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Outline

▶ Motivation: a robust target detection problem.

▶ Main goals:

1. Derive a detector whose asymptotic distribution is invariant
with respect to the unknown distribution of the disturbance.

2. Maximize the probability of detection (PD) while keeping a
constant probability of false alarm (PFA).

▶ How to achieve it:
1. Increase the spatial degrees of freedom (DoF) using a

co-colocated MIMO radar.1,2

2. Robust and misspecified statistics (constant PFA).
1

3. Reinforcement Learning (PD maximization).2

1
S. Fortunati, L. Sanguinetti, F. Gini, M. S. Greco and B. Himed, “Massive MIMO Radar for Target

Detection”, in IEEE Transactions on Signal Processing, vol. 68, pp. 859-871, 2020.
2
A. M. Ahmed, A. A. Ahmad, S. Fortunati, A. Sezgin, M. S. Greco and F. Gini, “A Reinforcement Learning

Based Approach for Multitarget Detection in Massive MIMO Radar,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 57, no. 5, pp. 2622-2636, Oct. 2021.
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The target detection problem

▶ Consider a multiple antenna radar system with N spatial
channels, collecting K temporal snapshots {xk}Kk=1 ∈ CN .

▶ Detection problem:

H0 : xk = ck k = 1, . . . ,K ,
H1 : xk = αkvk + ck k = 1, . . . ,K ,

• vk ∈ CN : known at each time instant k ∈ {1, . . . ,K},
• αk ∈ C: deterministic, unknown, scalar that may vary over k,

• C ≜ [c1, . . . , ck ]: disturbance.

▶ A decision statistic Λ(X) needs to be implemented:

Λ(X)
H1

≷
H0

λ, X ≜ [x1, . . . , xK ].
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How to choose the threshold

▶ The threshold λ should be chosen to maintain the PFA below
a pre-assigned value:

Pr {Λ(X) > λ|H0} =

∫ ∞

λ
pΛ|H0

(a|H0)da = PFA.

▶ pΛ|H0
is the pdf of Λ(X) under the null hypothesis H0.

▶ Three simplifying assumptions are generally adopted:

M1 {ck}Kk=1 are i.i.d. over the observation interval,

M2 αk maintains constant over k : αk ≡ α, ∀k,
M3 The pdf pC(C) =

∏K
k=1 pC (ck) is perfectly known.
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Perfectly matched GLR

▶ Under M1, M2 and M3, the Generalized Likelihood Ratio
(GLR) statistic ΛGLR(X) can be derived.

▶ Under H0, as the number of temporal snapshots grows to
infinity (K → ∞), we get:3

ΛGLR(X|H0) ∼
K→∞

χ2
2(0).

▶ Consequently, an asymptotic solution for λ is: λ̄ = −2 lnPFA.

Is it possible to derive a detection statistic with the same
asymptotic properties of ΛGLR(X) without relying on Assumptions

M1, M2 and M3?

3
S. S. Wilks (1938). ”The large-sample distribution of the likelihood ratio for testing composite hypotheses,”

The Annals of Mathematical Statistics, 9 (1): 60–62, 1938.
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Spatial asymptotic regime

▶ We collect a single temporal snapshot (K = 1) and exploit the
spatial dimension N:

H0 : x = c
H1 : x = αv + c,

▶ This allows us to entirely drop Assumptions M1 and M2.

Note that, unlike in the temporal domain, the spatial samples
x1, . . . , xN cannot be considered as independent observations!

▶ We use advances in robust and misspecified statistics 4 in the
presence of dependent data to dispose of M3.

4
H. White and I. Domowitz, “Nonlinear regression with dependent observations,” Econometrica, vol. 52, no.

1, pp. 143–161, 1984.
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Co-located MIMO system model

▶ We need radar systems with a large number N of spatial DoF:
co-located MIMO radars

• MT transmitting antennas,

• MR receiving antennas,

• N ≜ MTMR : virtual
spatial antenna channels.

