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Hyperspectral Images

Figure: Remote Sensing: The Sun’s radiation reflected on the Earth’s
surface is captured by an airborne or spaceborne hyperspectral sensor.



I High spectral resolution × poor spacial resolution

I One hyperspectral pixel rrr has hundreds of contiguous
bands.
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Figure: Illustration of the Hypercube captured by the AVIRIS
instrument from the Cuprite field.
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Figure: A observed pixel is in fact a mixture of spectral signatures.



Mixture Models

Figure: Linear Mixing.



The Linear Mixing Model - LMM

rrr = MMMααα+nnn

I rrr: Observation vector (L× 1)

I MMM : Endmember matrix (R endmember spectra mmmi)

I ααα: Vector of abundances (R× 1)

I nnn: Noise vector (WGN, nnn ∼ N (000L, σ
2
nIIIL))

Ref: [Keshava, 2002] [1]



Linear mixing model
rrr = MMMααα+nnn

Observations:

I This is a reasonable first order model

I Assumes that each ray of light interacts with only one
material

I Simple to treat mathematically



A little complication ...
Abundance values should be constrained for physical meaning

I Positiveness
αk ≥ 0, ∀k ∈ {1, . . . , R}

I Sum to one constraint (proportionality)

R∑
k=1

αk = 1

I The constraints define simplexes

Sααα = {α ∈ RR|ααα ≥ 000,ααα>111 = 1}

For noiseless observations

Srrr = {rrr ∈ RL|rrr = MMMααα,ααα ≥ 000,ααα>111 = 1}



Sααα = {α ∈ RR|ααα ≥ 000,ααα>111 = 1}
Srrr = {rrr ∈ RL|rrr = MMMααα,ααα ≥ 000,ααα>111 = 1}
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(b) Data Simplex Srrr.

I The convex geometry of facilitates the estimation of
endmembers from data

I Most endmember extraction techniques are based on these
properties



Linear Unmixing

I Step 1: Endmember extraction
I Various techniques

I Step 2: Abundance estimation

ααα? = arg min
ααα

‖rrr−MMMααα‖22, s.t.

{
αk ≥ 0, ∀k ∈ {1, . . . , R}∑R

k=1 αk = 1

I Fully constrained LS (FCLS) [Heinz et al., 2001] [2]

I Geometrical approaches [Honeine et al., 2012] [3]

I MVES (Minimum Volume-Enclosing Simplex) - joint MMM
and ααα estimation [Chan et al., 2009] [4]

I Bayesian approaches [Dobigeon et al., 2009] [5]



Hum ... but life is not always that simple ...

Two other types of light interaction that complicate life ...

(a) Intimate mixing. (b) Multiple scattering.

These types of light interaction lead to nonlinear mixing of
endmember contributions!!!



Nonlinear Mixing Models

I How can we deal with nonlinearly mixed hyperspectral
images?

I Several parametric nonlinear mixing model have been
proposed

I Intimate Mixing Models
I Radiative transfer model [Hapke, 1981] [6]

I Models are physically motivated ,

I Manageable under simplifying approximations but still
complex /



I Bilinear Mixing Models
I Parametric models ,

I Tend to preserve definitions used in the LMM ,

I Have the LMM as a particular case ,

I Not really physically motivated /

I Post-Nonlinear Mixing Models
I Allow for more general nonlinearities ,

I Usually require more work to estimate parameters /

I May become quite simple in some cases ,



Bilinear Mixing Models

I General expression

rrr = fff(MMM,ααα) +nnn

where

fff(MMM,ααα) =

R∑
k=1

αkmmmk +

R−1∑
i=1

R∑
j=i+1

βi,jmmmi �mmmj



fff(MMM,ααα) =

R∑
k=1

αkmmmk +

R−1∑
i=1

R∑
j=i+1

βi,jmmmi �mmmj

I Fan’s model: βi,j = αiαj [Fan et al., 2009] [7]

fff(MMM,ααα) =

R∑
k=1

αkmmmk +

R−1∑
i=1

R∑
j=i+1

αi αjmmmi �mmmj

subject to

R∑
i=1

αi = 1, and αi ≥ 0, i = 1, . . . , R.

