

Massive MIMO Radar for Target Detection

S. Fortunati

Université Paris-Saclay, CNRS, CentraleSupélec, L2S & DR2I-IPSA,

Paris, France.

TéSA Scientific Seminar, Toulouse

Juin 28, 2023

Outline

Motivation: a robust target detection problem.

Main goals:

- 1. Derive a detector whose asymptotic distribution is invariant with respect to the unknown distribution of the disturbance.
- 2. Maximize the probability of detection (P_D) while keeping a constant probability of false alarm (P_{FA}) .

How to achieve it:

- 1. Increase the spatial degrees of freedom (DoF) using a co-colocated MIMO radar.^{1,2}
- 2. Robust and misspecified statistics (constant P_{FA}).¹
- 3. Reinforcement Learning (P_D maximization).²

¹S. Fortunati, L. Sanguinetti, F. Gini, M. S. Greco and B. Himed, "Massive MIMO Radar for Target Detection", in *IEEE Transactions on Signal Processing*, vol. 68, pp. 859-871, 2020.

²A. M. Ahmed, A. A. Ahmad, S. Fortunati, A. Sezgin, M. S. Greco and F. Gini, "A Reinforcement Learning Based Approach for Multitarget Detection in Massive MIMO Radar," *IEEE Transactions on Aerospace and Electronic Systems*, vol. 57, no. 5, pp. 2622-2636, Oct. 2021.

The target detection problem

Consider a multiple antenna radar system with N spatial channels, collecting K temporal snapshots {x_k}^K_{k=1} ∈ C^N.

Detection problem:

$$\begin{aligned} & \mathcal{H}_0: \quad \mathbf{x}_k = \mathbf{c}_k \qquad \quad k = 1, \dots, K, \\ & \mathcal{H}_1: \quad \mathbf{x}_k = \alpha_k \mathbf{v}_k + \mathbf{c}_k \quad k = 1, \dots, K, \end{aligned}$$

- $\mathbf{v}_k \in \mathbb{C}^N$: known at each time instant $k \in \{1, \dots, K\}$,
- α_k ∈ C: deterministic, *unknown*, scalar that may vary over k,
 C ≜ [c₁,..., c_k]: disturbance.

A decision statistic $\Lambda(\mathbf{X})$ needs to be implemented:

$$\Lambda(\mathbf{X}) \underset{H_0}{\overset{H_1}{\gtrless}} \lambda, \qquad \mathbf{X} \triangleq [\mathbf{x}_1, \dots, \mathbf{x}_K].$$

How to choose the threshold

The threshold λ should be chosen to maintain the P_{FA} below a pre-assigned value:

$$\Pr \left\{ \Lambda(\mathbf{X}) > \lambda | H_0 \right\} = \int_{\lambda}^{\infty} p_{\Lambda | H_0}(a | H_0) da = \overline{P_{FA}}.$$

▶ $p_{\Lambda|H_0}$ is the pdf of $\Lambda(\mathbf{X})$ under the null hypothesis H_0 .

Three simplifying assumptions are generally adopted:
 M1 {c_k}^K_{k=1} are i.i.d. over the observation interval,
 M2 α_k maintains constant over k: α_k ≡ α, ∀k,
 M3 The pdf p_C(C) = Π^K_{k=1} p_C(c_k) is perfectly known.

Perfectly matched GLR

- Under M1, M2 and M3, the Generalized Likelihood Ratio (GLR) statistic Λ_{GLR}(X) can be derived.
- Under H₀, as the number of temporal snapshots grows to infinity (K → ∞), we get:³

$$\Lambda_{\text{GLR}}(\mathbf{X}|H_0) \underset{K \to \infty}{\sim} \chi_2^2(0).$$

• Consequently, an asymptotic solution for λ is: $\overline{\lambda} = -2 \ln \overline{P_{FA}}$.

Is it possible to derive a detection statistic with the same asymptotic properties of $\Lambda_{GLR}(\mathbf{X})$ without relying on Assumptions M1, M2 and M3?

³S. S. Wilks (1938). "The large-sample distribution of the likelihood ratio for testing composite hypotheses," The Annals of Mathematical Statistics, 9 (1): 60–62, 1938.

