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Terminology and Notation

@ soft-thresholding operator for a = (ai),N:l e RV:
[T;t (a)]l. = sign(a;) max (|a,~| -2, 0);

@ ">"is the elementwise version of “>";

@ proximal operator for function r(x) scaled by A:
prox;, & = argmin %||x — a3 + Ar(x).
X
@ ¢-subgradient (Rockafellar 1970, Sec. 23):

der (x) = {g eER? |r(z) >r(x)+ (z—x)Tg —& Vz e RP}.
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Introduction |

For most natural signals x,
# significant coefficients of ¥ (x) < signal size p

where
¥(x):R? > R?

is sparsifying transform.
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Sparsifying Transforms |

1000

linear
transform
<>
DWT

p pixels # significant coeffs < p
¥(x)=0lx

where W € R?*7 is a known sparsifying dictionary matrix.
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Sparsifying Transforms |l

transform
<>
gradient map

p pixels # significant coeffs < p

V)2, &

N; is the index set of neighbors of x;.
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Convex-Set Constraint

xeC

where C is a nonempty closed convex set.
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Convex-Set Constraint

xeC

where C is a nonempty closed convex set.
Example: the nonnegative signal set

C =R’

is of significant practical interest and applicable to X-ray CT,
SPECT, PET, and MRI.
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Goal

Sense the significant components of ¥ (x) using a small number of
measurements.
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Goal

Sense the significant components of ¥ (x) using a small number of
measurements.

Define the noiseless measurement vector ¢ (x), where
¢():R? = RY (N < p).
Example: Linear model

¢(x) = Ox

where ® € RV*7 is a known sensing matrix.
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Penalized NLL

@ objective

fun;tiij/

f(x) = L(x) + u [y @)l +Ic(x)]

—

r(x)
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Penalized NLL

@ objective
function

f(x) = L(x) + u [y @)l +Ic(x)]

—

r(x)

@ convex ' differentiable
negative log-likelihood (NLL)
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Penalized NLL

@ objective
function

f(x) = L(x) + u [y @)l +Ic(x)]

/ r(x)
@ convex ' differentiable

negative log-likelihood (NLL)
@ convex penalty term

u > 0 is a scalar tuning constant
CcC cl(dom [,(x))

8/104



PNPG Algorithm
oeo

Comment

Our objective function f(x) is
@ convex

o has a convex set as minimum (unique if £(x) is strongly
convex),

@ not differentiable with respect to the signal x

e cannot apply usual gradient- or Newton-type algorithms,
o need proximal-gradient (PG) schemes.
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Goals

Develop a fast algorithm with
o O(k™?) convergence-rate and
@ iterate convergence guarantees
for minimizing f(x) that
e is general (for a diverse set of NLLs),
@ requires minimal tuning, and

@ is matrix-free®, a must for solving large-scale problems.

*involves only matrix-vector multiplications implementable using, e.g.,

function handle in Matlab
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Majorizing Function

Define the quadratic approximation of the NLL £(x):
_ _ _ _ 1 _
Qp(x | %) = LX) + (x = %) VLE) + %le ~x|3
with B chosen so that Qﬂ(x | )7) majorizes L£(x) in the
neighborhood of x = x.

Yl
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Figure 1: Majorizing function: Impact of S.
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Figure 1: Majorizing function: Impact of S.

No need for strict majorization, sufficient to majorize in the
neighborhood of X where we wish to move next!
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PNPG Method: Iteration i

B — Ig(i—l)/ﬁ(i)
1, i <1

) —
Ly b+ BO@OED), >

. ) (i—-1) _
¥ = Pc (x(z—l) + %(x(i—l) . x(i—z))) accel. step
x® = proxg(i)ur(f(i) - ﬁ(i)VE(J?(i))) PG step

where ,B(i) > 0 is an adaptive step size:
@ satisfies

E(x(i)) < ng(i)(x(i) | f(i)) majorization condition,
@ is as large as possible.
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PNPG Method: Iteration i

allows general | dom £

BW — /3(1'—1)/’3(1')
i

N 0G—1\2
Ly b+ BO(9G-D

9@ —

. -1 _
) — -1, 9 e -
D = Pc (xG-D 4 T(x(z D _ G 2))) accel. step
x@ = prOXﬂ(i)ur(f(i) - ﬂ(i)VL(f(i))) PG step

where B9 > 0 is an adaptive step size:
o satisfies

.C(x(i)) < Qﬂ(i)(x(i) | f(i)) majorization condition,
@ is as large as possible.
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PNPG Method: Iteration i