Target, ϕ

Transmitter

Receiver

▶ Signal collected at the receiving array:

x(t) = ᾱaR(ϕ̄)a
T
T (ϕ̄)s(t − τ̄)e jω̄t + n(t), t ∈ [0,T ]

• aT (ϕ) ∈ CMT : transmitting steering vector,

• aR(ϕ) ∈ CMR : receiving steering vector.
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Continuous-time signal model

x(t) = ᾱaR(ϕ̄)a
T
T (ϕ̄)s(t − τ̄)e jω̄t + n(t), t ∈ [0,T ]

▶ x(t) ∈ CMR : array output vector at time t,

▶ CMT ∋ s(t) ≜ Wso(t): vector of transmitted signals

• W ∈ CMT×MT is the waveforms weighting matrix,
• so(t): vector of nearly orthonormal signals,

▶ n(t) ∈ CMR : complex disturbance random process, or clutter.

▶ ᾱ ∈ C accounts for target RCS and two-way path losses.

Co-located MIMO radar
ᾱ is the same for each transmitter and receiver pair.
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Discrete-time signal model (1/2)

▶ The output matrix X(l , k) of the filter matched to so(t) is:5

CMR×MT ∋ X(l , k) = ᾱaR(ϕ̄)aT (ϕ̄)
TWS(l , k) + C(l , k),

▶ “Straddling loss” matrix:

S(l , k) ≜
∫ T

0
so(t − τ̄)sHo (t − l∆t)e−j(k∆ω−ω̄)tdt

▶ Disturbance matrix:

C(l , k) ≜
∫ T

0
n(t)sHo (t − l∆t)e−jk∆ωtdt.

▶ The range-Doppler indices (l , k) will be omitted next.

5
B. Friedlander, “On signal models for MIMO radar,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 48, no. 4, pp. 3655–3660, October 2012.
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Discrete-time signal model (1/2)

▶ The output matrix X can be expressed as:

CN ∋ x = vec (X) = ᾱv(ϕ̄) + c

where c ≜ vec (C) and:

v(ϕ̄) = (ST ⊗ IMR
)
[
WTaT (ϕ̄)⊗ aR(ϕ̄)

]
.

▶ If n(t) is a wide-sense stationary process, we have:

E{n(t)} = 0, ∀t ⇒ E{c} = 0

E{n(t)n(τ)H} = Σ(t − τ) ⇒ Γ ≜ E{ccH}

Γ =

∫∫ [
s∗o(t − l∆t)sTo (t − l∆t)⊗Σ(t − τ)

]
e−jk∆ω(t−τ)dtdτ.
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Fully uncorrelated disturbance model

▶ Assumptions on the clutter process n(t):

1. n(t) is spatially uncorrelated (along the receiving array),

2. n(t) is also temporally uncorrelated (along T ),

E{n(t)n(τ)H} = Σ(t − τ) = σ2IMR
δ(t − τ).

▶ If perfect orthogonality of the waveforms in so(t) is assumed:

Γ = σ2IN =


σ2 0 · · · 0

0 σ2 . . .
...

...
. . .

. . . 0
0 · · · 0 σ2

 .

▶ This is a simple but very unrealistic model!
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Temporally uncorrelated disturbance model

▶ Assumption on the clutter process n(t):

1. n(t) is temporally uncorrelated (along T ),

E{n(t)n(τ)H} = Σ(t − τ) = ΣRδ(t − τ).

▶ If perfect orthogonality of the waveforms in so(t) is assumed:

Γ = IMT
⊗ΣR =


ΣR 0 · · · 0

0 ΣR
. . .

...
...

. . .
. . . 0

0 · · · 0 ΣR

 .

▶ This is a more complex but still unrealistic model!
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A more general disturbance models (1/2)

▶ We drop the too stringent assumptions on

• the temporal uncorrelation of n(t),

• the perfect orthogonality of so(t),

in favour of a much weaker requirement.

Our assumption
[Γ]i ,j goes to zero at least polynomially fast as |i − j | increases.6

▶ Moreover, unlike most of the existing literature, we do not
require c to be Gaussian-distributed.

6
S. Fortunati, L. Sanguinetti, F. Gini, M. S. Greco and B. Himed, “Massive MIMO Radar for Target

Detection”, in IEEE Transactions on Signal Processing, vol. 68, pp. 859-871, 2020.
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A more general disturbance models (2/2)

▶ More formally, let c = [c1, . . . , cN ]
T be the disturbance vector.

▶ The entries {cn}Nn=1 can be considered as random variables
sampled form a stationary discrete-time process {cn : ∀n}.

Assumption A1: The autocorrelation function (ACF) of {cn : ∀n}
satisfies

rC [m] ≜ E{cnc∗n−m} = O(|m|−γ)

where m ∈ Z, γ > ϱ/(ϱ− 1), ϱ > 1. 7

▶ Note that we are not assuming any particular pdf pC for c,
that will be left unspecified!