Spatial asymptotic regime

We collect a single temporal snapshot (K = 1) and exploit the spatial dimension N:

$$H_0: \mathbf{x} = \mathbf{c}$$

 $H_1: \mathbf{x} = \alpha \mathbf{v} + \mathbf{c}$

This allows us to entirely drop Assumptions M1 and M2.

Note that, unlike in the temporal domain, the spatial samples x_1, \ldots, x_N cannot be considered as *independent* observations!

We use advances in robust and misspecified statistics ⁴ in the presence of *dependent data* to dispose of M3.

⁴ H. White and I. Domowitz, "Nonlinear regression with dependent observations," *Econometrica*, vol. 52, no. 1, pp. 143–161, 1984.

Co-located MIMO system model

We need radar systems with a large number N of spatial DoF: co-located MIMO radars

- *M_T* transmitting antennas,
- *M_R* receiving antennas,
- N ≜ M_T M_R: virtual spatial antenna channels.

Signal collected at the receiving array:

$$\mathbf{x}(t) = ar{lpha} \mathbf{a}_R(ar{\phi}) \mathbf{a}_T^T(ar{\phi}) \mathbf{s}(t - ar{ au}) e^{jar{\omega}t} + \mathbf{n}(t), \ t \in [0, T]$$

- $\mathbf{a}_{\mathcal{T}}(\phi) \in \mathbb{C}^{\mathcal{M}_{\mathcal{T}}}$: transmitting steering vector,
- $\mathbf{a}_R(\phi) \in \mathbb{C}^{M_R}$: receiving steering vector.

Continuous-time signal model

$$\mathbf{x}(t) = \bar{\alpha} \mathbf{a}_{R}(\bar{\phi}) \mathbf{a}_{T}^{T}(\bar{\phi}) \mathbf{s}(t - \bar{\tau}) e^{j\bar{\omega}t} + \mathbf{n}(t), \ t \in [0, T]$$

▶ $\mathbf{x}(t) \in \mathbb{C}^{M_R}$: array output vector at time t,

- ▶ $\mathbb{C}^{M_T} \ni \mathbf{s}(t) \triangleq \mathbf{W}\mathbf{s}_o(t)$: vector of transmitted signals
 - $\mathbf{W} \in \mathbb{C}^{M_{\mathcal{T}} imes M_{\mathcal{T}}}$ is the waveforms weighting matrix,
 - s_o(t): vector of *nearly* orthonormal signals,
- ▶ $\mathbf{n}(t) \in \mathbb{C}^{M_R}$: complex disturbance random process, or *clutter*.
- $\bar{\alpha} \in \mathbb{C}$ accounts for target RCS and two-way path losses.

Co-located MIMO radar

 $\bar{\alpha}$ is the same for each transmitter and receiver pair.

Discrete-time signal model (1/2)

- ► The output matrix $\mathbf{X}(l,k)$ of the filter matched to $\mathbf{s}_o(t)$ is:⁵ $\mathbb{C}^{M_R \times M_T} \ni \mathbf{X}(l,k) = \bar{\alpha} \mathbf{a}_R(\bar{\phi}) \mathbf{a}_T(\bar{\phi})^T \mathbf{WS}(l,k) + \mathbf{C}(l,k),$
- "Straddling loss" matrix:

$$\mathbf{S}(l,k) \triangleq \int_0^T \mathbf{s}_o(t-\bar{\tau}) \mathbf{s}_o^H(t-l\Delta t) e^{-j(k\Delta\omega-\bar{\omega})t} dt$$

Disturbance matrix:

$$\mathbf{C}(l,k) \triangleq \int_0^T \mathbf{n}(t) \mathbf{s}_o^H(t - l\Delta t) e^{-jk\Delta\omega t} dt.$$

▶ The range-Doppler indices (*I*, *k*) will be omitted next.

⁵B. Friedlander, "On signal models for MIMO radar," *IEEE Transactions on Aerospace and Electronic Systems*, vol. 48, no. 4, pp. 3655–3660, October 2012.

