

Telecommunications for Space and Aeronautics

Thesis review

High performance satellite AIS and Radar data fusion for maritime surveillance

09 Mars 2016

TESA / ISAE / ENSEEIHT THALES ALENIA SPACE / OMNISYS

Student : Fabio MANZONI VIEIRA Thesis co-directors : François VINCENT; Jean-Yves TOURNERET TéSA tutors: David BONACCI Industry : Jacques RICHARD; Marc SPIGAI; Marie ANSART

Agenda

□ Introduction

- Overview
- Generalities AIS
- Generalities BFR radar
- Motivation
- Thesis subject
- The four research topics
 - Simulator description
 - Description of 1st research topic
 - Description of 2nd research topic
- Conclusions
- Next steps

Introduction

Why maritime surveillance?

- Safety and security of navigation in general
- Application of regulation to protect the marine environment
- Fishery control
- Fight against trafficking and illegal immigration

Illicite traffic

Sea safety

Pollution

Illegal Fishing

Introduction

Desirable characteristics It must deal with the surveillance scenario diversity

- ARGOS
- Cover both cooperative and non-cooperative targets
- High availability
- Global coverage

Overview

- A constellation of satellites with embedded vessel detection sensors was proposed to monitor ship activity on sea
- Two sensors
 - AIS Automatic Identification System
 - SAR Synthetic Aperture Radar

AIS receiver

- Decodes AIS transmissions containing ID, position, heading, size, speed, etc.
- Vessels cooperatively broadcast AIS messages at regular times following the AIS protocol specification
- Covers large areas
- Susceptible to message errors and intentional deception

SAR sensors

- Characteristics of Synthetic Aperture Radar (SAR) sensors
 - Operational duty cycle limited to 10/20%
 - Limited swath and accessibility
 - Not dedicated to perform ship detection mission in maritime surveillance
- Poor operational availability and limited area coverage regarding maritime surveillance needs

BFR radar

- The BFR radar is a SAR at a high incidence angle and a low PRF pulse repetition frequency
- Broads the radar coverage at the expense of adding ambiguities

Ambiguities

Problematic for radar imaging

Can be managed when image quality is not a constraint (detection)

Low grazing angle

Less radar clutter from sea

Better ship cross section (RCS) due to the low grazing angle

Motivation

- Deal with the diversity of maritime surveillance scenarios including cooperative and non-cooperative ships
- A natural solution is to integrate different sources of information
- Today's methods are based on merging sensor post-processed data
- The main objective is to search for improved sensor data fusion techniques to obtain high performance maritime surveillance

Thesis subject

- Fusion of satellite AIS and low PRF radar data for high performance maritime surveillance
- Explore the diversity of both low PRF radar and AIS sensors to
 - Improve small vessel detection
 - Identify ships
 - Track non-uncooperative ships

The four research topics

- We proposed some research topics to improve target detection using sensor data fusion
- Four levels of sensor data fusion were identified

The four research topics

1. Explore the diversity of raw sensor signals

Considers data before any signal processing

2. Explore AIS processed data to improve radar detection

Use extra information from AIS message (e.g., speed, position, time) to improve the radar detection

3. Explore AIS and radar processed data to improve detection

In this case, both AIS and radar processed data provide separate lists of detections that need to be merged

4. Slow time integration

Integrate slow time data from satellite scene revisit for tracking

Fundamentals

- Satellite orbit simulator
 - Auxiliary to the study
 - Simulate satellite parameters (speed / Doppler, altitude, look angle, elevation, heading, position, etc.)
 - Transformation of coordinates
- Low PRF SAR model
 - Generate raw signatures targets
 - At specific configuration of radar, ship and satellite (altitude, power, speed, view angle, frequency, resolution, etc.)
 - Radar equation (model the target RCS (radar cross section) and SNR)
- Low PRF SAR imaging simulator
 - Generates a radar image of punctual targets
 - Range-Doppler algorithm
- AIS signal simulator
 - Generates raw AIS signatures
 - Referenced on satellite and ship dinamics

Fundamentals

Maximum likelihood estimation (MLE)

- MLE algorithm to estimate unknown parameters of the AIS signal model
- Estimate ship coordinates (Lat/Lon) from AIS and radar raw signatures
- Detection using the generalized likelihood ratio test (GLRT)
 - Simpler model with added constraints
- Performance evaluation
 - Statistical model and Receiver Operational Characteristics (ROC) curves.

