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Terminology and Notation

soft-thresholding operator for a D .ai /NiD1 2 RN :�
T �.a/

�
i
D sign.ai /max

�jai j � �; 0�I
“�” is the elementwise version of “�”;
proximal operator for function r.x/ scaled by �:

prox�r a D arg min
x

1
2
kx � ak22 C �r.x/:

"-subgradient (Rockafellar 1970, Sec. 23):

@"r.x/ ,
˚
g 2 Rp j r.z/ � r.x/C .z � x/Tg � ";8z 2 Rp

	
:
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Introduction I

For most natural signals x,

# significant coefficients of  .x/ � signal size p

where
 .x/ W Rp 7! Rp

0

is sparsifying transform.
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Sparsifying Transforms I

p pixels

linear
transform$
DWT
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# significant coeffs � p

 .x/ D ‰Tx

where ‰ 2 Rp�p0 is a known sparsifying dictionary matrix.
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Sparsifying Transforms II

p pixels

transform$
gradient map

# significant coeffs � p

Œ .x/�
p0

iD1 ,
sX
j2Ni

.xi � xj /2

Ni is the index set of neighbors of xi .
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Convex-Set Constraint

x 2 C
where C is a nonempty closed convex set.
Example: the nonnegative signal set

C D RpC

is of significant practical interest and applicable to X-ray CT,
SPECT, PET, and MRI.
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Goal

Sense the significant components of  .x/ using a small number of
measurements.
Define the noiseless measurement vector �.x/, where

�.�/ W Rp 7! RN (N � p).

Example: Linear model

�.x/ D ˆx

where ˆ 2 RN�p is a known sensing matrix.
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Penalized NLL

objective
function

f .x/ D L.x/ C u
�k .x/k1 C IC .x/

�
�

r.x/

convex differentiable
negative log-likelihood (NLL)
convex penalty term
u > 0 is a scalar tuning constant
C � cl

�
domL.x/

�
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Comment

Our objective function f .x/ is
convex

has a convex set as minimum (unique if L.x/ is strongly
convex),

not differentiable with respect to the signal x
cannot apply usual gradient- or Newton-type algorithms,
need proximal-gradient (PG) schemes.
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Goals

Develop a fast algorithm with
O
�
k�2

�
convergence-rate and

iterate convergence guarantees
for minimizing f .x/ that

is general (for a diverse set of NLLs),
requires minimal tuning, and
is matrix-free�, a must for solving large-scale problems.

�involves only matrix-vector multiplications implementable using, e.g.,
function handle in Matlab
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Majorizing Function

Define the quadratic approximation of the NLL L.x/:

Qˇ
�
x j xx� D L.xx/C .x � xx/TrL.xx/C 1

2ˇ
kx � xxk22

with ˇ chosen so that Qˇ
�
x j xx� majorizes L.x/ in the

neighborhood of x D xx.

x̄(j)x̄(i)

y

0 x

L(x)
Qβ(i) (x|x̄(i))
Qβ(j) (x|x̄(j))
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x̄(j)x̄(i)

y

0 x

L(x)
Qβ(i) (x|x̄(i))
Qβ(j) (x|x̄(j))

Figure 1: Majorizing function: Impact of ˇ.

No need for strict majorization, sufficient to majorize in the
neighborhood of xx where we wish to move next!
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PNPG Method: Iteration i

B.i/ D ˇ.i�1/=ˇ.i/

� .i/ D
˚
1; i � 1
1

C
q
b C B.i/�� .i�1/�2; i > 1

xx.i/ D PC
�
x.i�1/ C � .i�1/ � 1

� .i/

�
x.i�1/ � x.i�2/

��
accel. step

x.i/ D proxˇ .i/ur

�
xx.i/ � ˇ.i/rL�xx.i/�� PG step

where ˇ.i/ > 0 is an adaptive step size:
satisfies

L
�
x.i/

� � Qˇ .i/

�
x.i/ j xx.i/

�
majorization condition,

is as large as possible.
more
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PNPG Method: Iteration i