B = gi=1 /0

90 _ I, i <1

1y \/b + BO@OG-D)? >

. (i-1) _
=G) _ 1 0 1, -
x' = Pc (x(’ ) 4 T(x(l D _ G 2))) accel. step
x@ = prOXﬂ(imr(E(i) - ﬁ(i)VE(J?(i))) PG step

where ﬁ(i) > 0 is an adaptive step size:
o satisfies

£(x(i)) < ﬂ(i)(x(i) | f(i)) majorization condition,
needs to hold for x(i), not for all x!
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PNPG Method: Iteration i

B = gi=1 /0

90 _ I, i <1

1y \/b + BO@OG-D)? >

. (i-1) _
=G) _ 1 0 1, -
x' = Pc (x(’ ) 4 T(x(l D _ G 2))) accel. step
x@ = prOXﬂ(imr(E(i) - ﬁ(i)VE(J?(i))) PG step

where ﬁ(i) > 0 is an adaptive step size:
o satisfies

£(x(i)) < ﬂ(i)(x(i) | f(i)) majorization condition,
needs to hold for x(i), not for all x!

ﬁ(x) £ Qﬁ(n(x | f(i)) in general, for an arbitrary x! 15 /104
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Algorithm 1: PNPG method

Input: xCV u, n, m, &, n, and threshold €
Output: arg min f(x)
X

Initialization: §© « 0, x©@ <« 0,i <0, k<0 ﬁ(l) by the BB method

repeat
i<i+landk <« +1
while true do // backtracking search
evaluate B®, 9@ and ¥
if £ ¢ dom £ then // domain restart

L 6%~ 1 and continue

solve the PG step

if majorization condition holds then

‘ break

else
if O > =D then // increase m
L < n+m
BD — gD and k <0

if i >1 and f(x(i)) > f(x(i_l)) then // function restart
L 9=  1,i «i—1, and continue

if convergence condition holds then

| declare convergence

if « > n then // adapt step size
| k< 0and gU+D « g0/

else

L ﬂ(H-l) - ﬂ(i)

until convergence declared or maximum number of iterations exceeded
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Step Size B @
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Figure 2: lllustration of step-size selection for Poisson generalized linear
model (GLM) with identity link.

17 /104



PNPG Algorithm
0000000e00000000

Momentum lllustration

. . pli—-1) _1 .
=) — @1 -1 _ (-2
xY = pc (x + IO (x x ) )

momentum term
prevents zigzagging
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Comments on the extrapolation term 6@ |

60 =1 4 b+ BO@BGD)? >0
where
y > 2, b €[0,1/4]

are momentum tuning constants.

@ To establish O(k_z) convergence of PNPG, need

00 <1y /14 BOEED) >0
e y controls the rate of increase of 6.
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Comments on the extrapolation term 6@ ||

G(i)T implies stronger momentum.

Effect of step size

In the “steady state” where B0~ = @, G(i)T aproximately
linearly with i, with slope 1/y.
Changes in the step size affect 6@:

B < BU=D step size decrease, faster increase of 6,

B = BU=1 step size increase, decrease or slower increase of 6

than in the steady state.
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Proximal Mapping

To compute
prox;, a = argmin%”x —al3 + Ar(x)
X

use

o for £1-norm penalty with ¥ (x) = W7 x, alternating direction
method of multipliers (ADMM)

o iterative

e for total-variation (TV)-norm penalty with gradient map ¥ (x),
an inner iteration with the TV-based denoising method in
(Beck and Teboulle 2009b).