7
H. White and I. Domowitz, “Nonlinear regression with dependent observations,” Econometrica, vol. 52, no.

1, pp. 143–161, 1984.
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Example 1: ARMA model

▶ A stable ARMA(p, q) process, with finite p and q, satisfies
Assumption A1 since its ACF decays exponentially fast.

▶ The second-order statistics of any discrete-time process with
continuous Power Spectra Density (PSD) can be
well-approximated by an ARMA model8.

▶ A subset of the general ARMA models are the autoregressive
model of order p, AR(p).

▶ AR models share most of the properties of the ARMA models.

8
J. Li and P. Stoica, MIMO Radar Signal Processing. Hoboken, NJ: Wiley, 2009.
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Example 2: AR model

▶ A stable stationary AR(p) process {cn : ∀n} is a discrete
random process s.t.:

cn =

p∑
i=1

ρicn−i + wn, n ∈ (−∞,∞).

▶ The innovations wn are zero-mean, circularly symmetric, i.i.d.
random variables with E{|wn|2} = σ2

w < ∞.

▶ The pdf of wn, say pW (w ;φ) is generally non-Gaussian and
may depends on an additional unknown nuisance vector φ.

▶ The ACF of a AR(p) process decays exponentially fast, so its
satisfy Assumption A1.
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Example 3: Compound Gaussian (CG) model

▶ Any CG-distributed vector c admits a representation:

c =d

√
τz,

where:

• the texture τ is a positive random variable,

• the speckle z ∼ CN (0,Γ) is a complex Gaussian random
vector with scatter/covariance matrix Γ.

▶ The entries {zn}Nn=1 of the speckle can be considered as
samples of a Gaussian ARMA(p, q) {zn : ∀n} with ACF rZ [m].

▶ The speckle scatter matrix is then given by [Γ]i ,j = rZ [i − j ],
with 1 ≤ i , j ≤ N.

▶ It is immediate to verify that the CG model satisfy A1.
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A robust HT problem

▶ Let us recall the MIMO detection problem:

H0 : x = c
H1 : x = ᾱv + c,

where:

• v ≡ v(ϕ) = (ST ⊗ IMR
)
[
WTaT (ϕ)⊗ aR(ϕ)

]
is a known

steering vector,

• ᾱ is a deterministic unknown,

• c is the disturbance vector that is assumed to satisfy
Assumption A1 but whose pdf pC is unknown.

Final goal
Find a robust decision statistic whose asymptotic (as N → ∞)

distribution under H0 does not depend on the unknown
disturbance pdf pC .
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Main results: estimation

▶ The Least Square (LS) estimator of ᾱ is α̂ = vHx/||v||2.

Theorem 1

Under Assumption A1, the LS estimator α̂ is: 9,10

1. Consistent: α̂
p→

N→∞
ᾱ,

2. Asymptotically normal :
√
NB̄

−1/2
N AN(α̂− ᾱ) ∼

N→∞
CN (0, 1),

AN ≜ N−1||v||2, B̄N ≜ N−1vHΓv, Γ ≜ EpC {ccH},

with pC being the unknown disturbance pdf.

9
H. White and I. Domowitz, “Nonlinear regression with dependent observations,” Econometrica, vol. 52, no.

1, pp. 143–161, 1984.
10

S. Fortunati, L. Sanguinetti, F. Gini, M. S. Greco and B. Himed, “Massive MIMO Radar for Target
Detection”, in IEEE Transactions on Signal Processing, vol. 68, pp. 859-871, 2020.
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A consistent estimator for B̄N (1/2)

▶ The scalar B̄N is function of the unknown disturbance
covariance matrix Γ.

▶ A consistent estimator B̂N of B̄N is:

B̂N ≡ B̂N(α̂) = N−1vH Γ̂lv,

where

[Γ̂l ]i ,j ≜


ĉi ĉ

∗
j 0 ≤ j − i ≤ l

ĉ∗i ĉj 0 ≤ i − j ≤ l
0 |i − j | > l

1 ≤ i , j ≤ N,

ĉn = xn − α̂vn, ∀n α̂ = vHx/||v||2,
and l is the so-called truncation lag.
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A consistent estimator for B̄N (2/2)

Theorem 2

Under Assumption A1, if l → ∞ as N → ∞ such that l = o(N1/3)
then: 11

B̂N − B̄N
p→

N→∞
0.