allows general domL

B.i/ D ˇ.i�1/=ˇ.i/

� .i/ D
˚
i; i � 1
1

C
q
b C B.i/�� .i�1/�2; i > 1

xx.i/ D PC

�
x.i�1/ C � .i�1/ � 1

� .i/

�
x.i�1/ � x.i�2/

��
accel. step

x.i/ D proxˇ .i/ur

�
xx.i/ � ˇ.i/rL�xx.i/�� PG step

where ˇ.i/ > 0 is an adaptive step size:
satisfies

L
�
x.i/

� � Qˇ .i/

�
x.i/ j xx.i/

�
majorization condition,

is as large as possible.
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PNPG Method: Iteration i
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C
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�
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where ˇ.i/ > 0 is an adaptive step size:
satisfies

L
�
x.i/

� � Qˇ .i/

�
x.i/ j xx.i/

�
majorization condition,

needs to hold for x.i/, not for all x!

L
�
x
� — Qˇ .i/

�
x j xx.i/

�
in general, for an arbitrary x! more
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Algorithm 1: PNPG method

Input: x.�1/, u, n, m, �, �, and threshold �
Output: arg min

x
f .x/

Initialization: � .0/  0, x.0/  0, i  0, �  0, ˇ.1/ by the BB method
repeat

i  i C 1 and �  � C 1
while true do // backtracking search

evaluate B.i/, � .i/, and xx.i/
if xx.i/ … domL then // domain restart

� .i�1/  1 and continue

solve the PG step
if majorization condition holds then

break
else

if ˇ.i/ > ˇ.i�1/ then // increase n
n nCm

ˇ.i/  �ˇ.i/ and �  0

if i > 1 and f
�
x.i/

�
> f

�
x.i�1/

�
then // function restart

� .i�1/  1, i  i � 1, and continue

if convergence condition holds then
declare convergence

if � � n then // adapt step size
�  0 and ˇ.iC1/  ˇ.i/=�

else
ˇ.iC1/  ˇ.i/

until convergence declared or maximum number of iterations exceeded
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Figure 2: Illustration of step-size selection for Poisson generalized linear
model (GLM) with identity link.
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Momentum Illustration

xx.i/ D PC
�
x.i�1/ C � .i�1/ � 1

� .i/

�
x.i�1/ � x.i�2/��

momentum term
prevents zigzagging

�

b

b

b

b

x(i−2)

x(i−1)

x̂(i)

x(i)

∇L(x(i))

C
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Comments on the extrapolation term � .i/ I

� .i/ D 1

C
q
b C B.i/�� .i�1/�2; i � 2

where

 � 2; b 2 �0; 1=4�
are momentum tuning constants.

To establish O
�
k�2

�
convergence of PNPG, need

� .i/ � 1
2
C
q
1
4
C B.i/�� .i�1/�2; i � 2:

 controls the rate of increase of � .i/.
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Comments on the extrapolation term � .i/ II

� .i/
x? implies stronger momentum.

Effect of step size

In the “steady state” where ˇ.i�1/ D ˇ.i/, � .i/x? aproximately
linearly with i , with slope 1= .
Changes in the step size affect � .i/:
ˇ.i/ < ˇ.i�1/ step size decrease, faster increase of � .i/,
ˇ.i/ > ˇ.i�1/ step size increase, decrease or slower increase of � .i/

than in the steady state.
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Proximal Mapping

To compute

prox�r a D arg min
x

1
2
kx � ak22 C �r.x/

use
for `1-norm penalty with  .x/ D ‰Tx, alternating direction
method of multipliers (ADMM)

o iterative

for total-variation (TV)-norm penalty with gradient map  .x/,
an inner iteration with the TV-based denoising method in
(Beck and Teboulle 2009b).

o iterative
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Inexact PG Steps