o iterative

21/104



PNPG Algorithm
00000000000e0000

Inexact PG Steps

B = /3(1'—1)/'3(1')
O i i <1
L Jb+ BO@BGD), >
: : pG- _1 4
O @-1 (-1 _ ,.(G-2)
x = Pc (x + 1) (x x )) accel. step
xD g ProXg iy, ( @ ﬁ(’)Vﬁ( (’))) PG step

Because of their iterative nature, PG steps are inexact: Y
quantifies the precision of the PG step in lteration i.
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Remark (Monotonicity)

The projected Nesterov's proximal-gradient (PNPG) iteration with
restart is non-increasing:

f(x(i)) < f(x(i—l))
if the inexact PG steps are sufficiently accurate and satisfy
£ < V5O
where

§O & | x® — x¢-D H;

is the local variation of signal iterates.
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Convergence Criterion

V50 < <],

where € > 0 is the convergence threshold.

The goal of function and domain restarts is to ensure that

@ the PNPG iteration is monotonic and

o ¥ and x remain within dom f.
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Summary of PNPG Approach

Combine Apply
@ convex-set projection with @ adaptive step size,
o Nesterov acceleration. @ restart.
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Why?

@ Thanks to step-size adaptation, no need for Lipschitz
continuity of the gradient of the NLL.

o dom £ does not have to be R?.

Extends the application of the Nesterov's acceleration® to more
general measurement models than those used previously.

TY. Nesterov, “A method of solving a convex programming problem with

convergence rate 0(1/k2)," Sov. Math. Dokl., vol. 27, 1983, pp. 372-376.
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Theorem (Convergence of the Objective Function)

Assume

e NLL L(x) is convex and differentiable and r(x) is convex,

e C Cdom L: no need for domain restart.

Consider the PNPG iteration without restart.
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Theorem (Convergence of the Objective Function)

[ = x*1} + 6%

2(VED + X, VED)'

fE®) = 1=t <y?

where

k
gk 2 Z(H(i)s(i))z error term, accounts for inexact PG steps

i=1

x* & arg min f(x)
X
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Comments

[ © - 53 + €%

Y 2
(VD + T, VEO)

@ Step sizes ﬂ(i)T, convergence-rate upper bound l
@ better initialization, convergence-rate upper bound | .

@ smaller prox-step approx. error, convergence-rate bound | .
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Corollary

Under the condition of the Theorem,

oY = 5@
2kz,Bmin

—

O(k=2) if EF) < +00

fE®) = f(x7)

IA

4

provided that

+o0
Bmin = in_illlﬂ(k) > 0.
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Corollary
Under the condition of the Theorem,

oY = 5@
2kz,Bmin

—

IA

fE®)—fx) <y

O(k=2) if EF) < +00

provided that

+o0
Bmin = in_illlﬂ(k) > 0.

The assumption that the step-size sequence is lower-bounded by a
strictly positive quantity is weaker than Lipschitz continuity of

VL(x) because it is guaranteed to have Bmin > §/L if VL(x) has a
Lipschitz constant L.
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Theorem (Convergence of Iterates)

Assume that
@ NLL L(x) is convex and differentiable and r(x) is convex,
® C C dom L, hence no need for domain restart,
© cumulative error term & ) converges: £ (+o0) +o00,
@ momentum tuning constants satisfy y > 2 and b € [0, 1/)/2],

+o00
i

_, is bounded within the range

@ the step-size sequence (1))
[:Bmim IBmax] s (lgmin > 0).

I The sequence of PNPG iterates x D without restart converges
weakly to a minimizer of f(x). a minimizer of f(x).
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Theorem (Convergence of Iterates)

strict inequality

Assume that
@ NLL L(x) is convex and differentiable and r(x) is convex,
® C C dom L, hence no need for domain restart,
© cumulative error term % converges: £ (+o0) o 4
@ momentum tuning const. satisfy y > 2 “and b € [O, 1/)/2], —~
@ the step-size sequence (13("))::;)
[Brmin, Bmax] » (Bmin > 0).

= The sequence of PNPG iterates x@ without restart converges
weakly to a minimizer of f(x). a minimizer of f(x).
narrower than [0. 1/4]

is bounded within the range
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|dea of Proof.

