Polar codes : information theoretic analysis and performances

Meryem Benammar†

† ISAE-Supaéro

Joint work with V.Bioglio, F.Gabry and I.Land (Huawei Paris)
Arikan’s Polar Codes

New Proof of Polarization

Error Exponents
Arikan’s Polar Codes

New Proof of Polarization

Error Exponents
Tools : Information Theory

- Let X be a random variable on \mathcal{X} with associated pmf P_X. The entropy of X is defined by

$$H(X) = -\sum_x P_X(x) \log_2(P_X(x))$$

- Minimized when X is deterministic, i.e. constant
- Maximized when P_X is the uniform law, i.e, $P_X(x) = \frac{1}{||\mathcal{X}||}$
Tools : Information Theory

• Let X be a random variable on \mathcal{X} with associated pmf P_X. The entropy of X is defined by

$$H(X) = - \sum_x P_X(x) \log_2(P_X(x))$$

• Let (X, Y) be correlated random variables on $\mathcal{X} \times \mathcal{Y}$ with pmf $P_{X,Y}$. The conditional entropy of X to Y is defined by

$$H(X|Y) = - \sum_{x,y} P_{X,Y}(x,y) \log_2(P_{X|Y}(x|y))$$

• Minimized when X is a function of Y
• Maximized when X and Y are independent
Tools: Information Theory

- Let X be a random variable on \mathcal{X} with associated pmf P_X. The \textit{entropy} of X is defined by
 \[H(X) = -\sum_x P_X(x) \log_2(P_X(x)) \]

- Let (X, Y) be correlated random variables on $\mathcal{X} \times \mathcal{Y}$ with pmf $P_{X,Y}$. The \textit{conditional entropy} of X to Y is defined by
 \[H(X|Y) = -\sum_{x,y} P_{X,Y}(x,y) \log_2(P_{X|Y}(x|y)) \]

- The \textit{mutual information} between X and Y is defined by
 \[I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \]
 - Minimized when X and Y are independent
 - Maximized when X and Y are equal
Tools : Information Theory

- Let X be a random variable on \mathcal{X} with associated pmf P_X. The entropy of X is defined by

$$H(X) = -\sum_x P_X(x) \log_2(P_X(x))$$

- Let (X, Y) be correlated random variables on $\mathcal{X} \times \mathcal{Y}$ with pmf $P_{X,Y}$. The conditional entropy of X to Y is defined by

$$H(X|Y) = -\sum_{x,y} P_{X,Y}(x,y) \log_2(P_{X|Y}(x|y))$$

- The mutual information between X and Y is defined by

$$I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

Useful to predict the performance of communication schemes
Context

- Consider a **point-to-point** communication channel

 ![Diagram](https://via.placeholder.com/150)

 - A bit stream $U^k = (U_1, \ldots, U_k)$
 - A coded stream $X^N = (X_1, \ldots, X_N)$
 - N memoryless channel uses of $W \sim P_{Y|X}$
 - Target: error free communication, i.e.,

 $$\mathbb{P}(U^k \neq \hat{U}^k) \to 0 \text{ as } N \to \infty$$

- What is the optimal ratio $\frac{k}{N}$: number of bits per channel use?
Context

- Consider a point-to-point communication channel

Binary stream U^k → Transmitter
Coded stream X^N → Noisy channel $P_{Y|X}$
Estimated stream Y^N → Receiver
\hat{U}^k

- A bit stream $U^k = (U_1, \ldots, U_k)$
- A coded stream $X^N = (X_1, \ldots, X_N)$
- N memoryless channel uses of $W \sim P_{Y|X}$
- Target: error free communication, i.e.,

$$P(U^k \neq \hat{U}^k) \to 0 \text{ as } N \to \infty$$

- What is the optimal ratio $\frac{k}{N}$: number of bits per channel use?

Channel capacity

The capacity of the channel $\mathcal{W} : \mathcal{X} \to \mathcal{Y}$ is given by

$$C(W) = \lim_{N \to \infty} \frac{k}{N} = \max_{P_X} I(X; Y) \leq 1 = H(U)$$
Standard channels

- For a noiseless channel $W \sim 1(y = x)$

 $\begin{array}{c}
 0 \quad 1 \quad 0 \\
 1 \quad 1 \\
 \end{array}$

 $C(W) = 1$

- For a Binary Symmetric Channel (BSC) $W \sim Bern(p)$

 $\begin{array}{c}
 0 \quad 1-p \quad 0 \\
 1 \quad p \\
 \end{array}$

 $C(W) = 1 - h_2(p)$

- For a Binary Erasure Channel (BEC) $W \sim Err(e)$

 $\begin{array}{c}
 0 \quad 1-e \quad 0 \\
 1 \quad e \quad E \\
 \end{array}$

 $C(W) = 1 - e$

- For a binary input Gaussian channel $W \sim N(\mu, \sigma^2)$

 $C(W) > C_{cstr}(W)$
A bit of History

For infinite blocklengths N

- Shannon enunciated the capacity formula in 1948
- Since then, subsequent work on error correction coding
- Multi-level codes (Ungerbock* 1976, Imai & Hirakawa 1977)
- LDPC codes (Gallager* 1960s, McKay 2000)
- Turbo-codes (Glavieux & Bérou 1990)
- Polar codes (Arikan* 2008)

However, at finite blocklength N

- Bounded probability of error
- Capacity formula enunciated (Polianski & Verdu* 2011)
- Finite blocklength capacity achieving codes are still unknown