Discrete-time signal model (1/2)

The output matrix X can be expressed as:

$$\mathbb{C}^{\mathsf{N}}
i \mathsf{x} = \mathrm{vec}\left(\mathsf{X}
ight) = ar{lpha} \mathsf{v}(ar{\phi}) + \mathsf{c}$$

where $\mathbf{c} \triangleq \operatorname{vec}(\mathbf{C})$ and:

$$\mathbf{v}(\bar{\phi}) = (\mathbf{S}^T \otimes \mathbf{I}_{M_R}) \left[\mathbf{W}^T \mathbf{a}_T(\bar{\phi}) \otimes \mathbf{a}_R(\bar{\phi})
ight].$$

► If $\mathbf{n}(t)$ is a wide-sense stationary process, we have: $E\{\mathbf{n}(t)\} = \mathbf{0}, \forall t \Rightarrow E\{\mathbf{c}\} = \mathbf{0}$

$$E\{\mathbf{n}(t)\mathbf{n}(\tau)^H\} = \Sigma(t-\tau) \quad \Rightarrow \quad \Gamma \triangleq E\{\mathbf{cc}^H\}$$

$$\Gamma = \iint \left[\mathbf{s}_o^*(t - l\Delta t) \mathbf{s}_o^{\mathcal{T}}(t - l\Delta t) \otimes \mathbf{\Sigma}(t - \tau)
ight] e^{-jk\Delta\omega(t - \tau)} dt d au.$$

Fully uncorrelated disturbance model

Assumptions on the clutter process n(t):
 n(t) is spatially uncorrelated (along the receiving array),
 n(t) is also temporally uncorrelated (along T),

$$E\{\mathbf{n}(t)\mathbf{n}(\tau)^{H}\} = \Sigma(t-\tau) = \sigma^{2}\mathbf{I}_{M_{R}}\delta(t-\tau).$$

• If *perfect orthogonality* of the waveforms in $\mathbf{s}_o(t)$ is assumed:

$$\mathbf{\Gamma} = \sigma^2 \mathbf{I}_N = \begin{pmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \sigma^2 \end{pmatrix}$$

This is a simple but very unrealistic model!

Temporally uncorrelated disturbance model

• Assumption on the clutter process $\mathbf{n}(t)$:

1. $\mathbf{n}(t)$ is temporally uncorrelated (along T),

$$E\{\mathbf{n}(t)\mathbf{n}(\tau)^{H}\} = \Sigma(t-\tau) = \Sigma_{R}\delta(t-\tau).$$

• If perfect orthogonality of the waveforms in $\mathbf{s}_o(t)$ is assumed:

$$\Gamma = \mathbf{I}_{M_T} \otimes \boldsymbol{\Sigma}_R = \left(egin{array}{cccc} \boldsymbol{\Sigma}_R & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_R & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \boldsymbol{\Sigma}_R \end{array}
ight)$$

This is a more complex but still unrealistic model!

require **c** to be *Gaussian-distributed*.

⁶S. Fortunati, L. Sanguinetti, F. Gini, M. S. Greco and B. Himed, "Massive MIMO Radar for Target Detection", in *IEEE Transactions on Signal Processing*, vol. 68, pp. 859-871, 2020.

A more general disturbance models (2/2)

- More formally, let $\mathbf{c} = [c_1, \dots, c_N]^T$ be the disturbance vector.
- ▶ The entries $\{c_n\}_{n=1}^N$ can be considered as random variables sampled form a stationary discrete-time process $\{c_n : \forall n\}$.

Assumption A1: The autocorrelation function (ACF) of $\{c_n : \forall n\}$ satisfies

$$r_C[m] \triangleq E\{c_n c_{n-m}^*\} = O(|m|^{-\gamma})$$

where $m \in \mathbb{Z}$, $\gamma > \varrho/(\varrho-1)$, $\varrho > 1$.⁷

Note that we are not assuming any particular pdf p_C for c, that will be left unspecified!

¹H. White and I. Domowitz, "Nonlinear regression with dependent observations," *Econometrica*, vol. 52, no. 1, pp. 143–161, 1984.

- A stable ARMA(p, q) process, with finite p and q, satisfies Assumption A1 since its ACF decays exponentially fast.
- The second-order statistics of any discrete-time process with continuous Power Spectra Density (PSD) can be well-approximated by an ARMA model⁸.
- A subset of the general ARMA models are the autoregressive model of order p, AR(p).
- AR models share most of the properties of the ARMA models.

⁸J. Li and P. Stoica, *MIMO Radar Signal Processing*. Hoboken, NJ: Wiley, 2009.