Recall the inequality

00 = &+ b+ BOEOD) <4 +/} + BO(p-D)

used to establish convergence of the objective function.
Assumption 4:

y > 2, be[O.l/)/z]

creates a sufficient “gap” in this inequality that allows us to

@ show faster convergence of the objective function than the
previous theorem and

@ establish the convergence of iterates.
I'= Inspired by (Chambolle and Dossal 2015).

]
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Introduction

Signal reconstruction from Poisson-distributed measurements with
affine model for the mean-signal intensity is important for

e tomographic (Ollinger and Fessler 1997),
@ astronomic, optical, microscopic (Bertero et al. 2009),
@ hyperspectral (Willett et al. 2014)

imaging.
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Detector

Site of
radioactive
decay

511 keV photon

Annihilation
Electron
path

Detector

511 keV photon

Coincidence
detection
circuit

Event: Yes or no?

PET: Coincidence detection due to positron decay and annihilation
(Prince and Links 2015).
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Measurement Model

N independent measurements y = (yn),llv=1 follow the Poisson
distribution with means
[®x + b],

where
Nxp
®eR.™T, b

are the known sensing matrix and intercept term?.

Sthe intercept b models background radiation and scattering, obtained, e.g.,

by calibration before the measurements y have been collected
37 /104
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Existing Work

The sparse Poisson-intensity reconstruction algorithm (SPIRAL)T

@ approximates the logarithm function
in the underlying NLL by adding a
small positive term to it and then

@ descends a regularized NLL
objective function with proximal
steps that employ Barzilai-Borwein
(BB) step size in each iteration,
followed by backtracking.

1z. 1. Harmany et al., “This is SPIRAL-TAP: Sparse Poisson intensity
reconstruction algorithms—theory and practice,” /EEE Trans. Image Process.,
vol. 21, no. 3, pp. 1084-1096, Mar. 2012.
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PET Image Reconstruction

@ 128 x 128 concentration map x.

@ Collect the photons from 90 equally
spaced directions over 180°, with 128
radial samples at each direction,

@ Background radiation, scattering effect,
and accidental coincidence combined to-
gether lead to a known intercept term b.

@ The elements of the intercept term
are set to a constant equal to 10 % of

1T<I>x1

10N

The model, choices of parameters in the PET system setup, and

concentration map have been adopted from Image Reconstruction
Toolbox (IRT) (Fessler n.d.).

the sample mean of ®x: b =

39/104
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Numerical Example

@ Main metric for assessing the performance of the compared
algorithms is relative square error (RSE)
= 2
||x - xtrue”2
2
”xtrue”2

where X e and X are the true and reconstructed signal,
respectively.
o All iterative methods use the convergence threshold

e =10"°

RSE =

and have the maximum number of iterations limited to 10*.
@ Regularization constant u has the form
u = 10%.

We vary a in the range [—6, 3] with a grid size of 0.5 and
search for the reconstructions with the best RSE performance.
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Compared Methods

o Filtered backprojection (FBP) (Ollinger and Fessler 1997) and

@ PG methods that aim at minimizing f(x) with nonnegative x:
— RP
C =RL.

All iterative methods initialized by FBP reconstructions.

Matlab implementation available at
http://isucsp.github.io/imgRecSrc/npg.html.
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PG Methods

o PNPG with (y,b) = (2, 1/4).

o AT (Auslender and Teboulle 2006) implemented in the
templates for first-order conic solvers (TFOCS) package
(Becker et al. 2011) with a periodic restart every 200 iterations
(tuned for its best performance) and our proximal mapping.

@ SPIRAL, when possible.
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(a) radio-isotope concentration (b) attenuation map

Figure 3: (a) True emission image and (b) density map.
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RSE=3.09% RSE=0.66 %

(a) FBP (b) €4

Figure 4: Reconstructions of the emission concentration map for expected
total annihilation photon count (SNR) equal to 108.
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RSE=0.66 % RSE=0.22%

(a) & (b) TV

Figure 5: Comparison of the two sparsity regularizations.
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Figure 6: Centered objectives as functions of CPU time.
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A

Figure 7: Centered objectives as functions of CPU time.
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Linear Model with Gaussian Noise

1
Lx) = 3 lly — @x[3

where
o y € RY is the measurement vector and

@ the elements of the sensing matrix ® are independent,
identically distributed (i.i.d.), drawn from the standard normal
distribution.