B.i/ D ˇ.i�1/=ˇ.i/

� .i/ D
˚
i; i � 1
1

C
q
b C B.i/�� .i�1/�2; i > 1

xx.i/ D PC

�
x.i�1/ C � .i�1/ � 1

� .i/

�
x.i�1/ � x.i�2/�� accel. step

x.i/ Ñ".i/ proxˇ .i/ur

�
xx.i/ � ˇ.i/rL�xx.i/�� PG step

Because of their iterative nature, PG steps are inexact: ".i/

quantifies the precision of the PG step in Iteration i .
more
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Remark (Monotonicity)

The projected Nesterov’s proximal-gradient (PNPG) iteration with
restart is non-increasing:

f
�
x.i/

� � f �x.i�1/�
if the inexact PG steps are sufficiently accurate and satisfy

".i/ �
p
ı.i/

where

ı.i/ ,
x.i/ � x.i�1/2

2

is the local variation of signal iterates.
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Convergence Criterion

p
ı.i/ < �

x.i/
2

where � > 0 is the convergence threshold.
more

Restart
The goal of function and domain restarts is to ensure that

the PNPG iteration is monotonic and
xx.i/ and x.i/ remain within domf .

more
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Summary of PNPG Approach

Combine
convex-set projection with
Nesterov acceleration.

Apply
adaptive step size,
restart.

more
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Why?

Thanks to step-size adaptation, no need for Lipschitz
continuity of the gradient of the NLL.
domL does not have to be Rp.

Extends the application of the Nesterov’s acceleration� to more
general measurement models than those used previously.

�Y. Nesterov, “A method of solving a convex programming problem with
convergence rate O.1=k2/,” Sov. Math. Dokl., vol. 27, 1983, pp. 372–376.
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Theorem (Convergence of the Objective Function)

Assume

NLL L.x/ is convex and differentiable and r.x/ is convex,
C � domL: no need for domain restart.

Consider the PNPG iteration without restart.
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Theorem (Convergence of the Objective Function)

f
�
x.k/

� � f �x?� � 2 x.0/ � x?2
2
C E.k/

2
�p

ˇ.1/ CPk
iD1

p
ˇ.i/

�2
where

E.k/ ,
kX
iD1

�
� .i/".i/

�2 error term, accounts for inexact PG steps

x? , arg min
x
f .x/
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Comments

f
�
x.k/

� � f �x?� � 2 x.0/ � x?2
2
C E.k/

2
�p

ˇ.1/ CPk
iD1

p
ˇ.i/

�2
Step sizes ˇ.i/

x?, convergence-rate upper bound
?y.

better initialization, convergence-rate upper bound #.
smaller prox-step approx. error, convergence-rate bound #.
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Corollary
Under the condition of the Theorem,

f
�
x.k/

� � f �x?� � 2

x.0/ � x?2
2
C E.k/

2k2ˇminŸ
O
�
k�2

�
if E.C1/ < C1

provided that

ˇmin ,
C1
min
kD1

ˇ.k/ > 0:

The assumption that the step-size sequence is lower-bounded by a
strictly positive quantity is weaker than Lipschitz continuity of
rL.x/ because it is guaranteed to have ˇmin > �=L if rL.x/ has a
Lipschitz constant L.
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Theorem (Convergence of Iterates)

Assume that
1 NLL L.x/ is convex and differentiable and r.x/ is convex,
2 C � domL, hence no need for domain restart,

3 cumulative error term E.k/ converges: E.C1/ < C1,
4 momentum tuning constants satisfy  > 2 and b 2 �0; 1=2�,
5 the step-size sequence

�
ˇ.i/

�C1
iD1 is bounded within the range�

ˇmin; ˇmax
�
; .ˇmin > 0/.

R The sequence of PNPG iterates x.i/ without restart converges
weakly to a minimizer of f .x/. a minimizer of f .x/.
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Theorem (Convergence of Iterates)
strict inequality

Assume that
1 NLL L.x/ is convex and differentiable and r.x/ is convex,
2 C � domL, hence no need for domain restart,

3 cumulative error term E.k/ converges: E.C1/ < C1,

4 momentum tuning const. satisfy  > 2 and b 2 �0; 1=2�,
5 the step-size sequence

�
ˇ.i/

�C1
iD1 is bounded within the range�

ˇmin; ˇmax
�
; .ˇmin > 0/.

