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A Bayesian Nonparametric Model Coupled with a Markov Random Field
for Change Detection in Heterogeneous Remote Sensing Images∗

Jorge Prendes† , Marie Chabert‡ , Frédéric Pascal§ , Alain Giros¶, and Jean-Yves Tourneret‡

Abstract. In recent years, remote sensing of the Earth surface using images acquired from aircraft or satel-
lites has gained a lot of attention. The acquisition technology has been evolving fast and, as a
consequence, many different kinds of sensors (e.g., optical, radar, multispectral, and hyperspectral)
are now available to capture different features of the observed scene. One of the main objectives
of remote sensing is to monitor changes on the Earth surface. Change detection has been thor-
oughly studied in the case of images acquired by the same sensors (mainly optical or radar sensors).
However, due to the diversity and complementarity of the images, change detection between images
acquired with different kinds of sensors (sometimes referred to as heterogeneous sensors) is clearly an
interesting problem. A statistical model and a change detection strategy were recently introduced in
[J. Prendes, M. Chabert, F. Pascal, A. Giros, and J.-Y. Tourneret, Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014; IEEE Trans.
Image Process., 24 (2015), pp. 799–812] to deal with images captured by heterogeneous sensors. The
main idea of the suggested strategy was to model the objects contained in an analysis window by
mixtures of distributions. The manifold defined by these mixtures was then learned using training
data belonging to unchanged areas. The changes were finally detected by thresholding an appropri-
ate distance to the estimated manifold. This paper goes a step further by introducing a Bayesian
nonparametric framework allowing us to deal with an unknown number of objects in analysis win-
dows without specifying an upper bound for this number. A Markov random field is also introduced
to account for the spatial correlation between neighboring pixels. The proposed change detector
is validated using different sets of synthetic and real images (including pairs of optical images and
pairs of optical and radar images) showing a significant improvement when compared to existing
algorithms.

Key words. optical images, synthetic aperture radar images, change detection, Bayesian nonparametric, Markov
random field, collapsed Gibbs sampler
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Notation.
A summary of the notation used throughout the article can be found in the following table.
Lowercase bold letters denote column vectors, while uppercase bold letters denote matrices.
Subindexes are denoted using lowercase letters, and their upper limit is denoted by capital
letters, e.g., the subindex k can take the values 1 ≤ k ≤ K. The notation z\n denotes all the
elements of the vector z except the nth element.
D Number of images in a dataset
W Analysis window
N Number of pixels in W
S Sensor used to acquire an image
Sd Sensor used to acquire the dth image
in,S Intensity measured by S for the nth pixel
in D-dimensional vector of pixel intensities acquired by all sensors for the nth pixel
I Matrix containing all the intensities in
K Number of different objects in W
P Physical properties of an object
Pk Physical properties of the kth object
wk Proportion of W covered by the kth object
w K-dimensional vector containing all wk
TS(P ) How S images an object with properties P
ηS Acquisition noise of S
F(v) Application dependent distribution family with parameter vector v
V0 Prior distribution for v
vn Parameter vector that identifies a distribution from F for the nth pixel
V Matrix containing all the vn
v′k Parameter vector that identifies a distribution from F for the kth object
V ′ Matrix containing all the vectors v′k
M “No-change” manifold

T̂k,Sd Estimated parameters for the kth component of the dth sensor

v̂k Estimated parameters for the kth component
∆W Similarity measure for the analysis window W
∆n Similarity measure for the nth pixel
DP(·, ·) Dirichlet process
ψ(·) Digamma function
α Concentration parameter
zn Class label for the nth pixel
z Vector containing the class labels of all pixels

1. Introduction. Remote sensing images of the Earth are becoming more and more acces-
sible. Detecting and tracking changes on the Earth surface using these images is a privileged
means for urban growth tracking [57, 59], plantation monitoring, urban database updating [48],
and natural disaster study management [61]. For this purpose, many different remote sens-
ing technologies are available, such as optical multispectral and hyperspectral sensors [55] or
synthetic aperture radar (SAR) [8, 17]. The specific properties of each technology make it



attractive in particular situations. For instance, optical images are easy to interpret. They are
characterized by a very high spatial resolution and a high signal to noise ratio. However, their
acquisition requires daylight and good weather conditions. On the other hand, SAR images
can be captured during the night and even in the presence of clouds or smoke. However,
they are more difficult to interpret and are characterized by lower spatial resolution and a
poor signal to noise ratio [34]. In order to take advantage of the complementarity of differ-
ent image modalities, multitemporal image datasets are often composed of images obtained
from heterogeneous sensors. Exploiting the complementarity of these heterogeneous images
is an important challenge. This paper focuses on change detection between multitemporal
co-registered images, acquired by either homogeneous or heterogeneous sensors. The case of
heterogeneous optical and SAR images will receive particular attention.

Detecting changes between images acquired using the same kind of sensor has received
particular attention in the remote sensing community. The proposed techniques usually exploit
appropriate features extracted from the images, depending on the considered kind of sensor.
As a consequence, change detection strategies can be classified according to the kind of sensor
they target. For instance, detecting changes between optical images can be achieved using
the so-called difference image defined as the pixelwise difference between the image intensities
[5, 6, 12, 22, 56]. Other approaches are based on the difference image derived in the wavelet
domain [11, 13] or on artificial neural networks [27, 28, 43, 44]. Detecting changes between
SAR images has also been intensively studied, usually exploiting the fact that these images
are corrupted by a multiplicative speckle noise. For instance, different techniques based on the
ratio of pixel intensities have been proposed [2, 7, 20, 53, 60, 63]. Other relevant methods are
based on neural networks [4, 49] or on the joint distribution of the pixel intensities [15, 29, 52].

Detecting changes between heterogeneous images using multivariate distributions or copu-
las has also been considered in the literature [14, 33, 38]. Recently, a change detection strategy
for homogeneous or possibly heterogeneous images was proposed in [50, 51]. The suggested
strategy assumed that the same objects were present in the co-registered multitemporal im-
ages in the absence of change, inducing some relationships between the image intensities. A
statistical model describing the joint distribution of the pixel intensities was then proposed.
The parameters of this model were finally used to detect changes through a manifold learning
strategy. The method showed improved performance with respect to the methods proposed
in [14, 33, 38]. The image model presented in [50, 51] is a statistical model for the pixel
intensities accounting for the sensor noise. However, the spatial correlation between neigh-
boring pixels of the image was not exploited. Moreover, the algorithm required to define a
maximum number of objects present in the analysis window. The present paper investigates a
Bayesian nonparametric (BNP) framework which allows these two limitations to be overcome.
More precisely, the proposed BNP model expresses the joint distribution of the pixels located
in the analysis window as a mixture of objects whose number is not limited. This model is
coupled with a Markov random field (MRF) prior [16, 41] to exploit the spatial correlation
of neighboring pixels. A partially collapsed Gibbs sampler [62] is then investigated to sample
the posterior distribution of the BNP model and to use these samples to build estimators
of its parameters. A Jeffreys prior for the concentration parameter of the BNP model is fi-
nally derived to reduce the number of parameters required by the algorithm and improve its
flexibility.



The first contribution of this paper is a new BNP model, its estimation algorithm, and
its application to change detection. This algorithm is based on a label prior allowing an
unbounded number of objects in each analysis window and exploiting the spatial correlations
between adjacent image pixels. The second contribution of the paper is the derivation of a
Jeffreys prior for the concentration parameter of the proposed nonparametric model, as well
as the corresponding sampling algorithm.

The paper is structured as follows. Section 2 reviews the statistical model introduced
in [50, 51] and the associated frequentist inference for change detection. Section 3 introduces
the theoretical background for the BNP framework suggested to solve the model selection
problem associated with this change detection. A new statistical model based on a Dirichlet
process mixture is proposed to describe the joint distribution of a set of images acquired by
either homogeneous or heterogeneous sensors. A Jeffreys prior for the concentration parameter
of the proposed BNP model is finally derived, allowing this parameter to be estimated jointly
with all the other parameters. Section 4 provides a quick introduction to MRFs and discusses
their integration into the BNP framework. The change detection strategy associated with
the proposed statistical model is presented in section 5. Change detection results obtained
with the proposed approach for various synthetic and real images are presented in section 6.
Conclusions, possible improvements and future work are reported in section 7.