We select the £1-norm sparsifying signal penalty with linear map:

¥(x) = wlx.
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Figure 7: True signal.
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Comments |

@ More methods available for comparison:

e sparse reconstruction by separable approximation (SpaRSA)
(Wright et al. 2009),

o generalized forward-backward splitting (GFB) (Raguet et al.
2013),

o primal-dual splitting (PDS) (Condat 2013).

@ Select the regularization parameter u as
u=10°U, U2 |eTveo),

where a is an integer selected from the interval [-9, —1] and U
is an upper bound on u of interest.
@ Choose the nonnegativity convex set:
_ P
C =R].
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Comments |l

o If we remove the convex-set constraint by setting C = R?,
PNPG iteration reduces to the Nesterov's proximal gradient
iteration with adaptive step size that imposes signal sparsity
only in the analysis form (termed NPGs).
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Figure 8: PNPG and NPGg reconstructions for N/p = 0.34.

51/104



Applications
00000e®00

" SPIRAL —=-

SpaRSA (cont.) - E
PNPG —

: PNPG (cont.) ---

L GFB —x—

oL PDS o ]

AT

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
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(a)a=-5,N/p=0.34 (b)a=—-6,N/p =0.49

Figure 9: Centered objectives as functions of CPU time.
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Figure 10: Centered objectives as functions of CPU time.
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Figure 11: Centered objectives as functions of CPU time.
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More Terminology and Notation

o “(s) is the Laplace transform of u(k):
t(s) £ / tk)e*  dk,

@ Laplace transform with vector argument:

S1 bt(sl)

52 b=(s2)
bss)=b5|| | ]=| .

SN b (sn)
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An X-ray CT scan consists of
multiple projections with the
beam intensity measured by
multiple detectors.

Detectors (fixed)

Figure 12: Fan-beam CT system.
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Exponential Law of Absorption

The fraction dZ/Z of plane-wave intensity lost in
traversing an infinitesimal thickness d¢ at Cartesian
coordinates (x, y) is proportional to d¢:

dI Iin
— =— ulx,y,e) dd =— k@Ea(x,y) d
I ———
attenuation separable
.o (s a)
where t

@ «(g) = 0 is the mass attenuation function
of the material,

@ «(x,y) > 0 is the density map of the inspected Jout
object, and

@ ¢ is photon energy.
To obtain the intensity decrease along a straight-line path
£ = L(x,y), integrate along £ and over . The underlying

measurement model is nonlinear.
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Polychromatic X-ray CT Model

o Incident energy 7™ spreads along photon energy & with
density t(g):
Iin

/L(S) de = 1™,

o Noiseless energy measurement obtained b (k)
upon traversing a straight line
£ = £(x, y) through an object composed
of a single material:

IOt = / 1(g) exp |:—K(8) /Z(x(x, y) dﬁ] de.

Iout
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Linear Reconstruction Artifacts

Figure 13: FBP reconstruction of an industrial object.

Note the cupping and streaking artifacts of the linear FBP

recan<triiction annlied +o 11 7°out 61 /104
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Problem Formulation and Goal

Assume that both
o the incident spectrum t(g) of X-ray source and
o mass attenuation function k(&) of the object

are unknown.
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Problem Formulation and Goal

Assume that both
o the incident spectrum t(g) of X-ray source and
o mass attenuation function k(&) of the object

are unknown.

Goal: Estimate the density map a(x, y).
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Polychromatic X-ray CT Model Using Mass-Attenuation

Spectrum

@ Mass attenuation «(¢) and incident
spectrum density t(g) are both functions
of e. K(e)
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Polychromatic X-ray CT Model Using Mass-Attenuation

Spectrum

@ Mass attenuation «(¢) and incident
spectrum density t(g) are both functions
of e. w(e)

o Idea. Write the model as integrals of «
rather than &:

In = / (k) dic = (H(0)

ASEES / k) exp[—;c/oc(x,y) d€:| dk e)
L

= LL(/a(x,y) dZ)
)4

I'= Need to estimate one function, (k), rather
than two, (&) and k(e)!

