10% or 99.23% for the P waves. Both
the Se values and the Pþ values are typically better than
those obtained with the other methods, including the
recently proposed multi-beat method of [10]. Regarding
the delineation performance, it is seen from Table 2 that

Fig. 5. Four other consecutive segments from QTDB dataset sele0136 (blue) superimposed with their reconstructions using the estimated parameters
(dotted red). (a) PCGS multi-beat method of [10]; (b) proposed beat-to-beat BGS method; (c) proposed beat-to-beat MPF method. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)
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the two proposed methods delineate the annotated P and T
waves with mean errors jmj not exceeding 4 ms (except for
tT;on) and with smaller standard deviations s than the other
methods (with two exceptions). We note that delineation
error tolerances have been recommended by the CSEWorking
Party [32]. In particular, the standard deviation s for tP;on,
tP;end, and tT;end should be at most 2sCSE, which is listed in the
last row of Table 2. However, a stricter recommendation
proposed in [4] is srsCSE. According to Table 2, the standard
deviations for tP;end achieved by both proposed methods and
the standard deviation for tP;on achieved by the proposed MPF
method comply with the loose recommendation. For the tT;end
results, both proposed methods comply with the strict
recommendation. In Table 2, the advantage of the proposed
beat-to-beat methods over the multi-beat method of [10] is
not as clear as in Figs. 4 and 5. This is because only a small part
of the signals evaluated in Table 2 exhibit obvious inter-beat
waveform variations. From Table 2, it is furthermore seen that
the detection and delineation results obtained with the two
proposed methods are quite similar.

To further appreciate the differences between the two
proposed methods, we conducted a quantitative compar-
ison of their waveform estimation performance. First, in
order to constitute our ground truth, we visually selected
from the MIT-BIH Normal Sinus Rhythm Database 20
segments of ECG signals, each of duration 10 s, with a
high SNR and no significant arrhythmia. Then, to generate

realistic ECG signals, the ground truth was corrupted by
adding muscular activity noise from the MIT-BIH noise
stress test database with an SNR ranging from 20 to

Table 2
Comparison of the detection and delineation performance of the proposed beat-to-beat BGS and MPF methods with that of the PCGS multi-beat method of
[10], the wavelet transform based method of [4] (WT), the low-pass differentiation based method of [2] (LPD), and the action potential based method of [5].
The variances of these methods are compared with the delineation error tolerance of [32], which is provided in the last row. (N/A: not available).

Method Parameters tP;on tP;peak tP;end tT;on tT;peak tT;end

Beat-to-beat BGS (proposed) Annotations 3176 3176 3176 1345 3403 3403
Se (%) 99.93 99.93 99.93 100 100 100
Pþ (%) 99.10 99.10 99.10 98.01 99.30 99.30
m7s (ms) 3.4714.2 1.175.3 �2.179.8 6.8716.3 �0.874.1 �3.1714.0

Beat-to-beat MPF (proposed) Annotations 3176 3176 3176 1345 3403 3403
Se (%) 99.95 99.95 99.95 100 100 100
Pþ (%) 99.23 99.23 99.23 98.67 99.20 99.20
m7s (ms) 3.178.3 1.275.3 2.779.8 6.5716.3 �0.474.8 �3.8714.2

Multi-beat partially collapsed Gibbs sampler [10] Annotations 3176 3176 3176 1345 3403 3403
Se (%) 99.60 99.60 99.60 100 100 100
Pþ (%) 98.04 98.04 98.04 97.23 99.15 99.15
m7s (ms) 1.7710.8 2.778.1 2.5711.2 5.7716.5 0.779.6 2.7713.5

WT [4] Annotations 3194 3194 3194 N/A 3542 3542
Se (%) 98.87 98.87 98.75 N/A 99.77 99.77
Pþ (%) 91.03 91.03 91.03 N/A 97.79 97.79
m7s (ms) 2.0714.8 3.6713.2 1.9712.8 N/A 0.2713.9 �1.6718.1

LPD [2] Annotations N/A N/A N/A N/A N/A N/A
Se (%) 97.70 97.70 97.70 N/A 99.00 99.00
Pþ (%) 91.17 91.17 91.17 N/A 97.74 97.74
m7s (ms) 14.0713.3 4.8710.6 �0.1712.3 N/A �7.2714.3 13.5727.0

Action potential based method [5] Annotations N/A N/A N/A N/A N/A N/A
Se (%) N/A N/A N/A N/A 92.60 92.60
Pþ (%) N/A N/A N/A N/A N/A N/A
m7s (ms) N/A N/A N/A 20.9729.6 �12.0723.4 0.8730.3