A stable stationary AR(p) process {c_n : ∀n} is a discrete random process s.t.:

$$c_n = \sum_{i=1}^p \rho_i c_{n-i} + w_n, \quad n \in (-\infty, \infty).$$

- ► The innovations w_n are zero-mean, *circularly symmetric*, i.i.d. random variables with $E\{|w_n|^2\} = \sigma_w^2 < \infty$.
- The pdf of w_n, say p_W(w; φ) is generally non-Gaussian and may depends on an additional unknown *nuisance* vector φ.
- The ACF of a AR(p) process decays exponentially fast, so its satisfy Assumption A1.

Example 3: Compound Gaussian (CG) model

Any CG-distributed vector **c** admits a representation:

$$\mathbf{c} =_d \sqrt{\tau} \mathbf{z},$$

where:

- the *texture* τ is a positive random variable,
- the speckle $\mathbf{z} \sim \mathcal{CN}(\mathbf{0}, \Gamma)$ is a complex Gaussian random vector with scatter/covariance matrix Γ .
- The entries {z_n}^N_{n=1} of the speckle can be considered as samples of a Gaussian ARMA(p, q) {z_n : ∀n} with ACF r_Z[m].
- The speckle scatter matrix is then given by $[\Gamma]_{i,j} = r_Z[i-j]$, with $1 \le i, j \le N$.
- It is immediate to verify that the CG model satisfy A1.

A robust HT problem

Let us recall the MIMO detection problem:

$$\begin{array}{ll} H_0: & \mathbf{x} = \mathbf{c} \\ H_1: & \mathbf{x} = \bar{\alpha} \mathbf{v} + \mathbf{c}, \end{array}$$

where:

- $\mathbf{v} \equiv \mathbf{v}(\phi) = (\mathbf{S}^T \otimes \mathbf{I}_{M_R}) [\mathbf{W}^T \mathbf{a}_T(\phi) \otimes \mathbf{a}_R(\phi)]$ is a known steering vector,
- $\bar{\alpha}$ is a deterministic unknown,
- **c** is the disturbance vector that is assumed to satisfy Assumption A1 but whose pdf *p_C* is *unknown*.

Final goal

Find a robust decision statistic whose asymptotic (as $N \to \infty$) distribution under H_0 does not depend on the *unknown* disturbance pdf p_C .

Main results: estimation

• The Least Square (LS) estimator of $\bar{\alpha}$ is $\hat{\alpha} = \mathbf{v}^H \mathbf{x} / ||\mathbf{v}||^2$.

Theorem 1

Under Assumption A1, the LS estimator $\hat{\alpha}$ is: ^{9,10}

1. Consistent:
$$\hat{\alpha} \xrightarrow[N \to \infty]{p} \bar{\alpha}$$
,

2. Asymptotically normal: $\sqrt{N}\bar{B}_N^{-1/2}A_N(\hat{\alpha}-\bar{\alpha}) \underset{N\to\infty}{\sim} \mathcal{CN}(0,1)$,

$$A_N \triangleq N^{-1} ||\mathbf{v}||^2, \quad \bar{B}_N \triangleq N^{-1} \mathbf{v}^H \Gamma \mathbf{v}, \quad \Gamma \triangleq E_{\rho_C} \{\mathbf{cc}^H\},$$

with p_C being the unknown disturbance pdf.

⁹H. White and I. Domowitz, "Nonlinear regression with dependent observations," *Econometrica*, vol. 52, no. 1, pp. 143–161, 1984.

¹⁰S. Fortunati, L. Sanguinetti, F. Gini, M. S. Greco and B. Himed, "Massive MIMO Radar for Target Detection", in *IEEE Transactions on Signal Processing*, vol. 68, pp. 859-871, 2020.

A consistent estimator for \bar{B}_N (1/2)

- The scalar \overline{B}_N is function of the unknown disturbance covariance matrix Γ .
- A consistent estimator \hat{B}_N of \bar{B}_N is:

$$\hat{B}_N \equiv \hat{B}_N(\hat{\alpha}) = N^{-1} \mathbf{v}^H \widehat{\Gamma}_I \mathbf{v},$$

where

$$[\widehat{\boldsymbol{\Gamma}}_{I}]_{i,j} \triangleq \begin{cases} \widehat{c}_{i}\widehat{c}_{j}^{*} & 0 \leq j-i \leq I \\ \widehat{c}_{i}^{*}\widehat{c}_{j} & 0 \leq i-j \leq I \\ 0 & |i-j| > I \end{cases} \quad 1 \leq i,j \leq N,$$

$$\hat{c}_n = x_n - \hat{\alpha} v_n, \ \forall n \quad \hat{\alpha} = \mathbf{v}^H \mathbf{x} / ||\mathbf{v}||^2,$$

and *l* is the so-called *truncation lag*.