OBS:
I Nonlinearity must be presented if mmmi is present

I The nonlinear term can place the vector anywhere outside
the LMM simplex



fff(MMM,ααα) =

R∑
k=1

αkmmmk +

R−1∑
i=1

R∑
j=i+1

βi,jmmmi �mmmj

I Nascimento’s model: βi,j become abundances
[Nascimento et al., 2009] [8]

fff(MMM,ααα) =

R∑
k=1

αkmmmk +

R−1∑
i=1

R∑
j=i+1

βi,jmmmi �mmmj

subject to
I Positivity constraint: αk ≥ 0, βi,j ≥ 0 for ∀k and ∀(i, j)

I Sum-to-one constraint:
∑R
k=1 αk +

∑R−1
i=1

∑R
j=i+1 βi,j = 1.

OBS:
I The nonlinear terms become new endmembers.

ê Not practical for joint estimation of MMM and ααα



fff(MMM,ααα) =

R∑
k=1

αkmmmk +

R−1∑
i=1

R∑
j=i+1

βi,jmmmi �mmmj

I Generalized Bilinear Model (GBM): βi,j = γi,jαiαj
[Halimi et al., 2011] [9]

fff(MMM,ααα) =

R∑
k=1

αkmmmk +

R−1∑
i=1

R∑
j=i+1

βi,jmmmi �mmmj

subject to

αk ≥ 0, ∀k ∈ {1, . . . , R},
R∑
k=1

αk = 1

0 ≤ γi,j ≤ 1, ∀i ∈ {1, . . . , R− 1}, ∀j ∈ {i+ 1, . . . , R}.
OBS:

I The endmember matrix is the same as in the LMM

I The constraints on αk and γi,j preclude the modeling of
strong nonlinearities



Post Nonlinear Mixing Models

I General expression

rrr = ggg (MMMααα) +nnn

I Some models
I PNMM [Chen et al., 2013] [10]

rrr = (MMMααα)ξ +nnn

I Post Polinomial Nonlinear Mixing Model [Altmann et al.,
2011-2013] [11]

g(si) = si + bs2i + ..., i = 1, . . . , L

where si is the i-th component of MMMααα



Nonlinear Unmixing

I Most techniques can be classified into two groups
I Unmixing using parametric mixing models

I Unmixing using model-free methods

I Both have pros and cons [Dobigeon et al., 2014] [12]



Nonlinear unmixing using parametric models

I Assuming MMM known (or estimated)

θθθ? = arg min
θθθ

‖rrr −ϕϕϕ(MMM,θθθ)‖22

subject to θθθ ∈ Ω,

I θθθ: parameter vector (abundances + other parameters)

I ϕϕϕ(·): parametric mixing model

I Ω: defines the feasible region

I This is a supervised parameter estimation problem
I Optimization methods [Halimi et al., 2011a] [13]

I Bayesian approaches [Halimi et al., 2011b] [9]



I For unknown MMM ê unsupervised estimation
I Bayesian approach [Altmann et al., 2014] [14]

I Manifold learning techniques [Heylen et al., 2012] [15]



Model-Free Nonlinear Unmixing

I If the type of nonlinearity is unknown

ê More flexible approaches must be sought

I Methods based on reproducing kernels are attractive

ê Function approximation without a parametric model
I Supervised methods [Chen et al., 2013] [16]

I Unsupervised Bayesian methods [Altmann et al., 2013] [17]

I Unsupervised manifold learning [Nguyen et al., 2012] [18]



Facts About Hyperspectral Image Analysis

I Basically all hyperspectral images contain
I Pixels that are “almost” linearly mixed

I Pixels that are definitely nonlinearly mixed

I Nonlinear unmixing can lead to a better understand of the
individual spectral contributions

I Nonlinear analysis is more challenging and more complex

I Unmixing linearly mixed pixels using nonlinear unmixing
methods

ê Usually poorer results than using linear unmixing



Natural Approach

I Detect the nonlinearly mixed pixels in the image

I Apply linear unmixing to linearly mixed pixels

I Apply nonlinear unmixing to nonlinearly mixed pixels



Detecting Nonlinearly Mixed Pixels

I Physically motivated models tend to be too complex [Borel
et al., 1994] [19]