AV

/7

o
>
&

<.

o
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Mass-Attenuation Spectrum

. z
Ag;

Figure 14: Relationship between mass attenuation «, incident spectrum ¢,
photon energy ¢, and mass attenuation spectrum (k).
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Basis-function expansion of mass-attenuation spectrum

k) = b(k)T

K

Figure 15: Bl-spline expansion w(k) = b(k)Z, where the Bl-spline basis is
b(k) = [bl(K),bz(K), .. .,bJ(K)]. L(k) > 0 implies Z > 0.
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Noiseless Measurement Model

N x 1 vector of noiseless energy measurements:
I°(x. I) = bo(ox)T

where @ is the known projection matrix,
o x = (x,')f;l > 0 is an unknown p x 1 density-map vector

representing the 2D image we wish to reconstruct, and

is an unknown J x 1 vector of corresponding mass-attenuation
basis-function coefficients.
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Poisson Noise Model

For independent Poisson measurements £ = (5,,),1,\;1, the NLL is

L. D) =1"[T"(x,T) - €] - Y & Iom(x D

n,E, #0
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Penalized NLL

@ objective
function

f(x,T) = Lx,T) + u (1Y@l +Ic@)] +lgs (D)

r(x)
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Penalized NLL

@ objective
function
f(x,T) = Lx,T) + u (1Y@l +Ic@)] +lgs (D)
r(x)
e NLL
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Penalized NLL

@ objective
function
f(x,T) = Lx,T) + u (1Y@l +Ic@)] +lgs (D)
r(x)
e NLL

@ penalty term
u > 0 is a scalar tuning constant
we select ¥ (x) = gradient map,
C =R]
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Goal and Minimization Approach

Goal: Estimate the density-map and mass-attenuation spectrum
parameters
(x.Z)

by minimizing the penalized NLL f(x,Z).
Approach: A block coordinate-descent that uses

@ Nesterov's proximal-gradient (NPG) (Nesterov 1983) and

@ limited-memory Broyden-Fletcher-Goldfarb-Shanno with box

constraints (L-BFGS-B) (Byrd et al. 1995; Zhu et al. 1997)

methods to update estimates of the density map and
mass-attenuation spectrum parameters.
We refer to this iteration as NPG-BFGS algorithm.
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Numerical Examples

@ convergence threshold:
e=10"°

@ Bl-spline constants set to satisfy

J =20, # basis functions
qJ =103, span
Koqm‘S(J“ﬂ =1, centering

Implementation available at github.com /isucsp/imgRecSrc.
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Simulated X-ray CT Example

o Equi-spaced fan-beam projections
over 360°,

@ X-ray source to rotation center is
2000x detector size,

@ measurement array size of 512 / Yy

WSS imaginary
eIements, and detector array

@ image to reconstruct has size
512 x 512. X-ray source ~ Ty

@ performance metric is the RSE of an estimate X of the signal
coefficient vector:

T
X Xtrue

RSE{(#} =1— [ % YTtwe
”x”Z“xtrue”Z
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Simulated X-ray CT Example

100 0.3
o 10 E 402
g ©
S =
=~
w1 {01
'Y

0.1 - - 0

0 40 80 120 160

e/keV

@ Incident X-ray spectrum from tungsten anode X-ray tubes at
140 keV with 5% relative voltage ripple, and

@ using photon-energy discretization with 130 equi-spaced
discretization points over the range 20 keV to 140 keV.
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RSE=11.83% RSE=0.18 %
(a) FBP (b) NPG-BFGS

Figure 16: Reconstructions from 60 projections.
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Simulated X-ray CT Example

10° T T T T Egh -
linearized FBP -—-
NPG-BFGS (u \,0) ——

10% | linearized BPDN --o-- 1
) NPG-BFGS —
% 10t -M(kmwn k) A ]
oW = —F]
= o
10°
107!