A consistent estimator for \bar{B}_N (2/2)

Theorem 2

Under Assumption A1, if $l \to \infty$ as $N \to \infty$ such that $l = o(N^{1/3})$ then: ¹¹

$$\hat{B}_N - \bar{B}_N \stackrel{p}{\underset{N \to \infty}{\to}} 0.$$

- Theorems 1 and 2 tell us that, irrespective of the unknown p_C, the LS estimator â is:
 - \sqrt{N} -consistent,
 - asymptotically normal estimator with asymptotic error covariance matrix given by $A_N^{-1}\bar{B}_N$,
 - a consistent estimate of \bar{B}_N is provided by \hat{B}_N .

A Wald-type test can be implemented!

¹¹ H. White and I. Domowitz, "Nonlinear regression with dependent observations," *Econometrica*, vol. 52, no. 1, pp. 143–161, 1984.

A robust Wald-type test

The asymptotic characterization of the LS estimator leads to: ¹²

$$\Lambda_{\rm RW}(\mathbf{x}) = \frac{2N|\hat{\alpha}|^2}{A_N^{-2}\hat{B}_N} = \frac{2|\mathbf{v}^H\mathbf{x}|^2}{\mathbf{v}^H\widehat{\Gamma}_I\mathbf{v}}.$$

Theorem 3

If Assumption A1 holds true, then:

$$\begin{split} \Lambda_{\mathsf{RW}}(\mathbf{x}|H_0) & \underset{N \to \infty}{\sim} \chi_2^2(0), \\ \Lambda_{\mathsf{RW}}(\mathbf{x}|H_1) & \underset{N \to \infty}{\sim} \chi_2^2(\varsigma), \end{split}$$

where
$$\varsigma \triangleq 2|\bar{\alpha}|^2 \frac{||\mathbf{v}||^4}{\mathbf{v}^H \Gamma \mathbf{v}}$$
.

¹²S. Fortunati, L. Sanguinetti, F. Gini, M. S. Greco and B. Himed, "Massive MIMO Radar for Target Detection", in *IEEE Transactions on Signal Processing*, vol. 68, pp. 859-871, 2020.

On the non-centrality parameter ς

• An explicit expression for ς is given by:

$$\varsigma = \frac{2|\bar{\alpha}|^2 M_R^2 \|(\mathsf{WS})^T \mathbf{a}_T(\bar{\phi})\|^4}{\operatorname{tr}\left(\Gamma\left[(\mathsf{WS})^T \mathbf{a}_T(\bar{\phi}) \mathbf{a}_T^H(\bar{\phi})(\mathsf{WS})^* \otimes \mathbf{a}_R(\bar{\phi}) \mathbf{a}_R^H(\bar{\phi})\right]\right)}$$

• By substituting Γ with its definition, we get:

$$\varsigma = \frac{2|\bar{\alpha}|^2 M_R \| (\mathbf{WS})^T \mathbf{a}_T(\bar{\phi}) \|^2}{\iint_0^T ||\mathbf{s}_o(t - \bar{l}\Delta t)||^2 \mathrm{tr} \left[\mathbf{\Sigma}(t - \tau) \right] e^{-j\bar{k}\Delta\omega(t - \tau)} dt d\tau}.$$

• If
$$\mathbf{S} = \mathbf{I}_{M_{\mathcal{T}}}$$
 and $\Sigma(t - \tau) = \sigma^2 \mathbf{I}_{M_R} \delta(t - \tau)$: ¹³

$$\varsigma = \frac{2|\bar{\alpha}|^2 P(\bar{\phi})}{\sigma^2}, \quad P(\bar{\phi}) \triangleq \mathbf{a}_T^H(\bar{\phi}) \mathbf{W}^* \mathbf{W}^T \mathbf{a}_T(\bar{\phi}),$$

where $P(\bar{\phi})$ is the transmitting beam pattern.