I Using surrogate data [Han et al., 2008] [20]

ê Not very good results

I Using simplified parametric mixing models [Altmann et al.,
2013a] [11]

ê Not sure the model can capture the existing nonlinearity

I Using the distance between the pixel and the LMM simplex
[Altmann et al., 2013b] [21]

ê Conveys too little information about the nonlinearity



I Using a model-selection approach for detecting
nonlinearities with different statistical properties [Altmann
et al., 2014] [14]

ê Bayesian supervised approach combining detection and
unmixing (complexity and flexibility)



Proposed Nonlinearity Detection Strategy

I Objectives
I To detect nonlinearly mixed pixels prior to unmixing

I To obtain a model-free approach that generalizes well

I The method should be unsupervised

I Strategy
I Determine how well the observed pixel spectrum fits both a

linear and a nonlinear recursion

I Propose a hypothesis test assuming that:
I Both estimators provide good results for linearly mixed

pixels

I The nonlinear estimator provides better results for
nonlinearly mixed pixels



Estimators

I Linear estimator: Least-squares

I Nonlinear estimator: Gaussian process regression
I Define a stochastic model for the unknown function

I Perform inference in functional spaces

I Modeling a nonlinear function as a Gaussian Process

f(xxxk) for inputs xxx1,xxx2, ...,xxxK modeled as jointly Gaussian
random variables



Gaussian Process Regression

I Mathematical model for the `-th band of the HI

r` = ψ(mmmλ`) + n`, ` = 1, . . . , L

I mmmλ`
: `-th row of MMM

I MMM = [mmmλ1 , . . . ,mmmλL
]>

I rrr = [r1, . . . , rL]>

I n` is white Gaussian noise with power σ2
n

I Gaussian process definition

E{ψ(mmmλ`)} = 0

E{ψ(mmmλ`)ψ(mmmλ`′ )} = κ(mmmλ` ,mmmλ`′ )

I κ(·, ·) is a positive definite kernel [Rasmussen, 2006] [22]



I Prior of the noisy observation

rrr ∼ N (000,KKK + σ2
nIII)

I KKK is the Gram matrix, KKKij = κ(mmmλi ,mmmλj )

I σ2
n is the noise power

I Joint distribution of the observation rrr and ψ∗ , ψ(mmmλ∗)[
rrr
ψ∗

]
∼ N

(
000,

[
KKK + σ2

nIII κκκ∗
κκκ>∗ κ∗∗

])
κκκ∗ = [κ(mmmλ∗ ,mmmλ1), . . . , κ(mmmλ∗ ,mmmλL)]>

κ∗∗ = κ(mmmλ∗ ,mmmλ∗)



I Predictive distribution (posterior) for ψ∗ , ψ(mmmλ∗)

ψ∗|rrr,MMM,mmmλ∗ ∼ N
(
κκκ>∗
[
KKK + σ2

nIII
]−1

rrr, κ∗∗ − κκκ>∗
[
KKK + σ2

nIII
]−1

κκκ∗

)

I Extension to multivariate test data MMM∗ = [mmmλ∗1 , . . . ,mmmλ∗L ]>

ψψψ∗|rrr,MMM,MMM∗ ∼ N
(
KKK>∗

[
KKK + σ2

nIII
]−1

rrr, KKK∗∗ −KKK>∗
[
KKK + σ2

nIII
]−1

KKK∗

)
[KKK∗]ij = κ(mmmλ?i ,mmmλj ) and [KKK∗∗]ij = κ(mmmλ?i ,mmmλ?j )



I Minimum mean square error (MMSE) estimator

ψ̂ψψ∗ = E{ψψψ∗|rrr,MMM,MMM∗}

= KKK>∗
[
KKK + σ2

nIII
]−1

rrr.