R The sequence of PNPG iterates x.i/ without restart converges
weakly to a minimizer of f .x/. a minimizer of f .x/.

narrower than
�
0; 1=4

�
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Idea of Proof.
Recall the inequality

� .i/ D 1

C
q
b C B.i/�� .i�1/�2 � 1

2
C
q
1
4
C B.i/�� .i�1/�2

used to establish convergence of the objective function.
Assumption 4:

 > 2; b 2 �0; 1=2�
creates a sufficient “gap” in this inequality that allows us to

show faster convergence of the objective function than the
previous theorem and
establish the convergence of iterates.

R Inspired by (Chambolle and Dossal 2015).

34 / 104



PNPG Algorithm Applications References References References Conclusion References

Introduction

Signal reconstruction from Poisson-distributed measurements with
affine model for the mean-signal intensity is important for

tomographic (Ollinger and Fessler 1997),
astronomic, optical, microscopic (Bertero et al. 2009),
hyperspectral (Willett et al. 2014)

imaging.
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PET: Coincidence detection due to positron decay and annihilation
(Prince and Links 2015).
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Measurement Model

N independent measurements y D .yn/NnD1 follow the Poisson
distribution with means

Œˆx C b�n
where

ˆ 2 RN�pC ; b

are the known sensing matrix and intercept term§.

§the intercept b models background radiation and scattering, obtained, e.g.,
by calibration before the measurements y have been collected
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Existing Work

The sparse Poisson-intensity reconstruction algorithm (SPIRAL)‘

approximates the logarithm function
in the underlying NLL by adding a
small positive term to it and then
descends a regularized NLL
objective function with proximal
steps that employ Barzilai-Borwein
(BB) step size in each iteration,
followed by backtracking.

‘Z. T. Harmany et al., “This is SPIRAL-TAP: Sparse Poisson intensity
reconstruction algorithms—theory and practice,” IEEE Trans. Image Process.,
vol. 21, no. 3, pp. 1084–1096, Mar. 2012.
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PET Image Reconstruction

128 � 128 concentration map x.
Collect the photons from 90 equally
spaced directions over 180ı, with 128
radial samples at each direction,
Background radiation, scattering effect,
and accidental coincidence combined to-
gether lead to a known intercept term b.
The elements of the intercept term
are set to a constant equal to 10% of

the sample mean of ˆx: b D 1Tˆx

10N
1.

The model, choices of parameters in the PET system setup, and
concentration map have been adopted from Image Reconstruction
Toolbox (IRT) (Fessler n.d.).
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Numerical Example

Main metric for assessing the performance of the compared
algorithms is relative square error (RSE)

RSE D kyx � xtruek
2
2

kxtruek22
where xtrue and yx are the true and reconstructed signal,
respectively.
All iterative methods use the convergence threshold

� D 10�6

and have the maximum number of iterations limited to 104.
Regularization constant u has the form

u D 10a:
We vary a in the range Œ�6; 3� with a grid size of 0.5 and
search for the reconstructions with the best RSE performance.
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Compared Methods

Filtered backprojection (FBP) (Ollinger and Fessler 1997) and
PG methods that aim at minimizing f .x/ with nonnegative x:

C D RpC:

All iterative methods initialized by FBP reconstructions.

Matlab implementation available at
http://isucsp.github.io/imgRecSrc/npg.html.
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PG Methods

PNPG with .; b/ D .2; 1=4/.
AT (Auslender and Teboulle 2006) implemented in the
templates for first-order conic solvers (TFOCS) package
(Becker et al. 2011) with a periodic restart every 200 iterations
(tuned for its best performance) and our proximal mapping.
SPIRAL, when possible.
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(a) radio-isotope concentration (b) attenuation map

Figure 3: (a) True emission image and (b) density map.
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RSE=3.09%

(a) FBP

RSE=0.66%

(b) `1

Figure 4: Reconstructions of the emission concentration map for expected
total annihilation photon count (SNR) equal to 108.
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RSE=0.66%

(a) `1

RSE=0.22%

(b) TV

Figure 5: Comparison of the two sparsity regularizations.
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Figure 6: Centered objectives as functions of CPU time.
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Figure 7: Centered objectives as functions of CPU time.
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Linear Model with Gaussian Noise

L.x/ D 1

2
ky �ˆxk22

where
y 2 RN is the measurement vector and
the elements of the sensing matrix ˆ are independent,
identically distributed (i.i.d.), drawn from the standard normal
distribution.