▶ Theorems 1 and 2 tell us that, irrespective of the unknown
pC , the LS estimator α̂ is:

•
√
N-consistent,

• asymptotically normal estimator with asymptotic error
covariance matrix given by A−1

N B̄N ,

• a consistent estimate of B̄N is provided by B̂N .

▶ A Wald-type test can be implemented!

11
H. White and I. Domowitz, “Nonlinear regression with dependent observations,” Econometrica, vol. 52, no.

1, pp. 143–161, 1984.
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Main results: detection

A robust Wald-type test
The asymptotic characterization of the LS estimator leads to: 12

ΛRW(x) =
2N|α̂|2
A−2
N B̂N

=
2|vHx|2
vH Γ̂lv

.

Theorem 3

If Assumption A1 holds true, then:

ΛRW(x|H0) ∼
N→∞

χ2
2(0),

ΛRW(x|H1) ∼
N→∞

χ2
2 (ς) ,

where ς ≜ 2|ᾱ|2 ||v||4
vHΓv

.

12
S. Fortunati, L. Sanguinetti, F. Gini, M. S. Greco and B. Himed, “Massive MIMO Radar for Target

Detection”, in IEEE Transactions on Signal Processing, vol. 68, pp. 859-871, 2020.
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On the non-centrality parameter ς

▶ An explicit expression for ς is given by:

ς =
2|ᾱ|2M2

R∥(WS)TaT (ϕ̄)∥4
tr
(
Γ
[
(WS)TaT (ϕ̄)aHT (ϕ̄)(WS)∗ ⊗ aR(ϕ̄)aHR (ϕ̄)

]) .
▶ By substituting Γ with its definition, we get:

ς =
2|ᾱ|2MR∥(WS)TaT (ϕ̄)∥2∫∫ T

0 ||so(t − l̄∆t)||2tr [Σ(t − τ)] e−j k̄∆ω(t−τ)dtdτ
.

▶ If S = IMT
and Σ(t − τ) = σ2IMR

δ(t − τ): 13

ς =
2|ᾱ|2P(ϕ̄)

σ2
, P(ϕ̄) ≜ aHT (ϕ̄)W

∗WTaT (ϕ̄),

where P(ϕ̄) is the transmitting beam pattern.
13

I. Bekkerman and J. Tabrikian, “Target detection and localization using MIMO radars and sonars,” IEEE
Transactions on Signal Processing, vol. 54, no. 10, pp. 3873–3883, Oct 2006
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Asymptotic performance of ΛRW(x)

CFAR property and ROC curve

Under A1, the PFA of ΛRW(x) is asymptotically given by:

PFA →N→∞ e−λ/2,

irrespective of the unknown disturbance pdf pC . Moreover,

PD(PFA) →N→∞ Q1

(√
2|ᾱ|||v||2√
vHΓv

,
√
−2 lnPFA

)
,

where Q1(·, ·) is the Marcum Q function of order 1

▶ The minimum number N of virtual spatial DoF needed to
well-approximate the asymptotic performance defines the
massive MIMO regime.
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A comparison with the AMF ΛAMF(x) 14

ΛAMF(x) =
|vHĈ−1x|2
vHĈ−1v

, ΛRW(x) =
2|vHx|2
vH Γ̂lv

.

▶ Multi-snapshots vs. Single-snapshot

• ΛAMF(x) requires a set of homogeneous secondary snapshots to

get the full rank estimation Ĉ of Γ,

• ΛRW(x) relies on a single spatial snapshot.

▶ Gaussian-based vs. Robust

• ΛAMF(x) is a CFAR detector only if c and the set of secondary
data are Gaussian-distributed,

• ΛRW(x) is asymptotically CFAR for every disturbance vector c
satisfying Assumption A1.