The four research topics

1. Explore the diversity of raw sensor signals

Considers data before any signal processing

2. Explore AIS processed data to improve radar detection

Use extra information from AIS message (e.g., speed, position, time) to improve the radar detection

3. Explore AIS and radar processed data to improve detection

In this case, both AIS and radar processed data provide separate lists of detections that need to be merged

4. Slow time integration

I Integrate slow time data from satellite scene revisit for tracking

MLE - Maximum likelihood estimator

- The idea is to estimate some information from target signatures associated with AIS and radar sensors
- The target signatures are for the raw sensor data after complex quadrature demodulation
- The information is contained into the unknown parameters of the signal model that we need to estimate (e.g., lat/lon);
- The MLE determines the parameters that maximize the likelihood function

□ Maximizing the likelihood corresponds to finding the vector of parameters θ_i that is the most likely with respect to the measurements y

Geometric representation

□ The received message is a composition of information (signal) and some error (noise)

 \Box The signal subspace is a subset of the total space of all possible signals in C^N

The signal subspace is characterized by the signal model (where the reception (target signal) is a linear span of a set of vectors from the model)

□The reception can be split into components that represent the signal subspace and the orthogonal subspace (error)

□In short, we separate signal from error with the orthogonal projection operation

Equations

Signal representation

$$\begin{cases} y_{radar} = A(\theta)\alpha + n_{radar} \\ y_{ais} = B(\theta)\beta + n_{ais} \end{cases}$$

Signature = y Models = A;B Parameter vector = θ Noise = n Note: θ = Lat/Lon for AIS θ = X,Y Coords in radar

MLE - Maximum likelihood estimator

$$\begin{array}{l} \begin{array}{l} \mbox{Case 1:} \\ \mbox{known noise power} \end{array} & \theta = ArgMax \Big[\frac{y_{radar}{}^{H}P_{A}(\theta)y_{radar}}{\sigma_{radar}{}^{2}} + \frac{y_{ais}{}^{H}P_{B}(\theta)y_{ais}}{\sigma_{ais}{}^{2}} \Big] \end{array}$$

$$\begin{array}{l} \mbox{Case 2:} \\ \mbox{unknown noise power} \end{array} & \theta = ArgMin \left(\left[y_{radar}{}^{H}(l-P_{A}(\theta))y_{radar} \right]^{N_{radar}} \left[y_{ais}{}^{H}(l-P_{B}(\theta))y_{ais} \right]^{N_{ais}} \right) \end{array}$$

$$\begin{array}{l} \mbox{where} \end{array} & \begin{array}{l} \mbox{P}_{A}(\theta) = A[A^{H}A]^{-1}A^{H} \\ \mbox{P}_{B}(\theta) = B[B^{H}B]^{-1}B^{H} \end{array}$$

- The MLE provide the optimal solution (no information is discarded)
- □ The research of the maximum is conducted into a (2 + K)M dimensional space
 - M is the number of ships in the scene (and need to be estimated)
 - K is the number of unknown parameters to estimate for each ship (identification, speed, frequency, delay, among others)
- This solution is not implementable unless for a very small area with few ships
- An alternative is to exchange the estimation approach into a detection problem

Detection using the GLRT - Generalized Likelihood Ratio Test

- The problem is now to test a single position for the two classical hypotheses in detection
 - **HO** : There is a ship **AND** AIS detection ($\alpha = \beta = 0$)
 - **H1** : There is **no** ship **AND no** AIS detection $(\alpha \neq 0, \beta \neq 0)$

Results

- Using AIS, radar and to AIS and radar
- Comparison of the MLE algorithm with SAR range-Doppler image processing
- Constraints are used to ease the signal modelling (no collision in AIS messages, bit stuffing disabled, no false AIS, maximum of one ship at a single position, etc.)

Note: The measurements are simulated signals with additive white Gaussian noise

AIS signal

		MSG ID					
							-
Preamble	Start flag		Data	FCS	End flag	Buffering	

Bit Order	ML	M			LML000
Symbol	TTTTTTDI	MMMMMMM	MMMMMMM	MMMMMMM	MMMNN000
Byte Order	1	2	3	4	5

Output order to VHF data link (bit-stuffing is disregarded in the example):

Bit Order	LM	M			000LML
Symbol	IDTTTTTT	MMMMMMM	MMMMMMM	MMMMMMM	000NNMMM
Byte Order	1	2	3	4	5

8 bits	T0 to T1 in Figure 6
24 bits	Necessary for synchronization
8 bits	In accordance with HDLC (7Eh)
168 bits	Default
16 bits	In accordance with HDLC
8 bits	In accordance with HDLC (7Eh)
24 bits	Bit stuffing distance delays, repeater delay and jitter
256 bits	
	8 bits 24 bits 8 bits 168 bits 16 bits 8 bits 24 bits 256 bits