2. Frequentist model for change detection.

2.1. Image model. A statistical model was introduced in [50, 51] to describe the inten-
sities of a pixel belonging to a set of remote sensing images captured by homogeneous and
heterogeneous sensors. The change detection approach proposed in this article is based on this
generic model (in the sense that it is appropriate for any set of sensors), and its application
to SAR and optical images will be detailed. This model considers the statistical properties of
the noise affecting each sensor. For the sensor S, the observed pixel intensity (denoted as iS)
can be written

iS = fS [TS(P ), ηS ],(2.1)

where TS(P ) expresses the ideal response of the sensor S to a particular object with physical
properties P , and fS(·, ·) indicates how the measurements are affected by the sensor noise ηS .
For instance, in the case of an optical sensor, the noise can be modeled as an additive zero
mean Gaussian noise [10, 37], i.e.,

ηOpt ∼ N
(
0, σ2

Opt

)
,(2.2)

fOpt[TOpt(P ), ηOpt] = TOpt(P ) + ηOpt,(2.3)

where σ2
Opt is the variance of the measurement noise. The distribution of iS can be easily

obtained conditionally on TS(P ), i.e., conditionally on a particular object with physical prop-
erties P , leading to p[iS |TS(P )] = p(iS |P ). For an optical sensor the following result is finally
obtained:

iOpt|P ∼ N
[
TOpt(P ), σ2

Opt

]
;(2.4)

it is in accordance with classical statistical properties of optical images [10, 37].



Similarly, the intensity of a multilook SAR image can be modeled as a ground truth
intensity TSAR(P ) corrupted by a multiplicative speckle noise (with a gamma distribution)
[21, 36, 40] ηSAR, i.e.,

ηSAR ∼ Γ
(
LSAR, L

−1
SAR

)
,(2.5)

fSAR[TSAR(P ), ηSAR] = TSAR(P )ηSAR,(2.6)

where Γ(x; k, θ) = 1
Γ(k)θk

xk−1e−
x
θ 1R+(x) is the gamma distribution, Γ(k) is the gamma func-

tion, LSAR is the number of looks of the SAR image, and 1A(·) is the indicator function of set
A (i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 everywhere else). Thus, the conditional distribution
of iSAR given P is

iSAR|P ∼ Γ
[
LSAR, TSAR(P )L−1

SAR

]
.(2.7)

Consider now the D-dimensional vector i = [iS1 , . . . , iSD ]T containing the intensities for
a particular pixel associated with D different co-registered images acquired by the sensors Sd
with 1 ≤ d ≤ D. Since the D images are acquired by different sensors, we can assume that the
different noises ηSd are independent, leading to independent intensities iS1 |P , . . . , iSD |P . As
a consequence, an object observed jointly in the D images can be described by the following
joint distribution:

p(i|P ) =
D∏
d=1

p[iSd |TSd(P )] =
D∏
d=1

p(iSd |P ),(2.8)

where p(i|P ) defines a family F of distributions that depends on the kind of involved sensors.
For a given object characterized by P , a vector of parameters v = v(P ) identifying a particular
distribution of the family F can be defined as

v = v(P ) = [TS1(P ), . . . , TSD(P )]T ,(2.9)

where TSd(P ) is the ground truth (noiseless) intensity in (2.1), but is also the parameter of
p(iSd |P ). From this we can express i|P as

i|v ∼ F(v).(2.10)

However, an analysis window W generally contains different objects. Consequently, differ-
ent values of P are observed in different window regions. Since an analysis window generally
contains a finite number K of objects, it is natural to model the distribution of P |W for a
given image as the following mixture:

p(P |W ) =
K∑
k=1

wkδ(P − Pk),(2.11)



where δ(·) is the Dirac delta function, K is the number of objects in the analysis window
W , and wk is related to the area of the kth object within the window W . In an unchanged
window W the distribution P |W will be the same for all sensors. Consequently, i|W is also
a mixture distribution defined as

p(i|W ) =

K∑
k=1

wkp(i|Pk) =

K∑
k=1

wk

D∏
d=1

p(iSd |Pk),(2.12)

where all the mixture components p(i|Pk) belong to the same distribution family F with
different sets of parameter vectors vk = v(Pk). Note that the distribution of i|W is fully
characterized by the values of its parameters K, w = [w1, . . . , wK ] and V = [v1, . . . ,vK ].

2.2. Change detection strategy. Estimating the parameters of p(i|W ) leads to an esti-

mator V̂ = [v̂1, . . . , v̂K ] with v̂k = [T̂k,S1 , . . . , T̂k,SD ]
T

for k = 1, . . . ,K and where T̂k,Sd is
an estimator of TSd(Pk,d). For unchanged areas, Pk,d does not depend on d, i.e., Pk,d = Pk,

implying that T̂k,Sd and v̂k are estimators of TSd(Pk) and v(Pk), respectively. Conversely,

the value of P̂k,d is different from one image to another when a change has occurred in the
scene between the image acquisition times. In this case, different objects are observed in the
different images and T̂k,Sd is an estimator of TSd(Pk,d), but v̂k does not define an estimator of
v(Pk) for a unique Pk.

In order to build a change detection strategy, we assume that, in the absence of change,
v = v(P ) defines a manifold M generated by the parameter P . When considering an object
characterized by Pk in an unchanged area, the estimator v̂k converges to v(Pk), i.e., to a
point located in the manifoldM. On the other hand, for changed areas, v̂k does not generally
converge to a point located in the manifold M. Based on these observations, a distance
denoted as ∆k between v̂k and the manifoldM can be used as a similarity measure to detect
changes between images. More precisely, we consider the binary hypothesis testing problem

H0 : Absence of change,

H1 : Presence of change

and introduce the following change detection strategy:

∆k

H1

≷
H0

τ,(2.13)

where τ is a threshold related to the probability of false alarm (PFA) of the change detector.
The manifold M can be obtained analytically in simple cases, i.e., for simple sensor

combinations. For instance, when two grayscale images are captured with the same optical
sensor S in the same conditions, we have S1 = S2 = S, and thus TS1(P ) = TS2(P ) = TS(P ).
In this case, M is defined by the line TS1(P ) = TS2(P ) in the plane TS1(P ) × TS2(P ), as
depicted in Figure 1, red line. If the two images are captured with different contrasts, one of
the images can be subjected to a saturation, leading to a slightly more complex manifold, as
depicted in Figure 1, blue line. However, in most situations (e.g., different settings, different
sensors, multichannel images), the manifold M is a priori unknown. Assuming that p(v̂|P )
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Figure 1. Manifolds obtained with simple sensor combinations (red curve: two identical sensors; blue curve:
sensors with different contrasts with a saturation).

has a maximum at v(P ) (i.e., in the manifoldM), we proposed in [50, 51] to use the estimated
probability density function (pdf) of v̂ to define the similarity measure ∆k, i.e.,

∆k = p̂v̂(v̂k),(2.14)

where the density p̂v̂(·) was estimated by means of the vectors v̂ belonging to a set of “no
change” images, or by using regions of the image that are not affected by changes (supervised
learning). The resulting detection strategy detects a change if the estimated pdf is less than
a threshold depending on a given PFA, i.e., as follows:

∆k

H0

≷
H1

τ−1.(2.15)

3. A BNP model. This section studies a different approach to building the distribution
(2.12) based on a BNP framework [26, 58]. We begin in subsection 3.1 by presenting a
simple Bayesian approach to the model described in subsection 2.1 and motivate the need
for a BNP framework. Subsection 3.2 explains how the model recalled in subsection 2.1
can be extended to an infinite number of dimensions via a BNP approach. Subsection 3.3
investigates a collapsed Gibbs sampler to sample the resulting posterior distribution. The
generated samples are then used to estimate the parameters of the proposed model. Finally,
subsection 3.4 studies a Jeffreys prior to estimate the concentration parameter α that arises
in subsection 3.2 and derives an algorithm to sample it from this prior.

3.1. Dirichlet mixture model. A Bayesian description of the model introduced in sub-
section 2.1 can be obtained by including a prior for the physical properties P . More precisely,
we introduce the following prior for the vectors v = v(P ) for a given number of objects K in
the observation window W composed of N pixels:

in|vn ∼ F(vn),(3.1)

p
(
vn
∣∣V ′) =

K∑
k=1

wkδ
(
vn − v′k

)
,(3.2)

where in = [in,S1 , . . . , in,SD ]T (for 1 ≤ n ≤ N) is the pixel intensity vector of the nth pixel, vn is

the parameter vector associated with the object containing the nth pixel, V ′ = [v′1, . . . ,v
′
K ]T ,



Algorithm 1. Generation of samples from a realization of a Dirichlet process.