14
F. C. Robey, D. R. Fuhrmann, E. J. Kelly, and R. Nitzberg, “A CFAR adaptive matched filter detector,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 28, no. 1, pp. 208–216, Jan 1992.
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Numerical validation

We consider two different scenarios:

▶ Case 1: The disturbance is modelled as an AR(3) with

ρ̄ = [0.5e j2π0, 0.3e−j2π0.1, 0.4e j2π0.01]T ,

▶ Case 2: The disturbance is modelled as an AR(6) with

ρ̄ = [0.5e−j2π0.4, 0.6e−j2π0.2, 0.7e j2π0, 0.4e j2π0.1,

0.5e j2π0.3, 0.6e j2π0.35]T ,

▶ In both cases, the innovations {wn,∀n} share a complex
t-distribution:

pw (wn;λ, η) = (σ2
wπ)

−1λ(λ/η)λ(λ/η + |wn|/σ2
w )

−(λ+1)

where λ = 2, σ2
w = 1 and η = λ/σ2(λ− 1).
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Power Spectral Density (PSD) of the AR(3)
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▶ Virtual steering vectors: [vi ]n = e jπ(n−1) sin(ϕi ), n = 1, . . . ,N
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.
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Estimated and theoretical PFA: case 1
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▶ The estimated PFA tends to the nominal value PFA = 10−4,

▶ The massive MIMO regime is achieved for N = MRMT ≥ 104.
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Estimated and theoretical PD: case 1
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▶ The SNR is defined as SNR ≜ 10 log10(|ᾱ|2/σ2).

▶ The estimated PD is close to the asymptotic approximation.
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Power Spectral Density (PSD) of the AR(6)
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.
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Estimated and theoretical PFA: case 2
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▶ The estimated PFA tends to the nominal value PFA = 10−4,

▶ The massive MIMO regime is achieved for N = MRMT ≥ 104.
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On the PD maximization

▶ The proposed robust Wald-type test has the CFAR property
with respect to the unknown disturbance distribution.

▶ What about the Probability of Detection (PD)? Can we
maximize it somehow?

▶ From the previous results, we have that:

PD(λ) →N→∞ Q1

(√
ς,
√
λ
)
,

ς =
2|ᾱ|2M2

R∥(WS)TaT (ϕ̄)∥4
tr
(
Γ
[
(WS)TaT (ϕ̄)aHT (ϕ̄)(WS)∗ ⊗ aR(ϕ̄)aHR (ϕ̄)

]) .
▶ We can maximize PD by choosing a suitable waveform matrix

W according to the observed scenario!
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Cognitive Radar and Reinforcement Learning

Cognitive radar

Reinforcement Learning
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RL for Multi-target Detection in MIMO radar

▶ The radar acts as an agent continuously sensing the unknown
environment (i.e., targets and disturbance).

▶ The agent evaluates its action using two types of information:
▶ The state: the number of target),
▶ The reward: the Probability of Detection (PD).

▶ The goal is to maximize the PD (i.e. reward) by choosing the
best action that is the optimal waveform matrix W.15

15
A. M. Ahmed, A. A. Ahmad, S. Fortunati, A. Sezgin, M. S. Greco and F. Gini, “A Reinforcement Learning

Based Approach for Multitarget Detection in Massive MIMO Radar,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 57, no. 5, pp. 2622-2636, Oct. 2021.
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Some results: static targets (1/2)

▶ Two stationary targets:

▶ T1: ν1 = −0.2,

▶ T2: ν3 = 0.2,

▶ Their SNR changes as shown in the
next slide.

▶ The disturbance is modelled as an
AR(6).

▶ The innovations wn share a
complex t-distribution.
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Some results: static targets (2/2)

▶ We compare three different beamforming algorithm: 16

1. Omnidirectional,
2. Non-RL,
3. RL.

16
F. Lisi, S. Fortunati, M. S. Greco F. Gini, “Enhancement of a state-of-the-art RL-based detection algorithm

for Massive MIMO radars”, IEEE Transactions on Aerospace and Electronic Systems, vol. 58, no. 6, pp.
5925-5931, Dec. 2022.
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Open problem: the non-stationary case

▶ What happens if the target change his position
(non-stationary environment)?

▶ The RL algorithm needs to start the learning procedure must
restart from the scratch...
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Concluding remarks

▶ By exploiting the increased number N of spatial DoF that a
co-located MIMO radar can provide, a robust Wald-type
detector ΛRW is proposed.

▶ As N = MRMT → ∞ and if the disturbance ACF decays at
least polynomially fast, the asymptomatic distribution of ΛRW

does not depend on the unknown disturbance pdf.

▶ This represents a first attempt to apply the “massive” MIMO
paradigm of communication systems to radar applications.

▶ Ongoing works:

• Reinforcement Learning (RL) in dynamic environments,

• Statistical optimality and robustness of RL procedures for
target detection.