40 80 120 160 200 240 280 320 360
# of Projections

Figure 17: Average RSEs as functions of the number of projections.
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Real X-ray CT Example |

@ 360 equi-spaced fan-beam projections with 1° spacing,
@ X-ray source to rotation center is 3492x detector size,
@ measurement array size of 694 elements,

@ projection matrix ® constructed directly on GPU (multi-thread
version on CPU is also available) with full circular mask (D. et
al. 2011),

yielding a nonlinear estimation problem with N = 694 x 360
measurements and an 512 x 512 image to reconstruct.

Real data provided by Joe Gray, CNDE. Thanks!
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Real X-ray CT Example |

@ 360 equi-spaced fan-beam
projections with 1° spacing,

@ X-ray source to rotation center is
3492x detector size,

@ measurement array size of 694 D

elements,
N . e imaginary
@ projection matrix ® constructed N4 detector array
directly on GPU (multi-thread TN
version on CPU is also available) ~ X-ray source™ ¥y
with full circular mask (D. et al.

2011).
yielding a nonlinear estimation problem with N = 694 x 360

measurements and an 512 x 512 image to reconstruct.
Implementation available at github.com/isucsp/imgRecSrc.
Real data provided by Joe Gray, CNDE. Thanks!

77 /104


https://github.com/isucsp/imgRecSrc

References
00000000000000000000e00000C

(a) FBP (b) NPG-BFGS (u = 1077)
Figure 18: Real X-ray CT: Full projections.
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Comments

Our reconstruction eliminates
@ the streaking artifacts across the air around the object,
@ the cupping artifacts with high intensity along the border.

Note that the regularization constant u is tuned for the best
reconstruction.
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Inverse Linearization Function Estimate

w

[\

[

NPG-BFGS
FBP -]
fitted —In [b (I~)l']I —_—

o
o Ll = Ut Tt oW Tt
T

Polychromatic projections

o

1 2 3 4 5 6 7 8 9
Monochromatic projections

Figure 19: The polychromatic measurements as function of the
monochromatic projections and its corresponding fitted curve.

residuals: large, biased for FBP; small, unbiased for NPG-BFGS,
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Real X-ray CT Example |l

@ X-ray source to rotation center is 8696 times of a single
detector size,

@ measurement array size of 1380 elements,

@ projection matrix ® constructed directly on GPU (multi-thread
version on CPU is also available) with full circular mask.

yielding a nonlinear estimation problem with N = 1380 x 360
measurements and an 1024 x 1024 image to reconstruct.
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(a) FBP (b) NPG-BFGS (u = 1077)
Figure 20: Real X-ray CT: 360 fan-beam projections over 360°.
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3.5
s 3T i
25 1
o ~
=1.5 F g
2
a1 B
=
505 | R
= 0 data
i fitted —In“(-) — ]
| | | | |
0 1 2 3 4 5

mono. proj. ¢Fa

(=)o)

Figure 21: Estimated x and —In (bL(-)I) from 360 fan-beam real X-ray
CT projections.
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Inverse Linearization Function Estimate

4 T T T T T T T T T T
2 35} ‘
S
5 3
= 25 |
g
2 2r
‘caé 1.5
S 1r e
= -
S 05t [/ NPG-BFGS - A
3 ol FBP - |
~ fitted —In [b"(-)Z] —
_().5 1 1 1 1 1 1 1 1 1

—050 051 15 2 25 3 354 455
Monochromatic projections

Figure 22: The polychromatic measurements as function of the
monochromatic projections and its corresponding fitted curve.
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(a) FBP (b) NPG-BFGS (u = 107?)
Figure 24: Real X-ray CT: 120 fan-beam projections over 360°.

Observe the aliasing artifacts in the FBP reconstruction.
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(a) 360 projections (b) 120 projections

Figure 25: NPG-BFGS (u = 107°) reconstructions from fan-beam
projections over 360°.
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Conclusion |

PNPG framework:

@ Developed a fast framework for reconstructing signals that are
sparse in a transform domain and belong to a closed convex set
by employing a projected proximal-gradient scheme with
Nesterov's acceleration, restart and adaptive step size.