We select the `1-norm sparsifying signal penalty with linear map:

 .x/ D ‰Tx:
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Figure 7: True signal.
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Comments I

More methods available for comparison:

sparse reconstruction by separable approximation (SpaRSA)
(Wright et al. 2009),
generalized forward-backward splitting (GFB) (Raguet et al.
2013),
primal-dual splitting (PDS) (Condat 2013).

Select the regularization parameter u as

u D 10aU; U ,
‰TrL.0/1

where a is an integer selected from the interval Œ�9;�1� and U
is an upper bound on u of interest.
Choose the nonnegativity convex set:

C D RpC:
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Comments II

If we remove the convex-set constraint by setting C D Rp,
PNPG iteration reduces to the Nesterov’s proximal gradient
iteration with adaptive step size that imposes signal sparsity
only in the analysis form (termed NPGS).
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Figure 8: PNPG and NPGS reconstructions for N=p D 0:34.
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Figure 9: Centered objectives as functions of CPU time.
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Figure 10: Centered objectives as functions of CPU time.
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Figure 11: Centered objectives as functions of CPU time.
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More Terminology and Notation

ιL.s/ is the Laplace transform of ι.�/:

ιL.s/ ,
Z

ι.�/e�s� d�;

Laplace transform with vector argument:

bLı.s/ D bLı

ˇ266664
s1
s2
:::

sN

377775


D

266664
bL.s1/

bL.s2/
:::

bL.sN /

377775 :
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X-ray CT

An X-ray CT scan consists of
multiple projections with the
beam intensity measured by
multiple detectors.

Figure 12: Fan-beam CT system.
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Exponential Law of Absorption
The fraction dI=I of plane-wave intensity lost in
traversing an infinitesimal thickness d` at Cartesian
coordinates .x; y/ is proportional to d`:

dI
I D � �.x; y; "/™

attenuation

d` D � �."/˛.x; y/š
separable

d`

where
�."/ � 0 is the mass attenuation function
of the material,
˛.x; y/ � 0 is the density map of the inspected
object, and
" is photon energy.

(κ, α)

I in

Iout

To obtain the intensity decrease along a straight-line path
` D `.x; y/, integrate along ` and over ". The underlying
measurement model is nonlinear.
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Polychromatic X-ray CT Model

Incident energy I in spreads along photon energy " with
density �."/:Z

�."/ d" D I in:

Noiseless energy measurement obtained
upon traversing a straight line
` D `.x; y/ through an object composed
of a single material:

Iout D
l

�."/ exp
�
��."/

Z
`

˛.x; y/ d`
�

d":

(κ, α)

I in

Iout
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Linear Reconstruction Artifacts

Figure 13: FBP reconstruction of an industrial object.

Note the cupping and streaking artifacts of the linear FBP
reconstruction, applied to ln Iout. 61 / 104
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Problem Formulation and Goal

Assume that both
o the incident spectrum �."/ of X-ray source and
o mass attenuation function �."/ of the object

are unknown.

Goal: Estimate the density map ˛.x; y/.
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Polychromatic X-ray CT Model Using Mass-Attenuation
Spectrum

Mass attenuation �."/ and incident
spectrum density �."/ are both functions
of ".
Idea. Write the model as integrals of �
rather than ":

I in D
Z

ι.�/ d� D ιL.0/

Iout D
Z

ι.�/ exp
�
��

Z
`

˛.x; y/d`
�

d�

D ιL
�Z

`

˛.x; y/d`
�

.

R Need to estimate one function, ι.�/, rather
than two, �."/ and �."/!