Data: V0, α
Result: v1, v2, v3, . . .

1 for n ≥ 1 do
2 u ∼ Uniform(1, α+ n);
3 if u < n then
4 vn ← vbuc;

5 else
6 vn ∼ V0;

where v′k is the parameter vector associated with the kth cluster or object, and F(vn) is a dis-
tribution on the family F identified by the parameter vector vn. Introducing a cluster label for
each pixel in the observation window z = [z1, . . . zN ]T we obtain an equivalent model given by

in|zn ∼ F
(
v′zn
)
,(3.3)

zn ∼ CatK(w),(3.4)

where w = [w1, . . . , wK ]T and CatK(·) is the Kth dimensional categorical distribution.
After defining a prior for v′k and w, we can build a Bayesian framework [32] to estimate

the mixture parameters. In this paper, we have considered the following prior information:

v′k ∼ V0,(3.5)

w ∼ DirK(α),(3.6)

where V0 is a prior for the parameter vector v′k that depends on the application, and DirK(α)
denotes the classical conjugate prior for categorical distributions, i.e., the symmetric Dirichlet
distribution of dimension K and concentration parameter α. Applying these priors to a
mixture model results in the so-called Dirichlet mixture model. However, this model requires
knowing the parameter K a priori, which can be a problem. This problem was heuristically
solved in [50, 51] by testing different values of K within a predefined range, and by analyzing
the sensitivity of the change detector to the number of clusters K.

The BNP framework investigated in this paper allows this limitation to be removed by
making K unknown and unbounded. When K goes to infinity in the previous model, it
yields an infinite dimensional parameter vector w and a matrix V ′ with an infinite number
of columns. Estimating an infinite number of parameters is clearly untractable. The model
presented in the next section considers these parameters as intermediate and does not require
their estimation. The model leads to a finite number of vectors vn through the estimation of a
finite number of parameters, namely, the concentration parameter α and the distribution V0.

3.2. Dirichlet process mixture model. Define as V = [v1, . . . ,vN ] the matrix containing
the N random vectors vn, n = 1, . . . , N , where vn is associated with the nth pixel of the
observation window. Algorithm 1 shows an approach to generate these random vectors by
using an iterative algorithm (see [3, 19, 23, 39, 45]). However, since some of these vectors



are possibly repeated, we finally obtain K ≤ N different vectors that are denoted as v′k ,
k = 1, . . . ,K, associated with each object of the observation window. We can compute the
joint distribution of the N vectors v1, . . . ,vN by using the chain rule as explained in [26],

p(v1, . . . ,vN ) =

N∏
m=1

p(vm|v1, . . . ,vm−1) =

∏K
k=1 αΓ(Nk) pV0(v′k)

Γ(α+N)/Γ(α)
,(3.7)

where pV0 is the pdf associated with the distribution V0, and Nk is the number of vectors
vn taking the value v′k. This distribution can be factorized into two terms: the first one is
related to the particular values of v′k and the second one is related to the data partitioning.
The resulting conditional distribution of V given V ′ can be written

p
(
V
∣∣V ′) =

∏K
k=1 αΓ(Nk)

Γ(α+N)/Γ(α)
.(3.8)

It can be observed that the distribution of V |V ′ only depends on the cardinal of each partition
set and not on the order the vectors have been drawn. Thus, any random vector can be thought
of as if it was the last drawn vector, meaning that these random vectors are exchangeable.
Using the “de Finetti’s theorem” [42], one can show that the vectors vn are conditionally
independent given a latent distribution V. In this case, V is defined by the pdf

pV(vn) =
∞∑
k=0

wk δ
(
vn − v′k

)
(3.9)

with

v′k ∼ V0,(3.10)

wk = w′k

k−1∏
j=1

(1− w′j),(3.11)

w′k ∼ Beta(1, α),(3.12)

where (3.11) and (3.12) are known as a stick breaking process denoted as SBP(α), which
can be thought of as a generalization of DirK(α) for K → ∞. The parameter α controls
the concentration of the variables wk. Small values of α provide few values for the discrete
distribution V containing most of the probability, while high values of α provide reduced
sparsity in the distribution V, leading to a uniform distribution. The vectors vn defined by
(3.9) tend to be grouped into clusters. As will be discussed in subsection 3.4, the expected
number K of different clusters given that the windows contains N pixels is

E(K|α,N) = α[ψ(α+N)− ψ(α)],(3.13)

where ψ(·) denotes the digamma function. Note that limα→∞ E(K|α,N) = N , since N sam-
ples can generate at most N clusters.



A Dirichlet process DP(V0, α) is a stochastic process whose realizations are probability
distributions V, so that the vectors vn in Algorithm 1 can be described as

vn ∼ V,(3.14)

V ∼ DP(V0, α).(3.15)

Note that the Dirichlet process is often chosen as the conjugate prior for infinite discrete
distributions. The relevance of Algorithm 1 is that it provides a method to generate samples
vn from a distribution V with an infinite number of parameters only from its Bayesian priors
without requiring the direct computation of its parameters. The finite mixture model in
subsection 2.1 can thus be extended through a BNP framework into a Dirichlet process mixture
model (DPMM),

in|vn ∼ F(vn),(3.16)

vn ∼ V,(3.17)

V ∼ DP(V0, α),(3.18)

where V0 is the base distribution and α is the concentration parameter.

3.3. Parameter estimation. To estimate the parameters vn of a DPMM, we suggest use
of a Markov chain Monte Carlo (MCMC) algorithm based on a collapsed Gibbs sampler [9].
Introducing the cluster labels for each pixel of the observation window z = [z1, . . . , zN ], we
obtain the equivalent model

in|zn ∼ F
(
v′zn
)
,(3.19)

zn ∼ Cat∞(w),(3.20)

w ∼ SBP(α),(3.21)

v′k ∼ V0,(3.22)

where Cat∞(w) is an infinite dimensional generalization of the categorical distribution such
that p(zn = k) = wk for any k ∈ N∗. This parametrization is equivalent to the one defined
by (3.16)–(3.18) but makes explicit that the pixels in, for n = 1, . . . , N , are partitioned into
different clusters. Moreover, (3.20) and (3.21) define the so-called Chinese restaurant process
CRP(α). Thus, the model can be reduced to

in|zn ∼ F
(
v′zn
)
,(3.23)

z ∼ CRP(α),(3.24)

v′k ∼ V0.(3.25)

The advantage of this last parametrization is that it allows the parameters v′k to be inte-
grated out, leading to a partially collapsed Gibbs sampler [62]. More precisely, to estimate
the latent variables z, we can sample from p(z|I,V0), where I = [i1, . . . , iN ]. The Gibbs
sampler is an iterative algorithm that samples sequentially the conditional probabilities of
each variable with respect to (w.r.t.) the other variables. For the proposed problem, samples



from p
(
zn
∣∣z\n, I,V0

)
are generated, where z\n = [z1, . . . , zn−1, zn+1, . . . , zN ]. This conditional

probability can be obtained as follows:

p
(
zn
∣∣z\n, I,V0

)
∝ p(I|z,V0)p

(
zn
∣∣z\n),(3.26)

where ∝ means “proportional to,” and p
(
zn
∣∣z\n) can be obtained using p(z) = p(V |V ′) and

(3.8). More precisely, the following result can be obtained:

p
(
zn
∣∣z\n) = p(z)× p

(
z\n
)−1

=

∏K∗

k=0 αΓ(Nk)

Γ(α+N)/Γ(α)
× Γ(α+N − 1)/Γ(α)∏K∗

k=1 αΓ[Nk − 1k(zn)]
(3.27)

=

{
α

α+N−1 if zn = 0,
N ′zn

α+N−1 if 1 ≤ zn ≤ K∗,
(3.28)

where 1k(zn) is the indicator function, K∗ is the number of different values in z at the nth
iteration, N ′zn is the number of pixels in the cluster indicated by zn (excluding zn), and zn = 0
when a new cluster is created. Note that (3.27) incurs in an abuse of notation requiring to
define Γ(0) = 1

α , so that empty clusters do not affect the equation (e.g., for k = 0 and zn 6= 0).
The probability p(I|z,V0) is obtained by marginalizing out V ′ from the likelihood p(I|z,V ′)
as follows:

p(I|z,V0) =

∫
p
(
I
∣∣z,V ′)p(V ′∣∣V0

)
dV ′ =

K∏
k=1

∫
p
(
I{k}

∣∣v′k)p(v′k∣∣V0

)
dv′k(3.29)