¹³I. Bekkerman and J. Tabrikian, "Target detection and localization using MIMO radars and sonars," IEEE Transactions on Signal Processing, vol. 54, no. 10, pp. 3873–3883, Oct 2006

CFAR property and ROC curve

Under A1, the P_{FA} of $\Lambda_{RW}(\mathbf{x})$ is asymptotically given by:

$$P_{FA} \rightarrow_{N \rightarrow \infty} e^{-\lambda/2},$$

irrespective of the unknown disturbance pdf p_C . Moreover,

$$P_D(P_{FA}) \to_{N \to \infty} Q_1\left(\frac{\sqrt{2}|\bar{\alpha}|||\mathbf{v}||^2}{\sqrt{\mathbf{v}^H \Gamma \mathbf{v}}}, \sqrt{-2 \ln P_{FA}}\right),$$

where $Q_1(\cdot, \cdot)$ is the Marcum Q function of order 1

The minimum number N of virtual spatial DoF needed to well-approximate the asymptotic performance defines the massive MIMO regime.

A comparison with the AMF $\Lambda_{AMF}(x)$ ¹⁴

$$\Lambda_{\mathsf{AMF}}(\mathbf{x}) = \frac{|\mathbf{v}^H \widehat{\mathbf{C}}^{-1} \mathbf{x}|^2}{\mathbf{v}^H \widehat{\mathbf{C}}^{-1} \mathbf{v}}, \quad \Lambda_{\mathsf{RW}}(\mathbf{x}) = \frac{2|\mathbf{v}^H \mathbf{x}|^2}{\mathbf{v}^H \widehat{\mathbf{\Gamma}}_I \mathbf{v}}.$$

Multi-snapshots vs. Single-snapshot

- $\Lambda_{AMF}(x)$ requires a set of homogeneous secondary snapshots to get the full rank estimation \widehat{C} of Γ ,
- $\Lambda_{RW}(\mathbf{x})$ relies on a single spatial snapshot.
- Gaussian-based vs. Robust
 - Λ_{AMF}(x) is a CFAR detector only if c and the set of secondary data are Gaussian-distributed,
 - Λ_{RW}(x) is asymptotically CFAR for every disturbance vector c satisfying Assumption A1.

¹⁴ F. C. Robey, D. R. Fuhrmann, E. J. Kelly, and R. Nitzberg, "A CFAR adaptive matched filter detector," IEEE Transactions on Aerospace and Electronic Systems, vol. 28, no. 1, pp. 208–216, Jan 1992.

Numerical validation

We consider two different scenarios:

Case 1: The disturbance is modelled as an AR(3) with

$$\bar{\boldsymbol{\rho}} = [0.5e^{j2\pi0}, 0.3e^{-j2\pi0.1}, 0.4e^{j2\pi0.01}]^T,$$

Case 2: The disturbance is modelled as an AR(6) with

$$\begin{split} \bar{\rho} = [0.5e^{-j2\pi0.4}, 0.6e^{-j2\pi0.2}, 0.7e^{j2\pi0}, 0.4e^{j2\pi0.1}, \\ 0.5e^{j2\pi0.3}, 0.6e^{j2\pi0.35}]^T, \end{split}$$

In both cases, the innovations {w_n, ∀n} share a complex *t*-distribution:

$$p_w(w_n; \lambda, \eta) = (\sigma_w^2 \pi)^{-1} \lambda (\lambda/\eta)^{\lambda} (\lambda/\eta + |w_n|/\sigma_w^2)^{-(\lambda+1)}$$

where $\lambda = 2$, $\sigma_w^2 = 1$ and $\eta = \lambda/\sigma^2 (\lambda - 1)$.

Power Spectral Density (PSD) of the AR(3)

Virtual steering vectors: $[\mathbf{v}_i]_n = e^{j\pi(n-1)\sin(\phi_i)}$, n = 1, ..., Nand $\phi_i = \arcsin(\nu_i/2)$ where $\nu_1 = -0.2$, $\nu_2 = 0$ and $\nu_3 = 0.2$.

•
$$\mathbf{S} = \mathbf{I}_{M_T}$$
 and $\mathbf{W} = \mathbf{I}_{M_T}$.

Estimated and theoretical *P_{FA}*: case 1

▶ The estimated P_{FA} tends to the nominal value $\overline{P_{FA}} = 10^{-4}$,

• The massive MIMO regime is achieved for $N = M_R M_T \ge 10^4$.