κ(ε)

ι(ε)

0

0

ε

ε
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��
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�
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D ιL
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∆κj

∆εj

0

0

ε

ε
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Mass-Attenuation Spectrum

b
b

κ(ε) κ

ι(ε)
ι(κ)

∆κj ∆κj

∆εj

0

0

0ε

ε

Figure 14: Relationship between mass attenuation �, incident spectrum �,
photon energy ", and mass attenuation spectrum ι.�/.
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Basis-function expansion of mass-attenuation spectrum
ι.�/ D b.�/I

š.�/

�

š.�/
b.�/I

Figure 15: B1-spline expansion ι.�/ D b.�/I, where the B1-spline basis is
b.�/“
1�J

D �b1.�/; b2.�/; : : : ; bJ .�/�. ι.�/ � 0 implies I � 0.
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Noiseless Measurement Model

N � 1 vector of noiseless energy measurements:

Iout.x;I/ D bLı.ˆx/I

where ˆ is the known projection matrix,
x D �xi�piD1 � 0 is an unknown p � 1 density-map vector
representing the 2D image we wish to reconstruct, and

I D �Ij �JjD1 � 0
is an unknown J � 1 vector of corresponding mass-attenuation
basis-function coefficients.
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Poisson Noise Model

For independent Poisson measurements E D .En/NnD1, the NLL is

L.x;I/ D 1T �Iout.x;I/ � E
� � X

n;En¤0
En ln

Iout
n .x;I/

En
:
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Penalized NLL

objective
function

f .x;I/ D L.x;I/ C u
�k .x/k1 C IC .x/

�
œ

r.x/

CIRJ
C

.I/

NLL
penalty term
u > 0 is a scalar tuning constant
we select  .x/ D gradient map,
C D RJC
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Goal and Minimization Approach

Goal: Estimate the density-map and mass-attenuation spectrum
parameters

.x;I/

by minimizing the penalized NLL f .x;I/.
Approach: A block coordinate-descent that uses

Nesterov’s proximal-gradient (NPG) (Nesterov 1983) and
limited-memory Broyden-Fletcher-Goldfarb-Shanno with box
constraints (L-BFGS-B) (Byrd et al. 1995; Zhu et al. 1997)

methods to update estimates of the density map and
mass-attenuation spectrum parameters.
We refer to this iteration as NPG-BFGS algorithm.

70 / 104



PNPG Algorithm Applications References References References Conclusion References

Numerical Examples

convergence threshold:

� D 10�6

B1-spline constants set to satisfy

J D 20; # basis functions
qJ D 103; span

�0q
d0:5.JC1/e D 1; centering

Implementation available at github.com/isucsp/imgRecSrc.
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Simulated X-ray CT Example

Equi-spaced fan-beam projections
over 360ı,
X-ray source to rotation center is
2000� detector size,
measurement array size of 512
elements, and
image to reconstruct has size
512 � 512.

x

y

detector array

b
X-ray source

D rotate

imaginary
detector array

performance metric is the RSE of an estimate yx of the signal
coefficient vector:

RSEfyxg D 1 �
 
yxTxtrue

kyxk2kxtruek2

!2
:
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Simulated X-ray CT Example
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ι(
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Incident X-ray spectrum from tungsten anode X-ray tubes at
140 keV with 5% relative voltage ripple, and
using photon-energy discretization with 130 equi-spaced
discretization points over the range 20 keV to 140 keV.
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RSE=11.83%

(a) FBP

RSE=0.18%

(b) NPG-BFGS

Figure 16: Reconstructions from 60 projections.
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Simulated X-ray CT Example

10−1

100

101

102

103

40 80 120 160 200 240 280 320 360

R
S
E

/
%

# of Projections

FBP
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Figure 17: Average RSEs as functions of the number of projections.
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Real X-ray CT Example I

360 equi-spaced fan-beam projections with 1ı spacing,
X-ray source to rotation center is 3492� detector size,
measurement array size of 694 elements,
projection matrix ˆ constructed directly on GPU (multi-thread
version on CPU is also available) with full circular mask (D. et
al. 2011),

yielding a nonlinear estimation problem with N D 694 � 360
measurements and an 512 � 512 image to reconstruct.