=
K∏
k=1

p
(
I{k}

∣∣V0

)
,(3.30)

where I{k} = {in : zn = k}. Note that V ′ is not required to estimate the vector of latent
variables z. Straightforward computations lead to

p
(
zn
∣∣z\n, I,V0

)
=

Nzn − 1

α+N − 1

K∏
k=1

p
(
I{k}

∣∣V0

)
.(3.31)

Removing all factors that do not depend on zn, we obtain

p
(
zn
∣∣z\n, I,V0

)
∝

 α p(in|V0) if zn = 0,

N ′zn
p(I{zn}|V0)

p(I{zn}\n|V0) if 1 ≤ zn ≤ K,(3.32)

where I{zn}\n = {im : zm = zn,m 6= n}. Moreover, when I{k}
∣∣V0 belongs to a distribution

family that can be described using a sufficient statistic T
(
I{k}

)
such that pI

(
I{k}

∣∣V0

)
=

pT

(
T
(
I{k}

)∣∣V0

)
(e.g., for distributions belonging to an exponential family), we have T

(
I{k}

)
=

T
(
I{k}\n

)
+ T (in). This means that (3.32) can be easily computed just by keeping track of

T
(
I{k}

)
for each cluster.

Algorithm 2 shows the implementation of the described approach, where jmax is the max-
imum number of samples to generate and T k is the sufficient statistics for the kth cluster.



Algorithm 2. A collapsed Gibbs sampler to sample from the partition distribution.

Data: I = [i1, . . . , iN ], V0, α, jmax

Result: Z =

[[
z

(1)
1 , . . . , z

(1)
N

]T
, . . . ,

[
z

(jmax)
1 , . . . , z

(jmax)
N

]T]
1 z

(0)
n ← 0 ∀ 1 ≤ n ≤ N ;

2 K ← 0;
3 for j : 1 ≤ j ≤ jmax do

4 z
(j)
n ← z

(j−1)
n ∀ 1 ≤ n ≤ N ;

5 for n : 1 ≤ n ≤ N , in random order do
/* Remove the n-th pixel from its current class */

6 if z
(j)
n 6= 0 then

7 T
z
(j)
n
← T

z
(j)
n
− T (in); N

z
(j)
n
← N

z
(j)
n
− 1;

/* Sample a new class for the n-th pixel */

8 p0 ← α pT (T (in)|V0);

9 pk ← Nk
pT (T k+T (in)|V0)

pT (T k|V0) ∀ 1 ≤ k ≤ K;

10 z
(j)
n ∼ Cat

(
p0∑K
i=0 pi

, p1∑K
i=0 pi

, . . . , pK∑K
i=0 pi

)
;

/* Place the n-th pixel in its new class */

11 if z
(j)
n = 0 then

12 K ← K + 1; z
(j)
n ← K;

13 TK ← T (in); NK ← 1;

14 else
15 T

z
(j)
n
← T

z
(j)
n

+ T (in); N
z
(j)
n
← N

z
(j)
n

+ 1;
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Figure 2. Label histograms for zn generated by the proposed algorithm for three different pixels.

The proposed Gibbs sampler produces jmax samples for each zn. The first jmin iterations are
considered as a burn-in period, and the corresponding samples are discarded. For jmin big

enough the samples z
(jmin+1)
n , . . . , z

(jmax)
n are distributed according to the joint distribution of

the sampled variables and can be used to estimate zn. Figure 2 shows typical histograms of zn
generated by the algorithm for three zn (note that the actual numerical value of the variables
were replaced by categorical values from 1 to 10 for scale reasons). It can be observed that



the first two cases correspond to pixels that can be easily assigned to a particular class, while
the third case corresponds to a pixel whose class is not clearly defined. A point estimation

of zn can be obtained by considering the mode of z
(jmin+1)
n , . . . , z

(jmax)
n . However, confidence

intervals can also be obtained for zn and subsequent variables derived from ẑn, such as v̂n and
∆n (see section 5 for these derivations).

In order to estimate vn we consider a maximum a posteriori (MAP) estimator defined as

v′k = arg max
v′k

∏
j

∏
n

z
(j)
n =k

p
(
in
∣∣v′k)p(v′k),(3.33)

so that the density of vn can be similarly estimated using samples v
(j)
n = v

z
(j)
n

.

3.4. Prior for the concentration parameter. The selection of the concentration parame-
ter α in the model presented in subsection 3.2 has a direct influence on the number of objects
detected within an image. The probability p(K|α,N) has been studied in [1, 18] in the context
of a gamma prior for α, leading to

p(K|α,N) = SN (K)αK
Γ(α)

Γ(N + α)
,(3.34)

where SN (K) is the unsigned Stirling number. We recall that the unsigned Stirling numbers
follow the recursive relationship

SN (K) = (N − 1)SN−1(K) + SN−1(K − 1)(3.35)

with the boundary conditions S0(0) = 1 and SN (K) = 0 for K > N . Using (3.34), the
expected value of K given by (3.13) can be derived. This implies that the choice of α provides
information about the resulting number of objects. However, the number of objects within an
analysis window depends on several factors, including the image resolution, the window size,
and the particular scene being imaged (e.g., a rural area, an urban area). These conditions can
be a priori unknown or might exhibit strong variations within the image. To avoid problems
arising from an informative prior we propose to define and use a non-informative Jeffreys prior
for α. The Jeffreys prior for α associated with (3.34) is [35]

p(α|N) ∝

√√√√EK

[(
d

dα
log p(K|α,N)

)2
]
.(3.36)

To compute this expression, we start by deriving d
dα log p(K|α,N) using (3.34),

d

dα
log p(K|α,N) =

K

α
−
(

∆ψ
(0)
N (α) + α−1

)
,(3.37)

where ∆ψ
(i)
N (α) = ψ(i)(N + α) − ψ(i)(1 + α), ψ(·) is the digamma function, and ψ(i)(·) is its

ith derivative. Denoting m = ∆ψ
(0)
N (α) + α−1, we obtain

EK

[(
K

α
−m

)2
]

=
Γ(α)

Γ(N + α)

N∑
K=1

SN (K)αK
(
K

α
−m

)2

.(3.38)



Defining the number StN as the series

StN =

N∑
K=1

SN (K)αKKt,(3.39)

the squared binomial in (3.38) can be expanded to obtain

EK

[(
K

α
−m

)2
]

=
1

α2
S2
N − 2

m

α
S1
N +m2S0

N .(3.40)

By using (3.35), we obtain a closed form expression for S0
N ,

S0
N =

N∑
K=1

αKSN (K) = (N − 1)S0
N−1 + αS0

N−1 = (N + α− 1)S0
N−1.(3.41)

Solving the recursive relationship finally leads to

S0
N =

Γ(N + α)

Γ(α)
.(3.42)

Differentiating (3.39) and (3.42) w.r.t. α, we obtain

S1
N = S0

N αm,(3.43)

S2
N = S0

N

(
αm+ α2m2 + α2m′

)
,(3.44)

where m′ = dm
dα = ∆ψ

(1)
N (α)− α−2. This leads to

EK

[(
K

α
−m

)2
]

=
∆ψ

(0)
N (α)

α
+ ∆ψ

(1)
N (α)(3.45)

yielding the Jeffrey’s prior

p(α|N) = µN

√
∆ψ

(0)
N (α)

α
+ ∆ψ

(1)
N (α),(3.46)

where µN is a finite normalization constant greater than (N − 1)−1π−1, i.e., p(α|N) is a proper
prior (see Appendix A for a proof of this statement).