I The estimator is a function of σ2
n and the parameter vector

θθθ (kernel parameters, for instance)

I They must be estimated

I We maxime the marginal likelihood p(rrr|MMM,σ2
n, θθθ) with

respect to (σ2
n, θθθ)

(σ̂2
n, θ̂θθ) = arg max

σ2
n,θθθ

(
−1

2
rrr>
[
KKK + σ2

nIII
]−1

rrr − 1

2
log |KKK + σ2

nIII|
)



Parameter Estimation

I Gaussian kernel [Liu, 2010] [23]

κ(mmmλp ,mmmλq) = exp

{
− 1

2s2
‖mmmλp −mmmλq‖2

}
I θθθ = {s2, σ2

n}
θ̂θθ = argθθθ max log p(rrr|MMM,θθθ)



Nonlinearity Detector

I Binary hypothesis test problem{
H0 : rrr = MMMααα+nnn

H1 : rrr = ψψψ(MMM) +nnn

I At this point MMM is assumed known

I We compare the fitting errors
I Under H0 both estimators should provide good estimates

I Under H1 the LS estimation error should be significantly
larger



LS fitting error

I Linear fitting error

eeelin = rrr −MMMα̂αα

I LS estimator
eeelin = PPPrrr

I PPP = III −MMM(MMM>MMM)−1MMM>

L× L projection matrix of rank ρ = L−R



Gaussian process model (GPM) fitting error

I GP-based fitting error

eeenlin = rrr − r̂rrg = rrr − ψ̂ψψ
MMSE

∗

∣∣∣
MMM∗=MMM

= HHHrrr

I HHH = IIIL −KKK>
[
KKK + σ2

nIII
]−1

Real-valued symmetric matrix of rank L



The Test Statistics

I We compare the two error norms

I Desirable:
I Be able to specify a probability of false alarm (PFA)

ê Test statistics should at least approximate a known
distribution under H0

I Proposed test statistics

T =
2‖eeenlin‖2

‖eeenlin‖2 + ‖eeelin‖2
H1

≶
H0

τ



I Reasoning

I To be able to design PFA, we need a known pdf under H0

I For the LS estimation error

eeelin|H0 ∼ N (0, σ2
nPPP )

I Then,
‖eeelin‖2

σ2
n

∣∣∣∣H0 ∼ χ2
ρ (0) , ρ = L−R

I The case of the nonlinear estimation is not that simple

I We argue that under H0, both GP and linear estimations
should achieve the same level of accuracy

ê We assume that

‖eeenlin‖2

σ2
n

∣∣∣∣H0 ∼ χ2
ρ (0)



I Then, under H0, ‖eeelin‖2 and ‖eeenlin‖2 are correlated χ2

variables

I Now, we can write

eeelin = eeenlin +
√

2εεε, εεε ∼ N (000, σ2
εIII)

I Then, neglecting eee>nlinεεε under H0

T ≈ ‖eeenlin‖2

‖eeenlin‖2 + ‖εεε‖2

where the two χ2 variables are independent

I This ratio corresponds to a beta distribution [Johnson,
1995] [24]



I Fitted Beta vs Histogram for the test statistics T under H0;

I Synthetic data generated using the LMM with random
abundances sampled from the unity simplex.
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Figure: Histogram of the test statistics under H0 and the adjusted
Beta distribution.



Simulations

Degree of nonlinearity for synthetic data

rrr = rrrlin + rrrnlin

I The energy of rrr is given by

E = ‖rrr‖2 = ‖rrrlin‖2 + 2rrr>linrrrnlin + ‖rrrnlin‖2,

I Elin = ‖rrrlin‖2 is the energy of the linear contribution

I Enlin = 2rrr>linrrrnlin + ‖rrrnlin‖2 is the part of the pixel energy
affected by the nonlinear mixing.

I Define ηd (degree of nonlinearity) such that 0 ≤ ηd ≤ 1

ηd =
Enlin

E
=

1

1 +A
, A = ‖rrrlin‖2/(2rrr>linrrrnlin + ‖rrrnlin‖2)



Known MMM

I 4000 samples (2000 LMM, 2000 modified GBM) ;

I R = 3 endmembers extracted from ENVITM(green grass,
olive green paint and galvanized steel metal);

I fixed abundances ααα = [0.3, 0.6, 0.1]>;

I different ηd (0.3, 0.5, 0.8);

I SNR = 21dB.
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NLD = 0.3

NLD = 0.5

NLD = 0.8

(a) Robust LS detector.
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NLD = 0.3

NLD = 0.5

NLD = 0.8

(b) Proposed GP detector.