Real data provided by Joe Gray, CNDE. Thanks!
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Real X-ray CT Example I

360 equi-spaced fan-beam
projections with 1ı spacing,
X-ray source to rotation center is
3492� detector size,
measurement array size of 694
elements,
projection matrix ˆ constructed
directly on GPU (multi-thread
version on CPU is also available)
with full circular mask (D. et al.
2011).

x

y

detector array

b
X-ray source

D rotate

imaginary
detector array

yielding a nonlinear estimation problem with N D 694 � 360
measurements and an 512 � 512 image to reconstruct.
Implementation available at github.com/isucsp/imgRecSrc.

Real data provided by Joe Gray, CNDE. Thanks!
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(a) FBP (b) NPG-BFGS (u D 10�5)
Figure 18: Real X-ray CT: Full projections.
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Comments

Our reconstruction eliminates
the streaking artifacts across the air around the object,
the cupping artifacts with high intensity along the border.

Note that the regularization constant u is tuned for the best
reconstruction.
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Inverse Linearization Function Estimate
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Figure 19: The polychromatic measurements as function of the
monochromatic projections and its corresponding fitted curve.

residuals: large, biased for FBP; small, unbiased for NPG-BFGS,
increasing variance
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Real X-ray CT Example II

X-ray source to rotation center is 8696 times of a single
detector size,
measurement array size of 1380 elements,
projection matrix ˆ constructed directly on GPU (multi-thread
version on CPU is also available) with full circular mask.

yielding a nonlinear estimation problem with N D 1380 � 360
measurements and an 1024 � 1024 image to reconstruct.
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(a) FBP (b) NPG-BFGS (u D 10�5)
Figure 20: Real X-ray CT: 360 fan-beam projections over 360ı.
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Figure 21: Estimated x and � ln
�
bL.�/I

�
from 360 fan-beam real X-ray

CT projections.
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Inverse Linearization Function Estimate

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
ol

yc
hr

om
at

ic
pr

oj
ec

ti
on

s

Monochromatic projections

NPG-BFGS
FBP

fitted − ln
[
bL(·)Î]

Figure 22: The polychromatic measurements as function of the
monochromatic projections and its corresponding fitted curve.
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(a) FBP (b) NPG-BFGS (u D 10�5)
Figure 24: Real X-ray CT: 120 fan-beam projections over 360ı.

Observe the aliasing artifacts in the FBP reconstruction.
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(a) 360 projections (b) 120 projections

Figure 25: NPG-BFGS (u D 10�5) reconstructions from fan-beam
projections over 360ı.
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Selected Publications I

R. G. and A. D., “Blind X-ray CT image reconstruction from
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Selected Publications II

R. G. and A. D., “Beam hardening correction via mass
attenuation discretization,” Proc. IEEE Int. Conf. Acoust.,
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Conclusion I

PNPG framework:
Developed a fast framework for reconstructing signals that are
sparse in a transform domain and belong to a closed convex set
by employing a projected proximal-gradient scheme with
Nesterov’s acceleration, restart and adaptive step size.
Applied the proposed framework to construct the first
Nesterov-accelerated Poisson compressed-sensing
reconstruction algorithm.
Derived convergence-rate upper-bound that accounts for
inexactness of the proximal operator.
Proved convergence of iterates.
Our PNPG approach is computationally efficient compared with
the state-of-the-art.
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Conclusion II

Polychromatic X-ray CT:
Developed a blind method for sparse density-map image
reconstruction from polychromatic X-ray CT measurements in
Poisson noise.