To include this prior for α in the Gibbs sampler, we need to compute its conditional
distribution. The conditional distribution of α depends exclusively on the partitioning z,
particularly, on the number of pixels to be partitioned, and the number of clusters in the
partition. The following results can be obtained:

p(α|K,N) ∝ p(K|α,N) p(α|N)

∝ SN (K)αK
Γ(α)

Γ(N + α)
p(α|N)(3.47)

∝ αK B(α,N) p(α|N),(3.48)



where B(α,N) = Γ(α)Γ(N)
Γ(N+α) is the beta function. As described in [18], we can simplify this ex-

pression by introducing a new random variable. Since the beta function can also be expressed
as B(α,N) =

∫ 1
0 t

α−1(1− t)N−1dt, we obtain

p(α|K,N) ∝ αK p(α|N)

∫ 1

0
tα−1(1− t)N−1dt.(3.49)

We can interpret (3.49) as a marginal distribution of

p(α, t|K,N) ∝ αK tα−1(1− t)N−1 p(α|N)1[0,1](t).(3.50)

In the MCMC scheme, we can sequentially sample t and α from

p(t|α,K,N) ∝ tα−1(1− t)N−1 1[0,1](t),(3.51)

p(α|t,K,N) ∝ αK tα−1 p(α|N),(3.52)

where (3.51) is a beta distribution, and (3.52) is defined as

p(α|t,K,N) ∝ αK tα−1

√
∆ψ

(0)
N (α)

α
+ ∆ψ

(1)
N (α).(3.53)

It can be easily shown that the marginal distribution p(α|t,K,N) behaves as a power law
distribution for α→ 0 and as a power law distribution with an exponential cutoff for α→∞,
i.e.,

p(t|α,K,N) = L∞(α|t,K,N)αK−
3
2 eα log t 1[0,1](t),(3.54)

p(α|t,K,N) = L0(α|t,K,N)αK−
1
2 1R+(α),(3.55)

where L∞(α|N) and L0(α|N) are slowly varying functions in ∞ and 0, respectively. For the
positive scale factor d, we obtain

lim
α→∞

L∞(α|N)

L∞(dα|N)
= 1,(3.56)

lim
α→0

L0(dα|N)

L0(α|N)
= 1.(3.57)

This behavior is difficult to replicate with most well-known distributions, especially due to
the mixed power law and exponential cutoff for α → ∞. However, this distribution can be
upperbounded by removing the power law behavior for α→∞. Indeed

p(α|t,K,N) ≤ L(α|t,K,N)αK−
1
2 eα log t,(3.58)

where L(α|t,K,N) is a bounded slowly varying function of α in ∞ and 0 and αK−
1
2 eα log t is

a gamma distribution with shape parameter K + 1
2 and scale parameter − 1

log t . A rejection
sampling approach [54] can be easily implemented as shown in Algorithm 3 and is included
at the end of each iteration in Algorithm 2.



Algorithm 3. Sampling the posterior distribution of α.

Data: α0, K, N
Result: α

1 t ∼ B(α0, N); M ←M(N,K, t);

2 α ∼ Γ
(
K + 1

2 ,− 1
log t

)
;

3 while u ∼ U(0, 1), u pΓ(α) < M p(α|N,K, t) do

4 α ∼ Γ
(
K + 1

2 ,− 1
log t

)
;

4. A DPMM-based MRF. This section explains how to account for spatial correlation in
the parameter estimation for the image model studied in section 3.2. An MRF is introduced
as a prior for the latent variables z = [z1, . . . , zN ]. At this point, it is interesting to mention
the work of [16, 41] that defined an MRF for the cluster distribution parameters v′k. However,
since we want to prevent sampling from v′k by using a collapsed Gibbs sampler, we have to
apply the MRF to the labels z. Subsection 4.1 reviews some MRF concepts needed to build
an appropriate prior for the latent variables. Subsection 4.2 explains how to couple this prior
with the DPMM model introduced in section 3 and presents the resulting algorithm.

4.1. Markov random field. A classical tool to capture spatial correlation between adja-
cent pixels of an image is the MRF, which allows a joint distribution to be defined using a
neighborhood graph. Let z = {z1, . . . , zN} be a group of random variables and G be a simple
weighted graph [31]. The vertices of G represent the different random variables zn, while the
weighted edges represent some affinity between the connected random variables. The random
vector z is an MRF if the distribution of one variable zn of this vector conditionally to the
other variables z\n is only dependent on the variables belonging to its neighborhood, i.e.,

p
(
zn
∣∣z\n) = p

(
zn
∣∣zne(n)

)
,(4.1)

where zne(n) is the group of random variables that belong to the neighborhood of zn, i.e.,
that are connected by an edge to zn. However, constructing a joint distribution such that
its conditional distribution verifies (4.1) is not trivial. In particular, defining the conditional
distributions independently can result in an improper joint distribution. The Hammersley–
Clifford theorem [30] gives a necessary and sufficient condition ensuring the existence of the
joint distribution. This condition states that p(z) should factorize over the cliques C of G (we
recall that a clique of an undirected graph is a subset of vertices where any two vertices are
connected by an edge). This is equivalent to defining p(z) = exp [H(z)] and requiring that

H(z) =
∑
C∈C

HC(zC),(4.2)

where H(·) is the so-called graph cost function, HC(·) is a local cost function for the clique
C, and zC = {zn : n ∈ C}. Define Hn(z) as all the terms in H(z) involving zn, i.e.,

Hn(z) =
∑

C∈C,n∈C
HC(zC) = hne(n)

(
zne(n)

)
+ hn(zn),(4.3)



where hn(zn) is a cost function for the 1-vertex clique associated with the nth vertex and
hne(n)

(
zne(n)

)
is a cost function associated with its neighborhood. The resulting conditional

distribution p
(
zn
∣∣z\n) can be written

p
(
zn
∣∣z\n) ∝ exp [Hn(z)].(4.4)

4.2. MRF prior. The random variables z define a partition of the data. They are discrete
random variables taking a categorical value associated with the pixel clusters. Since they take
categorical values, the sole interaction between zn and zm should consist of evaluating whether
they have the same value. This is obtained by a cost function that follows a Potts model [47],

H
(
zn
∣∣z\n) = Hn(zn) +

∑
m∈ne(n)

ωnm 1zn(zm) = Hn(zn) +
∑

m∈ne(n)
zn=zm

ωnm,(4.5)

where 1zn(·) is the indicator function, and ωnm is the weight of the edge connecting vertices
n and m. However, an arbitrary cost function Hn(zn) can be chosen. In this work, we have
considered Hn(zn) = log p(zn|In,V ). Since this term does not depend on any zm for m 6= n,
this cost function defines a valid MRF with

p
(
zn
∣∣z\n, In,V ) ∝ p(zn|In,V )

∏
m∈ne(n)
zn=zm

eωnm .(4.6)

It is interesting to note that by setting all the weights to ωnm = 0 (i.e., by removing spatial
correlation), the suggested model reduces to the DPMM model described in section 3.

The next step is to integrate out V from (4.6). Using the properties of a DPMM, the
following result is obtained:

∫
p(zn|In,V )p

(
V
∣∣z\n, I\n,V0

)
dV ∝

 α p(In|V0) if zn = 0,

N ′zn
p(I{zn}|V0)

p(I{zn}\n|V0) if 1 ≤ zn ≤ K.(4.7)

As a consequence, integrating out V from p
(
zn
∣∣z\n, In,V ) leads to

∫
p
(
zn
∣∣z\n, In,V )p(V ∣∣z\n, I\n,V0

)
dV =

∫
p(zn|In,V )

∏
m∈ne(n)
zn=zm

eωnm p
(
V
∣∣z\n, I\n,V0

)
dV

(4.8)

∝

 α p(In|V0) if zn = 0,

N ′zn
p(I{zn}|V0)

p(I{zn}\n|V0)
∏
m∈ne(n)
zn=zm

eωnm if 1 ≤ zn ≤ K,(4.9)

which is the conditional probability of the DPM-MRF model that has to be included in the
partially collapsed Gibbs sampler. It should be noted that the only difference between (4.9)
and (3.32) is that the DPM-MRF conditional distribution requires defining a set of weights



relating a pixel with its neighbors and keeping track of which pixels in the neighborhood
belong to the same class.

In order to guarantee the MRF homogeneity, the weight relating a pixel to its neighborhood
is defined by an isotropic function of the spatial distance between the pixels m and n (denoted
as dmn) such that

lim
dmn→∞

ω(dmn) = 0,(4.10)

which means “the more distant two pixels, the less correlated their classes.” More precisely,
the function we have chosen is a Gaussian pdf that verifies (4.10) and has a maximum for
dmn = 0, which is expressed as

ω(dmn|λ, σ) = λ exp

(
−d

2
mn

σ2

)
,(4.11)

where λ controls the influence of the MRF in the model, and σ controls the neighborhood
size. For computational simplicity, we have chosen to set ω(dmn) = 0 for dmn > 5σ.

Algorithm 4 summarizes the resulting parameter estimation algorithm for the DPM-MRF
based on a collapsed Gibbs sampler. Note that each cluster keeps track of the pixels it contains
though the sufficient statistics T k and that each pixel in keeps track of the influence of the
surrounding pixels through hn,k. Note also that the DPMM parameter α is estimated from
its posterior distribution at the end of the algorithm.