I GP vs LS (ηd = 0.5)
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Table: Abundance estimation RMSE for MMM known and using the
GBM mixing model (SNR = 21dB, ηd = 0.5).

Image I: LMM + GBM

Model FCLS SK-Hype D.+U. GP (C.E.%) D.+U. LS (C.E.%)

LMM 0.0095 0.0205 0.0097 (0.6) 0.0096 (0.2)
NLM 0.0624 0.0312 0.0324 (5.6) 0.0509 (51.4)
F.Img 0.0446 0.0264 0.0239 (3.1) 0.0366 (25.8)

Table: Abundance estimation RMSE for MMM known and using the
PNMM mixing model (SNR = 21dB, ηd = 0.5).

Image II: LMM + PNMM

Model FCLS SK-Hype D.+U. GP (C.E.%) D.+U. LS (C.E.%)

LMM 0.0095 0.0205 0.0099 (1.2) 0.0095 (0)
NLM 0.0958 0.0440 0.0443 (0.8) 0.0483 (17)
F.Img 0.0681 0.0344 0.0321 (1) 0.0348 (8.5)

C.E. - classification error (%)



One-tailed Wilcoxon signed rank test (Sig. level 0.05)
I Null hypothesis

median(RMSEproposed) = median(RMSEother)

I Assign A if the null hypothesis is rejected.

I Assign “-” if the null hypothesis cannot be rejected.
Table: Image I.

FCLS SK-Hype D.+U. LS

LMM - A -
NLM A - A

F.Img. A A A

Table: Image II.

FCLS SK-Hype D.+U. LS

LMM - A -
NLM A - A

F.Img. A A A



Unknown MMM
I Different proportion of nonlinearly mixed pixels (10-50 %)

I ηd = 0.5

I MMM estimated using VCA

I keep in mind the red line (we’ll return to it later!)
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Iterative Endmember Estimation/Detection in
Nonlinearly Mixed HIs

Basic steps:

1. assume a relaxing factor rf between 0 and 1

2. estimate MMM using the MVES

3. compute the detection threshold τ and its relaxed version
τr = rf × τ

4. detect and discard nonlinearly mixed pixels using τr

5. make rf less “relaxing” :-) (i.e., make rf closer to 1)

6. return to 1 until some stopping criterion on (Tmax − Tmin)
is satisfied



Algorithm 1: Iterative endmember estimation

Input : The hyperspectral image RRR, and the number of endmembers
R

Output: Estimated endmember matrix M̂MM
1 Initialization: Tmax = 1, Tmin = 0, ε = 0.05, RRRtmp = RRR, Nmax = 10,

cc = 0, rf = 0.9, rinc = (1− rf )/Nmax, PFA = 0.05;

2 M̂MM = MVES(RRRtmp, R);
3 Compute τ using a Beta distribution;
4 τr = rf × τ ; %% (relaxed threshold)
5 while Tmax − Tmin > ε & cc < Nmax do
6 for i = 1 to Npixels do
7 Compute TTT (i) ;
8 end
9 Remove all pixels with TTT (i) ≤ τr from RRRtmp;

10 rf = rf + rinc; %% (relaxing factor)
11 τr = rf × τ ;
12 Tmax = max(TTT ); Tmin = min(TTT );
13 cc = cc+ 1;

14 M̂MM = MVES(RRRtmp, R);

15 end



Example using synthetic data

I 2000 pixels

I 3 endmembers

I 50% of nonlinearly mixed pixels (randomly selected)

I nonlinearity: GBM with ηd = 0.5



Example using synthetic data (iteration 1)
I Black dots are the real endmembers projection onto MMM

I green dots are the estimated endmembers projection

I blue circles indicate pixels that are being discarded
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Figure: First iteration.



Example using synthetic data (iteration 4)
I Black dots are the real endmembers projection onto MMM

I green dots are the estimated endmembers projection

I blue circles indicate pixels that are being discarded
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Figure: Fourth iteration.



Example using synthetic data (iteration 7)
I Black dots are the real endmembers projection onto MMM

I green dots are the estimated endmembers projection

I blue circles indicate pixels that are being discarded
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Figure: Seventh iteration.