Future work: Generalize our polychromatic signal model to handle
multiple materials and develop corresponding reconstruction
schemes.
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Adaptive Step Size

1 if no step-size backtracking events or increase attempts for n
consecutive iterations, start with a larger step size

x̌.i/ D ˇ.i�1/

�
(increase attempt)

where � 2 .0; 1/ is a step-size adaptation parameter;
otherwise start with

x̌.i/ D ˇ.i�1/I
2 (backtracking search) select

ˇ.i/ D � ti x̌.i/ (2)

where ti � 0 is the smallest integer such that (2) satisfies the
majorization condition (2); backtracking event corresponds to
ti > 0.

3 if max
�
ˇ.i/; ˇ.i�1/

�
< x̌.i/, increase n by a nonnegative

integer m: n nCm: back

96 / 104



PNPG Algorithm Applications References References References Conclusion References

Restart

Whenever f
�
x.i/

�
> f

�
x.i�1/

�
or xx.i/ 2 C n domL, we set

� .i�1/ D 1 (restart)

and refer to this action as function restart (O‘Donoghue and Candès
2013) or domain restart respectively.

back
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Inner Convergence Criteria

TV:
x.i;j / � x.i;j�1/

2
� �

p
ı.i�1/ (3a)

`1: max
�s.i;j / �‰Tx.i;j /

2
;
s.i;j / � s.i;j�1/

2

�
� �

‰T �x.i�1/ � x.i�2/�
2

(3b)

where j is the inner-iteration index,
x.i;j / is the iterate of x in the j th inner iteration step within
the ith step of the (outer) PNPG iteration, and

� 2 .0; 1/
is the convergence tuning constant chosen to trade off the
accuracy and speed of the inner iterations and provide
sufficiently accurate solutions to the proximal mapping.

back
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Definition (Inexact Proximal Operator (Villa et al. 2013))

We say that x is an approximation of proxur a with "-precision,
denoted by

x Ñ" proxur a

if

a � x
u
2 @ "2

2u

r.x/:

Note: This definition implies

kx � proxur ak22 � "2:
back
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Relationship with FISTA I

PNPG can be thought of as a generalized FISTA (Beck and
Teboulle 2009a) that accommodates

convex constraints,
more general NLLs,‖ and (increasing) adaptive step size

thanks to this step-size adaptation, PNPG does not require
Lipschitz continuity of the gradient of the NLL.

back

‖FISTA has been developed for the linear Gaussian model.
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Relationship with FISTA II

Need B.i/ to derive theoretical guarantee for convergence
speed of the PNPG iteration.
In contrast with PNPG, FISTA has a non-increasing step size
ˇ.i/, which allows for setting

B.i/ D 1
for all i :��

� .i/ D 1

2

�
1C

q
1C 4�� .i�1/�2�:

A simpler version of FISTA is

� .i/ D 1

2
C � .i�1/ D i C 1

2

for i � 1.
back��Y. Nesterov, “A method of solving a convex programming problem with

convergence rate O.1=k2/,” Sov. Math. Dokl., vol. 27, 1983, pp. 372–376.
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Relationship with AT

(Auslender and Teboulle 2006):

� .i/ D 1

2

�
1C

q
1C 4�� .i�1/�2�

xx.i/ D
�
1 � 1

� .i/

�
x.i�1/ C 1

� .i/
zx.i�1/

zx.i/ D prox�.i/ˇ .i/ur

�
zx.i�1/ � � .i/ˇ.i/rL�xx.i/��

x.i/ D
�
1 � 1

� .i/

�
x.i�1/ C 1

� .i/
zx.i/

Other variants with infinite memory are available at (Becker et al.
2011).

back
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Heavy-ball Methods

(Polyak 1964; Polyak 1987):

x.i/ D proxˇ .i/ur

�
x.i�1/ � ˇ.i/rL�x.i�1/��C‚.i/�x.i�1/ � x.i�2/�:

back

103 / 104


	PNPG Algorithm
	Background
	Optimization problem
	Reconstruction algorithm
	Convergence analysis

	Applications
	Poisson compressed sensing
	Linear model with Gaussian noise
	Polychromatic X-Ray CT

	Conclusion

	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PauseLeft: 
	0.PlayLeft: 
	0.PlayPauseLeft: 
	0.PauseRight: 
	0.PlayRight: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 