5. Similarity measure. As described in subsection 2.2, the similarity measure obtained
in (2.14) is based on the distance between the vectors v̂′k and the “no-change” manifold
M (the “no-change” manifold is the manifold spanned by vectors v′k obtained when there
is no change). We recall that the variable v′k is obtained as a MAP estimation from the
labels zn, which are estimated through the BNP-MRF framework. Figure 3 shows a directed
acyclic graph highlighting the relationship between the different variables, where v′k, zn, and α
parametrize the BNP description of vn, while z\n, σ, and λ parametrize the MRF constraint
on the variable zn.

In previous works [50, 51], we suggested decomposing some images (or some parts of
images) not affected by changes in analysis windows producing a set of vectors v̂′k for each
class that were used to learn the “no-change” manifold. This strategy was motivated by the
fact that it was not possible to compute vectors v̂n for individual pixels. More precisely,
the similarity measure considered in [50, 51] was computed for an analysis window W as the
weighted average of the distances between the vectors v̂k and the manifold M leading to the
following change detection rule:

∆W

H0

≷
H1

τ−1,(5.1)

where

∆W =
K∑
k=1

wkpv̂(v̂k).(5.2)

Conversely, the BNP parameter estimation algorithm investigated in this paper produces a
hard classification of the image pixels, resulting in an estimated vector v̂n for each of the



Algorithm 4. A collapsed Gibbs sampler implementing a DPM-MRF parameter esti-
mator with unknown α.
Data: I = [i1, . . . , iN ], V0, λ, σ, jmax

Result: Z =

[[
z

(1)
1 , . . . , z

(1)
N

]T
, . . . ,

[
z

(jmax)
1 , . . . , z

(jmax)
N

]T]
1 z

(0)
n ← 0 ∀ 1 ≤ n ≤ N ;

2 K ← 0;
3 α← 1;

4 ωnm ← λ exp
(
−d2mn

σ2

)
∀ 1 ≤ n ≤ N, m ∈ δ(n);

5 for j : 1 ≤ j ≤ jmax do

6 z
(j)
n ← z

(j−1)
n ∀ 1 ≤ n ≤ N ;

7 for n : 1 ≤ n ≤ N , in random order do
/* Remove the n-th pixel from its current class */

8 if z
(j)
n 6= 0 then

9 T
z
(j)
n
← T

z
(j)
n
− T (in); N

z
(j)
n
← N

z
(j)
n
− 1;

10 h
m,z

(j)
n
← h

m,z
(j)
n
− ωmn ∀m ∈ δ(n);

/* Sample a new class for the n-th pixel */

11 p0 ← α pT (T (in)|V0);

12 pk ← Nk
pT (T k+T (in)|V0)

pT (T k|V0) ehn,k ∀ 1 ≤ k ≤ K;

13 z
(j)
n ∼ Cat

(
p0∑K
i=0 pi

, p1∑K
i=0 pi

, . . . , pK∑K
i=0 pi

)
;

/* Place the n-th pixel in its new class */

14 if z
(j)
n = 0 then

15 K ← K + 1; z
(j)
n ← K;

16 TK ← T (in); NK ← 1;
17 hm,K ← ωmn ∀m ∈ δ(n);
18 hm,K ← 0 ∀m 6∈ δ(n);

19 else
20 T

z
(j)
n
← T

z
(j)
n

+ T (in); N
z
(j)
n
← N

z
(j)
n

+ 1;

21 h
m,z

(j)
n
← h

m,z
(j)
n

+ ωmn ∀m ∈ δ(n);

/* Estimate the new α */

22 t ∼ B(α,N); M ←M(N,K, t);

23 α ∼ Γ
(
K + 1

2 ,− 1
log t

)
;

24 while u ∼ U(0, 1), u pΓ(α) < M p(α|N,K, t) do

25 α ∼ Γ
(
K + 1

2 ,− 1
log t

)
;
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Figure 3. Directed acyclic graph highlighting the relationship between the different variables (variables
inside circles are fixed, whereas those in squares are estimated by the proposed approach).

N pixels in W . This remark suggests that the following BNP change detection strategy can
be applied on a pixel by pixel level:

∆n

H0

≷
H1

τ−1,(5.3)

where

∆n = pv̂(v̂n)(5.4)

and where v̂n is the estimated parameter vector associated with the pixel n (which is shared
by all the pixels belonging to the same class). A direct consequence of the new detector defined
by (5.3) is the improved resolution of the final change detection map, as will be illustrated in
the experiments presented in the next section.

In order to evaluate the hypothesis test defined by (5.3), a point estimation of the test

statistic can be obtained using the last L iterations of the Gibbs sampler as ∆n = 1
L

∑
l ∆

(l)
n

(where ∆
(l)
n = pv̂(v̂

(l)
n )), which is the approach adopted in this paper. However, other statistics

can also be obtained. For instance, the cumulative distribution of ∆n conditionally to each
hypothesis can be obtained as

p(∆n < τ |Hi) =
1

L

L∑
l=1

1∆<τ

(
∆(l)
n

)
,(5.5)

where 1A(·) is the indicator function. This cumulative distribution is shown in Figure 4 for
three particular pixels. The distribution of ∆n|Hi is obtained from the values of zn sampled
from the Gibbs sampler, and thus, the number of steps observed in the CDF are dependent on
the number of considered iterations. Figures 4(a) and 4(b) correspond to pixels in unchanged
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Figure 4. Cumulative distribution p(∆n < τ |H0) for three different pixels. Figures 4(a) and 4(b) were
obtained from pixels in unchanged areas, while Figure 4(c) was obtained from a pixel in a changed area.

Figure 5. Decomposition of the image into overlapping windows (first row). The windows of each color
can be computed in parallel with the strategy in the second row.

areas, while Figure 4(c) corresponds to a pixel in a changed area. This can be observed in the
former providing a higher probability of H0 (no change) than the latter for almost all values
of τ . Moreover, it can also be observed that the middle plot is easier to classify as unchanged
than the first one.

6. Simulation results. This section presents simulation results obtained for different
datasets. The change detection results are compared with those obtained with different meth-
ods, namely, correlation coefficient [33], mutual information [33], conditional copulas [38]
(when available), and a previous version of the method presented in this paper based on the
EM algorithm [51].

It is important to note that the computational cost of the proposed algorithm as well as
the required memory do not allow very large images to be processed (for a neighborhood size
of 30× 30 pixels, the maximum practical image size is about 300× 300 pixels on a computer
with 8 GB of memory). Instead, the image is decomposed into a set of overlapping windows
and the proposed algorithm is run for each of these windows. More precisely, the adopted
approach was constructed considering parallelization of the problem by assuming that the
interpixel dependency decreases with the distance between the pixels. It involves the following
steps:

• Dividing the image into a grid of overlapping windows. In our simulations, we have
considered four sets of nonoverlapping windows as depicted in the first row of Figure 5.



(a) Synthetic optical image. (b) Synthetic SAR image. (c) Ground truth.
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Figure 6. Results obtained by applying the proposed method with a dataset consisting of two synthetic
heterogeneous optical and SAR images.

• Running the BNP-MRF algorithm for all the windows in each set, as depicted in the
second row of Figure 5 and explained below:

1. Run the algorithm on all the red windows. Note that these windows can be
analyzed in parallel since they do not overlap.

2. Run the algorithm on the light blue pixels, without resampling the pixels
already considered in the previous step (dark blue and gray areas). Note that
this sampling requires using the pixels belonging to the dark blue areas (which
have been processed in the first step).

3. Repeat for windows in the green set.
4. Repeat for windows in the yellow set.

• Merging the samples of zn obtained for all windows to obtain the whole image.
It is important to note that this approach does not allow the use of overlaps ≥50% of the
window size. Thanks to the use of overlapping windows, the resulting label map zn is spatially
smooth, as opposed to nonoverlapping windows.

6.1. Synthetic data. Figure 6 presents the simulation results obtained on a dataset con-
sisting of two heterogeneous synthetic images. Figure 6(a) is a synthetic optical image, while
Figure 6(b) is a synthetic image representing the intensity channel of a SAR image. Fig-
ure 6(c) displays the ground truth showing in black the areas of the image that have been
affected by changes.