Example using synthetic data (iteration 10)
I Black dots are the real endmembers projection onto MMM

I green dots are the estimated endmembers projection

I blue circles indicate pixels that are being discarded
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Figure: Final result (after 10 iterations).



Performance of the proposed estimation method

I Different ηd (NLD in the figure)

I Results using VCA or MVES × using proposed method

Before After
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Synthetic data extracted from a real scene (Cuprite
Mining Field - Nevada - CA)

I Controlled environment with labeled data;

I Alunite Hill is known to have 3 endmembers (alunite,
muscovite, and kaolinite) [5];
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Figure: Cuprite mining site. The green box corresponds to the alunite
hill scene.
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(a) Alunite hill.
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(c) GBM + WGN.

Figure: (a) Plot of the alunite hill with bands 30, 70 and 100. (b)
Reconstruction of the scene using the LMM. (c) Adding 30 % of
nonlinearly mixed pixels (ηd = 0.3) and WGN to give a 30dB SNR.



Estimated endembers

I black circles (true endembers);

I blue circles (estimated using the prop. method) after 10
iterations.
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(b) Kaolinite.
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(c) Muscovite.

Figure: Endmember estimations for the nonlinearly mixed image with
different extraction techniques.
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Figure: Detection map and true nonlinear map. Linearly mixed pixels
in gray, nonlinearly mixed pixels in white, and misclassified pixels in
black.



Table: RMSE for the abundances in the alunite hill scene.

Algorithm RMSE ± STD (Class. Err. %)

FCLS 0.0797 ± 0.0123 (-)
SK-Hype 0.0824 ± 0.0059 (-)
detect-then-unmix 0.0671 ± 0.0049 (3.83)



Real Data 1: Indian Pines

I 16 non-mutually exclusive classes;

I divided in 8 subimages by grouping classes with similar
number of pixels;
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(b) Detection map.



Table: Indian Pines recontruction error (RMSE) by subimage.

Subimg.
RMSE ± STD

FCLS SK-Hype detect-then-unmix

1 0.0028627 0.0030332 0.0029083

2 0.0038963 0.003881 0.0038391

3 0.0044259 0.0035981 0.0035537

4 0.0040145 0.0039097 0.0038895

5 0.0030848 0.0032353 0.0030527

6 0.0039905 0.004055 0.0039644

7 0.0034804 0.0035049 0.0034552

8 0.0037665 0.0039314 0.0037531



Real Data 2: Cuprite
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(a) Cuprite scene.
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(c) VCA + SK-Hype

Figure: Cuprite scene and reconstruction errors.



Estimated endmembers and USGS spectra

0 50 100 150 200

0.1

0.2

0.3

0.4

0.5

Bands

R
e
fl
e
c
ta

n
c
e

 

 

USGS

Estimated Proposed

Estimated LS

(a) Sphene
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(b) Montmorillonite
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(c) Kaolinite
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(d) Dumortierite
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Estimated Abundance Maps

(a) Sphene (b) Montmorillonite (c) Kaolinite

(d) Dumortierite (e) Pyrope



Table: Spectral angles (in rad) between estimated and USGS spectra.

Endmemeber IEE LS VCA MVES

Sphene 0.0799 0.1498 0.3634 0.2457
Montmorillonite 0.0615 0.0852 0.0888 0.0762
Kaolinite 0.1471 0.1689 0.2022 0.2559
Dumortierite 0.1054 0.1008 0.0942 0.1422
Pyrope 0.1035 0.9792 0.1760 0.1588



Final remarks

I The proposed nonparametric method for detecting
nonlinear mixtures in HIs outperforms other nonparametric
detection methods in the literature

I The unmixing performance shows improvement when
compared to state-of-the-art methods

I The unmixing results are statistically consistent

I The degree of mixture nonlinearity was defined allowing
one to compare results using different models

I The iterative EEA algorithm proposed presented good
results when compared to traditional VCA and MVES

I Simulations using different scenarios corroborate the
conclusions



I Main results published in [25] and [26]

I source code available at https://github.com/talesim/
NP_NL_Det_EE_HI/archive/master.zip

https://github.com/talesim/NP_NL_Det_EE_HI/archive/master.zip
https://github.com/talesim/NP_NL_Det_EE_HI/archive/master.zip
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