- Bit-stuffing
- Flip-bits
- Delta between ship and satellite frequencies
- Time offset of the signal in the reception window
- Initial phase of the signal

Radar signal

SAR range-Doppler image

1st topic : Performance analysis

We can trace the PFA versus the detection probability to compare the different detectors with the receiver operating characteristics (ROC curves)

1st topic : Performance analysis

- Determine the distribution of the test statistics under both hypotheses for all detectors
- The statistics of the detectors are

$$\begin{split} T_{\rm f} &\sim \begin{cases} \frac{1}{2} \chi_4^2(0) & \text{under } H_0 \\ \frac{1}{2} \chi_4^2(\lambda_{\rm AIS} + \lambda_{\rm rad}) & \text{under } H_1 \end{cases} \\ T_{\rm rad} &\sim \begin{cases} \frac{1}{2} \chi_2^2(0) & \text{under } H_0 \\ \frac{1}{2} \chi_2^2(\lambda_{\rm rad}) & \text{under } H_1 \end{cases} \\ \lambda_{\rm rad} &= 2N_{\rm rad} \operatorname{SNR}_{\rm rad} = 2 \operatorname{SNRo}_{\rm rad} \end{cases} \\ \lambda_{\rm AIS} &= 2N_{\rm AIS} \operatorname{SNR}_{\rm AIS} = 2 \operatorname{SNRo}_{\rm AIS} \end{cases}$$

 $\begin{array}{ll} \text{Signal} & \mathbf{y}_{\text{rad}} = \alpha \mathbf{a}(\theta) + \mathbf{n}_{\text{rad}} \\ \text{representation:} & \mathbf{y}_{\text{AIS}} = \beta \mathbf{b}(\theta) + \mathbf{n}_{\text{AIS}} \end{array}$

Modeling assumptions

- Both radar and AIS signals are synchronous with respect to the ship position
- There is a maximum of one single ship per test position
- Bit stuffing is disabled
- The signal model only depends on the position θ (the other parameters are known)

1st topic : Performance analysis

Parameters: SNR input : $SNR_{rad} = -33 dB$, $SNR_{AIS} = -8 dB$ For correct AIS demodulation $SNR_{AIS} > +10 dB$ is needed

37

1st topic : Results

- We cannot infer about detection performance of the detector only by looking at the likelihoods
- The ROC curves show a considerable gain by integrating both sources of data
- Model constraints are very restrictive
- Estimation of AIS parameters is time-consuming
 - Significant computational power is necessary to allow the practical implementation of the method
- We decided to advance to the second method which could provide interesting results with reduced computational complexity

The four research topics

1. Explore the diversity of raw sensor signals

Considers data before any signal processing

2. Explore AIS processed data to improve radar detection

Use extra information from AIS message (e.g., speed, position, time) to improve the radar detection

3. Explore AIS and radar processed data to improve detection

In this case, both AIS and radar processed data provide separate lists of detections that need to be merged

4. Slow time integration

I Integrate slow time data from satellite scene revisit for tracking

Main idea

The knowledge of the existence of a ship at some position due to AIS information can be consolidated by radar data to improve detection

- Target signatures are now only the radar raw signals
- The AIS is a list of target positions with timestamps

The AIS list is propagated to their expected positions at the instant of the radar

measurement

Formulation

Signal representation : $y_{radar} = A(\theta_{ais \ pro})\alpha + a(\theta_i)\beta + n_{radar}$

Where:

 θ_i is the parameter vector of the test case i

 $a(\theta_i)$ is the radar signature for θ_i

 θ_{ais_pro} is the parameter vector of AIS targets propagated into the radar scene

 $A(\theta_{ais_pro})$ is the radar signature for θ_{ais_pro}

Formulation on a two hypotheses test

$$\begin{split} H_0: &\{y = A(\theta_{ais_pro})\alpha + n; \beta = 0 \text{ (no radar echoes, only noise)} \\ H_1: &\{y = A(\theta_{ais_pro})\alpha + a(\theta_i)\beta + n; \beta \neq 0 \text{ (signal and noise)} \end{split}$$

Signal =

Noise =

Radar signature = A_{a}

 θ = X,Y coords in radar

Parameter vector =

V

θ

n

Note:

Signal model

Model for unknown signal amplitude and noise power

Hypothesis H0 :
$$y = A(\theta_{ais_pro})\alpha + n, \beta = 0$$

Estimator for the signal amplitude : $\hat{\alpha}_0 = (A^H A)^{-1} A^H y$

Estimator for noise power : $\hat{\sigma}_0^2 = (y - A\alpha)^H (y - A\alpha)/N$

Likelihood :
$$L_0 = K_0 (y^H P_A^{\perp} y)^{-N} = K_0 ||P_A^{\perp} y||^{-N}$$

$$K_0 = \left(\frac{\pi}{N}e\right)^{-N}$$

Hypothesis H1 : $y = A(\theta_{ais_pro})\alpha + a(\theta_i)\beta + n, \beta \neq 0$