To obtain ∆n, the labels zn were computed using windows of size 100 × 100, which was
chosen to optimize the processing time. The neighborhood graph defined by ω(dmn|λ, σ) was
obtained with λ = 30 and σ = 6, with ω(dmn) = 0 for dmn ≥ 30. This choice of σ is due
to the fact that the scene contains mostly big objects. A second test was performed with
a neighborhood size of 0 (which removes all the effects produced by the MRF) in order to
analyze the incidence of the MRF in the proposed model (this test is denoted as BNP in
Figure 6(f)). The windows were processed using an overlap of 30 pixels in order to ensure
the continuity of the spatial correlation in zn. The values v̂n were obtained by computing the
maximum likelihood estimator of vn using I{zn}, while the manifold M was estimated using
1% of the pixels randomly selected from unchanged areas.

Figure 6(d) shows ∆n, the computed distance to the manifold M, while Figure 6(e)
shows the corresponding distance ∆W obtained with the change detection method studied
in [50, 51], where red corresponds to a large value of ∆n and ∆W , respectively. It can be
observed that Figure 6(d) provides a more accurate change detection compared to Figure 6(e),
which is highlighted in the circular zoom area. Figure 6(f) compares the receiver operating
characteristics (ROC) [46] obtained with our method and with other classical methods.1 This
comparison leads to the following conclusions:

• The proposed BNP-MRF model provides better results than the model introduced
in [50, 51] (referred to as EM) for this example.

• The BNP framework without the MRF does not provide any significant improvement
when compared to the EM method with a number of clusters optimized for this im-
age. However, the BNP model does not require a careful selection of a minimum and
maximum number of clusters.
• The introduction of the MRF provides a significant improvement for the change de-

tection performance.
If we consider the working situation defined by equal PFA and probability of nondetection
(1− PD), the method in [50, 51] provides an error rate of 5.52%, while the method proposed
in this paper yields an error rate of 4.18%, which represents a reduction of 24%.

6.2. Real data.

6.2.1. Real homogeneous optical images. The first experiment considers a pair of im-
ages from an urban area in the south of Toulouse, France, acquired by Pleiades satellites
within a time period of 16 months and characterized by some new constructions. Figures 7(a)
and 7(b) display multispectral images with four spectral bands (blue, green, red and infrared)
obtained by pansharpening the 2-m resolution multispectral image using the 50-cm resolution
panchromatic image obtained by the satellite. Figure 7(c) shows the ground truth provided
by a photo-interpreter indicating in black the areas affected by changes.

To obtain ∆n, the labels zn were computed on windows of size 200×200, which was deter-
mined based on the system memory and processing power. The neighborhood graph defined
by ω(dmn|λ, σ) was obtained with λ = 60 and σ = 1, with ω(dmn) = 0 for dmn ≥ 5. The choice
of a small value for σ is due to the fact that the scene corresponds to an urban area consisting

1These results were obtained using window sizes optimized by cross validation, to produce the best per-
formance for each method. More precisely, we obtained window sizes of 20 × 20 for [51] and 40 × 40 for the
correlation coefficient and the mutual information, in all cases with an overlap of 50%.



(a) Pleiades image – May 2012 (b) Pleiades image – Sept. 2013 (c) Ground truth.

(d) Distance ∆n. (e) Distance ∆W .
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Figure 7. Results obtained by applying the proposed method with a dataset consisting of two real homoge-
neous optical images.

mostly of small objects. A second test was performed with a neighborhood size of 0 (which
removes all the effects produced by the MRF) in order to analyze the incidence of the MRF in
the proposed model (this test is denoted as BNP in Figure 7(f)). The windows were processed
using an overlap of five pixels in order to ensure the continuity of the spatial correlation in
zn. The values v̂n were obtained by computing the maximum likelihood estimator of vn using
I{zn}, while the manifold M was estimated using 1% of the pixels randomly selected from
unchanged areas.

Figures 7(d) and 7(e) show the estimated distances ∆n and ∆W obtained with the proposed
BNP-MRF model, and the model of [51] respectively.2 It can be observed that Figure 7(d)
provides a more accurate change detection compared to Figure 7(e), which is highlighted in
the circular zoom area. This improved performance is confirmed in the ROCs displayed in
Figure 7(f), leading to the following conclusion:

• Unlike the previous example in Figure 6(f), the introduction of the BNP framework
without the MRF provides a slight improvement compared to the EM method with
an optimized number of clusters. This can be explained by a higher variance in the
size of the objects contained in the image.

2These results were obtained using window sizes optimized by cross validation, to produce the best per-
formance for each method. More precisely, we obtained window sizes of 40 × 40 for [51], for the correlation
coefficient and the mutual information, in all cases with an overlap of 50%.



(a) Pleiades image – May 2012 (b) Google Earth – July 2013 (c) Ground truth.

(d) Distance ∆n. (e) Distance ∆W .
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Figure 8. Results obtained by applying the proposed method with a dataset consisting of two real heteroge-
neous optical images.

• As for synthetic data, the BNP-MRF model provides a significant improvement for
the change detection when compared to the BNP and EM approaches.

If we consider the working situation defined by PFA = 1 − PD, the method in [50, 51] leads
to an error rate of 16.5%, while the proposed method yields an error rate of 9.62%, which
represents a reduction of 42%.

It is interesting to note that since the images are homogeneous, the pixel intensity of both
images is linearly dependent. This remark explains why the correlation coefficient and the
mutual information perform very similarly for this example.

6.2.2. Real heterogeneous optical images. The second simulation studies a pair of im-
ages from a urban area, in the same geographical position as the dataset used in subsec-
tion 6.2.1 also characterized by some construction works made within a 14-month time in-
terval. Figure 8(a) is identical to Figure 7(a), while Figure 8(b) is a three-channel image
obtained from Google Earth which has been downsampled to match the 50-cm resolution of
the Pleiades image. Figure 8(c) shows the ground truth provided by a photo-interpreter in-
dicating in black the areas affected by changes. The estimated values of ∆n are displayed in
Figure 8(d). Note that the simulation scenario considered to obtain zn, ∆n, and v̂n was the
same as the one used in subsection 6.2.1.



(a) Google Earth – Dec. 2006. (b) TerraSAR-X – July 2007. (c) Ground truth.

(d) Distance ∆n. (e) Distance ∆W .
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Figure 9. Results obtained by applying the proposed method with a dataset consisting of two real heteroge-
neous optical and SAR images.

Figures 8(d) and 8(e) show the estimated distances ∆n and ∆W obtained with the pro-
posed BNP-MRF model and the model of [50, 51], respectively.2 It can be observed that
Figure 8(d) provides an improved change detection compared to Figure 8(e), which is high-
lighted in the circular zoom area. As in the previous datasets, a second test was performed
with a neighborhood size of 0 (i.e., without MRF) in order to analyze the incidence of the
MRF in the proposed model (this test is denoted as BNP in Figure 8(f)). Figure 8(f) com-
pares the ROCs obtained with the different methods, highlighting the interest of the proposed
BNP-MRF model. If we consider the working situation defined by PFA = 1−PD, the method
studied in [50, 51] yields an error rate of 15.6%, while the proposed method leads to an error
rate of 10.7%, which represents a reduction of 31%.

It should be noted that since these images are heterogeneous, the pixel intensity in both
images is not necessarily linearly dependent. This results in a significant performance reduc-
tion when the correlation coefficient is used as a similarity measure. However, the performance
of the proposed change detector as well as the other two methods, which are adapted to het-
erogeneous images, is very similar to what was obtained in the first experiments.

6.2.3. Real heterogeneous optical and SAR images. The last experiment considers a
pair of images from a mixture of urban and rural areas, near Gloucester before and during
flooding. Figure 9(b) is the intensity channel of an image captured by a TerraSAR-X satellite
with pixel resolution of 7.3 m. Figure 9(a) is a three-channel image obtained from Google
Earth which has been downsampled to match the pixel resolution of the TerraSAR-X image.
Figure 9(c) presents the ground truth provided by a photo-interpreter indicating in black the
areas affected by the flooding.



0 1
0

1

PFA

P
D

0.1%

1%

10%

20%

0 1
0

1

PFA

P
D

0.1%

1%

10%

20%

Figure 10. Result of the change detection method on the Pleiades dataset using different percentages of the
unchanged data for training.

To obtain ∆n, the labels zn were computed on windows of size 200 × 200, which was
determined based on the system memory and processing power. The neighborhood graph
defined by ω(dmn|λ, σ) was obtained with λ = 60 and σ = 6, with ω(dmn) = 0 for dmn ≥ 30.
The choice of σ was motivated by the fact that the scene corresponds mostly to a rural area
with big homogeneous regions. As in the previous datasets, a second test was performed with
a neighborhood size of 0 (i.e., without MRF) in order to analyze the incidence of the MRF
in the proposed model (this test is denoted as BNP in Figure 9(f)). The estimates v̂n were
obtained by computing the maximum likelihood estimator of v using I{zn}, while the manifold
M was estimated using 1% of the pixels randomly selected from unchanged areas.