Delineation error tolerance 2sCSE (ms) 10.2 N/A 12.7 N/A N/A 30.6

Fig. 6. Waveform estimation SNR improvement measure SNRimp obtained
with the proposedMPF and BGS methods and the multi-beat PCGSmethod
of [10] versus the input SNR for 20 signal segments selected from the
MIT-BIH Normal Sinus Rhythm database and corrupted by muscular
activity noise.
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�5 dB. For a quantitative evaluation, we considered the
SNR improvement measure defined as

SNRimp ¼ 10 log
Jx�cJ2

Jz�cJ2

 !

where x is the noisy signal, c is the clean signal, and z is
the estimated signal. This evaluation was carried out only
on the non-QRS intervals (P and T waveforms) of each
signal. In order to obtain a fair performance comparison
between the different algorithms, 20 Monte Carlo runs of
each method were considered for each ECG signal seg-
ment. The output SNR was averaged over the 400 results
for each input SNR (20 runs for each of the 20 signal
segments). In Fig. 6, the means and standard deviations of
the SNR improvement SNRimp are plotted versus the input
SNR. It can be observed that the proposed BGS and MPF
algorithms clearly outperform the PCGS method [10] in
terms of SNR improvement. Furthermore, the MPF algo-
rithm outperforms the BGS algorithm.

6. Conclusion

This paper presented and studied two Bayesian methods
for beat-to-beat P and T wave delineation and waveform
estimation. Instead of using a processing window that con-
tains several successive beats involving the same P and T
waveforms by assumption, the proposed methods account for
beat-to-beat variations of the P and T waveforms by proces-
sing individual beats sequentially (i.e., with memory). First, a
block Gibbs sampler (BGS) method was proposed to estimate
the unknown parameters of the beat-to-beat Bayesian model.
Alternatively, in order to take advantage of all the available
information contained in the past of the beat to be processed,
a dynamic model was proposed. This model exploits the
sequential nature of the ECG signal by using a random walk
model for the waveform coefficients. A marginalized particle
filter (MPF) was then proposed to estimate the unknown
parameters of the dynamic model.

The main features and contributions of this work can
be summarized as follows:

1. Beat-to-beat BGS method
� The proposed Bayesian model uses the P and T wave-

form estimates of the previous beat as prior informa-
tion for detecting/estimating the current P and T waves.

� By accounting for the local dependencies in, and the
sequential nature of, ECG signals, the proposed BGS
exhibits a faster convergence than the samplers
used in [10,11].

� The high accuracy of the proposed technique for P
and T waveform estimation allows a threshold-free
delineation technique to be used.

� The beat-to-beat processing mode leads to smaller
memory requirements and a lower computational
complexity compared to the multi-beat Bayesian
methods in [10,11].

2. Beat-to-beat MPF method
� The sequential nature of the ECG signal is exploited

by using a dynamic model within the Bayesian
framework.

� The proposed MPF method efficiently estimates the
unknown parameters of the dynamic model. Thanks
to the marginalization, a smaller number of particles
is needed for good estimation performance, com-
pared to the classical particle filter.

� Compared to the BGS method, the MPF method is
potentially advantageous in that it considers all the
available beats in the waveform estimation.

The statistical models used for these two methods are similar,
except for two minor differences: (1) the BGS processes P and
T waves simultaneously, in each non-QRS interval, whereas
the MPF processes them separately; (2) the MPF estimates the
noise variance during a preprocessing step in order to obtain a
reasonable computational complexity.

The proposed beat-to-beat Bayesian methods were
validated using the QT database. A comparison with
the method of [10] and with other benchmark methods
demonstrated that both proposed methods can provide
significant improvements regarding P and T wave detec-
tion rate, positive predictivity, and delineation accuracy.
Moreover, whereas the delineation results obtained with
the two proposed methods are quite similar, the MPF
outperforms the BGS from a waveform estimation point
of view, at the price of a higher computational cost. We
note that the proposed methods are single-lead based ECG
processing methods. They can be extended to multi-lead
ECG signals by including post-processing decision rules to
determine global marks from the single-lead delineation
results [33].

Besides its suitability for real-time ECG monitoring,
another advantage of the proposed beat-to-beat proces-
sing mode is the possibility of analyzing the beat-to-beat
variation and evolution of the P and T waveforms. Poten-
tial clinic applications include T wave alternans (TWA)
detection in intra-cardiac electrograms. This application is
currently under investigation.
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