@ Applied the proposed framework to construct the first
Nesterov-accelerated Poisson compressed-sensing
reconstruction algorithm.

@ Derived convergence-rate upper-bound that accounts for
inexactness of the proximal operator.

@ Proved convergence of iterates.

@ Our PNPG approach is computationally efficient compared with
the state-of-the-art.

v
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Conclusion |l

Polychromatic X-ray CT:

Developed a blind method for sparse density-map image
reconstruction from polychromatic X-ray CT measurements in
Poisson noise.

Future work: Generalize our polychromatic signal model to handle
multiple materials and develop corresponding reconstruction
schemes.
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Adaptive Step Size

@ o if no step-size backtracking events or increase attempts for n
consecutive iterations, start with a larger step size

26) _ Ig(i—l)
="

where £ € (0, 1) is a step-size adaptation parameter,
e otherwise start with

(increase attempt)

B = gD
@® (backtracking search) select
pY =" pw (2

where #; > 0 is the smallest integer such that (2) satisfies the
majorization condition (2); backtracking event corresponds to
ti > 0.
© if max(BD, BV) < D increase n by a nonnegative
integer m: n<mn-+m.
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Whenever f(x(i)) > f(x(i_l)) orxecC \ dom L, we set
pli=b =1 (restart)

and refer to this action as function restart (O'Donoghue and Candés
2013) or domain restart respectively.
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Inner Convergence Criteria

TV: }‘x(i’j) — x("’j_l)”2 <nV§i-b (3a)
0 maX(Hs(i’j) —wT @D s - S(i,j—l)nz)
<n “‘I’T(x(i_l) —x(72) H2 (3b)

where j is the inner-iteration index,
o x/) is the iterate of x in the jth inner iteration step within
the ith step of the (outer) PNPG iteration, and
°
ne(0.1)
is the convergence tuning constant chosen to trade off the

accuracy and speed of the inner iterations and provide
sufficiently accurate solutions to the proximal mapping.
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Definition (Inexact Proximal Operator (Villa et al. 2013))

We say that x is an approximation of prox,, @ with e-precision,
denoted by

X X proxy,, a

a—Xx

€d.ar(x).
u >u

Note: This definition implies

2 2
I — prox,, a3 < ¢*.
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Relationship with FISTA |

PNPG can be thought of as a generalized FISTA (Beck and
Teboulle 2009a) that accommodates

@ convex constraints,
e more general NLLs,! and (increasing) adaptive step size

o thanks to this step-size adaptation, PNPG does not require
Lipschitz continuity of the gradient of the NLL.

IFISTA has been developed for the linear Gaussian model.
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Relationship with FISTA Il

o Need B®) to derive theoretical guarantee for convergence
speed of the PNPG iteration.

@ In contrast with PNPG, FISTA has a non-increasing step size
,B(i), which allows for setting

BW =1

60 = %[1 +/1+ 4(0(1"”)2].

@ A simpler version of FISTA is

for all i:**

o = L pa-n _ 1H1
2

2
fori > 1.

**Y. Nesterov, “A method of solving a convex programming problem with

convergence rate 0(1/k2)," Sov. Math. Dokl., vol. 27, 1983, pp. 372-376.
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Relationship with AT

(Auslender and Teboulle 2006):
. 1 .
90>::§[1+ 1+¢“90—Df]

. 1 . 1 ;
=) — _ @i-1 =(i-1)
xV = (1 Q(i))x + G(i)x

7O — prng(i)g(i)ur(f(i_l) — Q(i),B(i)VC(f(i)))

. 1 . 1 .
@) — _ -1 4, =@
xV = (1 Q(i))x + G(i)x

Other variants with infinite memory are available at (Becker et al.
2011).
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Heavy-ball Methods

(Polyak 1964; Polyak 1987):

x@ = prox/3<f>ur(x(i_1) — ﬁ(i)VE(x(i_l))) + 0D (x (=D _ x(=2),
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