Figures 9(d) and 9(e) show the estimated distances ∆n and ∆W obtained with the proposed
BNP-MRF model and the model of [50, 51], respectively.3 It can be observed that Figure 9(d)
provides a better change detection compared to Figure 9(e), which is highlighted in the circular
zoom area. Figure 9(f) shows the ROCs obtained with our method and with alternative
strategies showing the interest of the proposed BNP-MRF strategy. If we consider the working
situation where PFA = 1−PD, the method of [50, 51] yields an error rate of 14.6%, while the
proposed approach leads to an error rate of 8.19%, which represents a reduction of 44%.

6.3. Influence of the training data. In the simulation results presented previously, a
small percentage of the pixels from unchanged regions was used to learn the manifold. This
section studies the influence of the size of the data fraction selected to learn the manifold.

For this purpose, the manifold associated with the dataset displayed in Figure 7 was
learned using 0.1%, 1%, 10%, and 20% of the pixels contained in unchanged areas. Figure 10
shows that the ROCs obtained in the different cases do not change significantly and the
detector performance remains stable as long as all kinds of unchanged objects within the
image are well represented.

6.4. Influence of the Jeffreys prior for α. In [18] a gamma prior was assigned to the
parameter α for its inference. However, the parameters of this gamma prior (usually referred

3These results were obtained using window sizes optimized by cross validation, to produce the best per-
formance for each method. More precisely, we obtained window sizes of 10 × 10 for [51] and 20 × 20 for the
correlation coefficient and the mutual information, in all cases with an overlap of 50%, and finally windows of
size 9× 9 for [38] with an overlap of eight pixels.
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Figure 11. Influence of the Jeffreys prior compared to the different parameters of the gamma prior. These
results were obtained for a synthetic image generated with α = 1.

to as hyperparameters) have an influence on the resulting number of clusters K detected
within the image. This section compares the quality of the estimation of parameter α when
this parameter is assigned a gamma prior or the Jeffreys prior (3.46). Let us point out here
that the Jeffreys prior derived in subsection 3.4 as well as the normalization proof provided in
Appendix A correspond to the BNP model of section 3 without the MRF extension. For this
comparison, a synthetic image was generated as in subsection 6.1 with α = 1. The results of 10
Monte Carlo runs of the proposed BNP algorithm were used to estimate the clusters associated
with this dataset. Moreover, the samples of α were used to estimate this parameter (using
the minimum mean square estimator) and to compute the corresponding confidence intervals.
Several runs of the proposed BNP algorithm were executed on the synthetic data to estimate its
clusters, and the sampled values of α were registered. Figure 11 displays the results obtained
for different values of the mean of the gamma prior (denoted as E(α)) and for the Jeffreys
prior. The parameters of the gamma prior were chosen to obtain different values of E(α) while
maintaining a variance of 1 (i.e., a big enough variance). The color lines show the average
evolution of α̂ for each iteration (whereas the shaded areas display confidence intervals defined
by mean ±3 standard deviations). The gamma prior provides good estimates of α when E[α]
is bigger than the actual value of α. However, it fails for other parameter values. Conversely,
the proposed Jeffreys prior does not require any hyperparameter to be adjusted and provides
an accurate estimation of α. This outlines the advantage of the noninformative Jeffreys prior
w.r.t. to the gamma prior used in [1, 18]. Note again that the Jeffreys prior studied in this
section does not consider the MRF part of the BNP model. However, there is empirical
evidence that this prior is weakly informative and leads to reasonable parameter estimates.

The mixing of the proposed sampler parameter can be assessed through the potential scale
reduction factor (PSRF) [25], where a PSRF close to 1 indicates a good mixing (a value of the
PSRF below 1.2 is recommended in [24, p. 332]). Figure 12 shows the PSRF values obtained
for the simulations in Figure 11 starting from the 10th iteration. In this case, the first half of
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Figure 12. PSRFs for the parameter α using different priors.

the iterations is considered as burn-in, and the second half is used to compute the PSRF. As
can be seen, all these PSRF values confirm good mixing of the proposed sampler.

A possible approach that would enable the use of a gamma prior is to systematically choose
a set of parameters that overestimate α. However, bigger values of α increase the number
of model classes K, producing a significant negative impact on the computation time (from
a few minutes for E[α] ≤ 1 to a whole day for E[α] = 1000) since K posteriors have to be
evaluated for each pixel at every iteration.

7. Conclusion. A statistical model was introduced in [50, 51] for detecting changes be-
tween different remote sensing images possibly acquired by heterogeneous sensors. This model
was based on a mixture distribution assuming that each estimation window contains a finite
number of homogeneous areas. The relations between the pixel intensities associated with the
images were defined by using a manifold whose parameters can be estimated using no-change
areas. This paper improved this change detection strategy by using several modifications.
First, a nonparametric approach was introduced to estimate the number of mixture compo-
nents belonging to each estimation window. Second, a noninformative prior was derived for
the concentration parameter of the resulting mixture model. Including this prior in the change
detection model of [50, 51] yielded interesting results obtained for different window sizes and
for different numbers of objects contained in these analysis windows. Finally, an MRF was
coupled with the BNP model to account for the spatial correlation present in remote sensing
images. These three modifications increased the robustness of the parameter estimation al-
gorithm, allowing bigger sizes for the analysis windows to be considered and thus improving
the parameter estimation accuracy. Moreover, the introduction of a Potts model led to a
classification pixel map allowing a pixel-level change detection strategy. The change detection
rule resulting from the proposed BNP model showed improved detection performance when
compared with existing strategies.

Theoretical prospects include the derivation of the Jeffreys prior associated taking into
account the MRF within the BNP model. It would also be interesting to study the effect of the
smoothness parameter of the MRF on the detection results. This paper focused on detecting
changes between optical and SAR images from the image intensities. However, the proposed



approach might also be interesting for other kinds of images such as hyperspectral images,
or for features computed from these images (i.e., wavelet coefficients). These problems are
currently under investigation. The application of the proposed methodology to heterogeneous
image registration, segmentation, or fusion is also an interesting prospect.

Appendix A. Proof that the Jeffreys prior of α is proper. The posterior arising from
the Jeffrey’s prior is normalizable. This is a direct consequence that p(α,N) is a proper prior.
We were not able to find an analytic expression for this normalization constant, but an upper
bound can be obtained as follows. Considering that

p(α|N) ∝
√
ψ(N + α)− ψ(α)

α
+ ψ1(N + α)− ψ1(α)(A.1)

∝
√
m

α
+m′,(A.2)

where ψ(·) is the digamma function, ψ1(·) is the first derivative of ψ(·), and m = ψ(N + α)−
ψ(α), we can prove that

∫∞
0 p(α|N) is bounded. The squared probability [p(α|N)]2 can be

expressed as

m

α
+m′ =

N−1∑
K=0

α−1

K + α
−
N−1∑
K=0

1

(K + α)2(A.3)

=

N−1∑
K=0

α−1K

(K + α)2 =

N−1∑
K=1

α−1K

(K + α)2 ,(A.4)

where the triangular inequality can be applied to obtain a bound on p(α) as follows:√
m

α
+m′ ≤

N−1∑
K=1

√
α−1K

(K + α)2 ,(A.5)

∫ ∞
0

√
m

α
+m′ dα ≤

N−1∑
K=1

∫ ∞
0

√
α−1K

(K + α)2 dα,(A.6) ∫ ∞
0

√
m

α
+m′ dα ≤ (N − 1)π,(A.7)

where the last equality has been obtained using
∫∞

0

√
α−1K

(K+α)2
dα = π ∀ K > 0.

REFERENCES

[1] C. E. Antoniak, Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems,
Ann. Statist., 2 (1974), pp. 1152–1174.

[2] Y. Bazi, L. Bruzzone, and F. Melgani, An unsupervised approach based on the generalized Gaussian
model to automatic change detection in multitemporal SAR images, IEEE Trans. Geosci. Remote
Sens., 43 (2005), pp. 874–887.

[3] D. Blackwell and J. MacQueen, Ferguson distributions via Pólya urn schemes, Ann. Statist., (1973),
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