Model for unknown signal amplitude and noise power

Estimator for noise power: $\hat{\sigma}_1^2 = (y - A\alpha - a\beta)^H (y - A\alpha - a\beta)/N$

Estimator for signal amplitudes : $\hat{\alpha}_1 = (A^H A)^{-1} A^H (y - a\beta)$ $\hat{\beta}_1 = (a^H P_A^{\perp} a)^{-1} P_A^{\perp} a^H y$

Likelihood :
$$L_1 = K_0 \left(y^H P_A^{\perp} y - \frac{y^H P_A^{\perp} a a^H P_A^{\perp} y}{a^H P_A^{\perp} a} \right)^{-N} \qquad K_0 = \left(\frac{\pi}{N} e\right)^{-N}$$

GLRT – Generalized Likelihood ratio test

 $T = \frac{H_1}{H_0}; \hat{T} = \frac{\|a'^H y'\|^2}{\|a'\|^2 \|y'\|^2} = \cos^2\theta \qquad \theta \text{ is the angle between } a' \text{ and } y'$

The proposed detector explores the knowledge about the (possible) existence of a target at θ and detects the signal amplitude that is outside the subspace $\langle A \rangle$ (the AIS list)

 $\blacksquare A(\theta)\alpha$ is the amplitude of a signal at θ

 $\blacksquare a(\theta)\beta$ is the amplitude measured at θ that is not present inside $\langle A \rangle$ subspace

 $\blacksquare n$ is the measurement noise

In H0, there is no radar signal (measurement is outside $\langle a \rangle$ and $\langle a \rangle \subset \langle A_{\perp} \rangle$)

In H1, the measurement at θ can be partially inside $\langle A \rangle$ and inside $\langle a \rangle \subset \langle A_{\perp} \rangle$

2nd topic :Study case

Consider a scenario with 14 identical ships at a scene
 Some are not separable with the radar detector

2nd topic :Study case

Considering the AIS information of targets propagated to the current radar scene

2nd topic :Study case

- Comparing both detectors
- Targets are now separable if AIS information is present

2nd topic : Performance analysis

Parameters: SNR input : $SNR_{rad} = -33 dB$, $SNR_{AIS} = -8 dB$ For correct AIS demodulation $SNR_{AIS} > +10 dB$ is needed

AIS positions may have errors

GPS error, propagation error, false data

Scenarios:

1. Small errors in AIS position (error <rad. resolution)

- Errors are acceptable, but AIS positions may be false
- □ A solution is to test the AIS list to remove the wrong data vectors

2. Important errors in AIS position (error>rad. resolution)

- □ The detector needs to consider positioning errors
- Approaches
 - A. Errors are obtained by secondary data
 - B. Errors are formalized by Bayesian approach

2. Important errors in AIS position (error>rad. resolution)

- A. Use of secondary data
 - We include the uncertainty of the ship position in the detector model

$$\begin{cases} y_{radar} = A(\theta_r)\alpha + a(\theta_a)\beta + n_r \\ \theta_a = \theta_r + n_a \end{cases}$$

- Sources of information to deal with position noise power
 - GPS precision data
 - Ship history data about heading and speed
 - Those can lead to a good estimation of σ_a^2

Conclusions

- In the first method AIS raw signals improved radar detection performance in a conditioned scenario
 - Without decoding the AIS message
 - Even when the AIS signal-to-noise ratio (SNR) is not sufficient to decode the AIS message
 - The gain with the first method is the theoretical limit (optimal detector)
 - Reference for other detectors based on processed data
- In the second method, the AIS decoded message provided information for a detector that uses radar raw data to improve ship detection
 - It separates the signals that are related to the AIS positions from new detections
- Second method is less computer intensive than first method
 - It does not need to model the AIS signal
 - It is more prone to be implemented in practice

Next steps

- □ Continue the performance evaluation of the second method
- Compare performance of different methods
- Evaluate special scenarios and practical problems
 - Multiples hypotheses in both first and second methods
 - AIS deception and message collisions
 - Low PRF SAR ambiguities
- □ Implement the model with positioning errors
- Use the Bayes approach to deal with positioning errors
- Advance to evaluate the third and forth fusion methods
 - Data association using processed data from sensors
 - Tracking and long term integration
- Explore other AIS information (e.g. identification, ship size)
 - Ship discrimination, estimation of other parameters and errors