Estimated and theoretical P_D: case 1

► The SNR is defined as $SNR \triangleq 10 \log_{10}(|\bar{\alpha}|^2/\sigma^2)$.

The estimated P_D is close to the asymptotic approximation.

Power Spectral Density (PSD) of the AR(6)

Virtual steering vectors: $[\mathbf{v}_i]_n = e^{j\pi(n-1)\sin(\phi_i)}$, n = 1, ..., Nand $\phi_i = \arcsin(\nu_i/2)$ where $\nu_1 = -0.2$, $\nu_2 = 0$ and $\nu_3 = 0.2$.

S =
$$I_{M_T}$$
 and $W = I_{M_T}$.

Estimated and theoretical *P_{FA}*: case 2

▶ The estimated P_{FA} tends to the nominal value $\overline{P_{FA}} = 10^{-4}$,

• The massive MIMO regime is achieved for $N = M_R M_T \ge 10^4$.

On the *P*_D **maximization**

- The proposed robust Wald-type test has the CFAR property with respect to the unknown disturbance distribution.
- What about the Probability of Detection (P_D)? Can we maximize it somehow?
- From the previous results, we have that:

$$P_D(\lambda) \rightarrow_{N \rightarrow \infty} Q_1\left(\sqrt{\varsigma}, \sqrt{\lambda}\right),$$

$$\varsigma = \frac{2|\bar{\alpha}|^2 M_R^2 \|(\mathsf{WS})^T \mathsf{a}_T(\bar{\phi})\|^4}{\operatorname{tr} \left(\Gamma \left[(\mathsf{WS})^T \mathsf{a}_T(\bar{\phi}) \mathsf{a}_T^H(\bar{\phi}) (\mathsf{WS})^* \otimes \mathsf{a}_R(\bar{\phi}) \mathsf{a}_R^H(\bar{\phi}) \right] \right)}.$$

We can maximize P_D by choosing a suitable waveform matrix
 W according to the observed scenario!

Cognitive Radar and Reinforcement Learning

Cognitive radar

Cognitive radar system

Reinforcement Learning

RL for Multi-target Detection in MIMO radar

- The radar acts as an agent continuously sensing the unknown environment (i.e., targets and disturbance).
- The agent evaluates its action using two types of information:
 - The state: the number of target),
 - The reward: the Probability of Detection (P_D) .
- ▶ The goal is to maximize the P_D (i.e. reward) by choosing the best action that is the optimal waveform matrix **W**.¹⁵

¹⁵ A. M. Ahmed, A. A. Ahmad, S. Fortunati, A. Sezgin, M. S. Greco and F. Gini, "A Reinforcement Learning Based Approach for Multitarget Detection in Massive MIMO Radar," *IEEE Transactions on Aerospace and Electronic Systems*, vol. 57, no. 5, pp. 2622-2636, Oct. 2021.

Some results: static targets (1/2)

Two stationary targets:

T1:
$$\nu_1 = -0.2$$
,

- Their SNR changes as shown in the next slide.
- The disturbance is modelled as an AR(6).
- The innovations w_n share a complex t-distribution.

Some results: static targets (2/2)

We compare three different beamforming algorithm: ¹⁶

- 1. Omnidirectional,
- 2. Non-RL,

3. RL.

¹⁶F. Lisi, S. Fortunati, M. S. Greco F. Gini, "Enhancement of a state-of-the-art RL-based detection algorithm for Massive MIMO radars", *IEEE Transactions on Aerospace and Electronic Systems*, vol. 58, no. 6, pp. 5925-5931, Dec. 2022.

Open problem: the non-stationary case

- What happens if the target change his position (non-stationary environment)?
- The RL algorithm needs to start the learning procedure must restart from the scratch...

Concluding remarks

- By exploiting the increased number N of spatial DoF that a co-located MIMO radar can provide, a robust Wald-type detector Λ_{RW} is proposed.
- ► As $N = M_R M_T \rightarrow \infty$ and if the disturbance ACF decays at least polynomially fast, the asymptomatic distribution of Λ_{RW} does not depend on the *unknown* disturbance pdf.
- This represents a first attempt to apply the "massive" MIMO paradigm of communication systems to radar applications.
- Ongoing works:
 - Reinforcement Learning (RL) in dynamic environments,
 - Statistical optimality and robustness of RL procedures for target detection.