* are recipients of the Shannon award
Before polarization

- Original transformation: identity

\[
\begin{array}{c|c|c}
\text{Information bits} & \text{Coded bits} & \text{Received symbols} \\
\end{array}
\]

\[
U_1 \rightarrow X_1 \rightarrow Y_1 \\
U_2 \rightarrow X_2 \rightarrow Y_2
\]

\[
I_2
\]

\[(X_1, X_2) = (U_1, U_2) \cdot I_2 = (U_1, U_2)\]

- Memoryless channel: Markov chains

\[U_1 \leftrightarrow Y_1 \leftrightarrow (Y_2, U_2) \text{ and } U_2 \leftrightarrow Y_2 \leftrightarrow (Y_1, U_1)\]

- Information conservation property

\[
I(U_1 U_2; Y_1 Y_2) = I(U_1; Y_1 Y_2) + I(U_2; Y_1 Y_2 | U_1)
= I(U_1; Y_1) + I(U_2; Y_2)
= 2. I(X; Y)
\]

- Each bit \(U_i\) experiences the same channel \(W_0 : X_i \rightarrow Y_i\)
Arikan’s kernel T_2

- **Transformation matrix** T_2 [Arikan’08]

$$T_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

- Coding introduces memory $T_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

- Information conservation property (chain rule)

\[
I(U_1U_2;Y_1Y_2) = I(U_1;Y_1Y_2) + I(U_2;Y_1Y_2|U_1)
\]

\[
= I(X_1X_2;Y_1Y_2)
\]

\[
= 2.I(X;Y)
\]

\[
= 2.I_0
\]

- Two new channels $W_1 : U_1 \to (Y_1, Y_2)$ and $W_2 : U_2 \to (Y_1, Y_2, U_1)$
Arikan’s construction: two iterations

\[(X_1, X_2, X_3, X_4) = (U_1, U_2, U_3, U_4) \cdot T_2^\otimes 2 \]

2-th fold Kronecker product of \(T_2 \)

\[
T_2^\otimes 2 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1
\end{pmatrix}
\]
Polarization

- Recursive construction: n-th fold Kronecker product of T_2
- Encoding rule

$$(X_1, \ldots, X_N) = (U_1, \ldots, U_N).T_2^\otimes n$$ where $N = 2^n$

- Polarization tree
Properties of polar codes

Properties of the polar code
- Block linear code
- Low complexity encoding
- Successive cancellation decoding
- Capacity achieving for a binary input channel \(\mathcal{X} = \{0, 1\} \)

Polar codes: capacity achieving

As \(N \to \infty \), among the \(N \) input bits, \(k = I_0 . N \) bits have noiseless channels

\[
\lim_{N \to \infty} \frac{k}{N} = I_0 = \max_{P_X} I(X; Y)
\]

- Define these \(k \) bits as reliable bits
- Define the \(N - k \) remaining ones as frozen bits
- Input sequence to the code \(U_1^N = (u_1, 0, 0, u_2, 0, u_3, \ldots, u_k, 0, 0) \)
Polar codes design

Challenge: Locate the frozen bits at a given length $N = 2^n$ and rate k/N?

- For a Binary Erasure Channel (BEC), with erasure prob e: explicit solution

 \[I_0 = 1 - e \quad \Rightarrow \quad I_1 = 1 - e^2 \quad \text{and} \quad I_2 = (1 - e)^2 \]

- For Gaussian channels: density evolution with Gaussian approximation
- For arbitrary channels: Monte-Carlo simulations

Frozen set known by both encoder and decoder

- Set the a priori information of the frozen bits to 0
- Successively decode the bits u_1, then u_2, then u_k
- At each decoding step i, decoder knows $v_{1,\ldots,i-1}$
- Perform a local MAP for the bit U_i

 \[\arg \max_{u=0,1} \mathbb{P} (U_i = u | y_1, \ldots, y_N, u_1, \ldots, u_{i-1}) \]

- Decoding equations: hard to obtain
Polar codes : arbitrary kernels

- **Transformation** matrix \(T_l \) [KoradaSasogluUrbanke’10]

 Information bits \(U_1 \rightarrow X_1 \rightarrow Y_1 \)
 Coded bits \(U_2 \rightarrow X_2 \rightarrow Y_2 \)
 Received symbols \(U_l \rightarrow X_l \rightarrow Y_l \)

\[(X_1, X_2, \ldots, X_l) = (U_1, U_2, \ldots, U_l) \cdot T_l\]

- **Information conservation property** (chain rule)

\[I(U^n_1; Y^n_1) = \sum_{i=1}^{l} I(U_i; Y^n_1|U^{i-1}_1)\]
\[= l \cdot I(X; Y)\]
\[= l \cdot I_0\]

- **Recursive construction**

\[T = T_l \otimes^n \text{ where } N = l^n\]
Multi-kernel construction

Consider N channel uses of a discrete memoryless channel $\mathcal{W} : \mathcal{X} \to \mathcal{Y}$

$$
\begin{align*}
\begin{array}{ccc}
\text{Information} & \text{Coded} & \text{Received} \\
\text{bits} & \text{bits} & \text{symbols} \\
U_1 & X_1 & Y_1 \\
U_2 & X_2 & Y_2 \\
\vdots & \vdots & \vdots \\
U_N & X_N & Y_N \\
\end{array}
\end{align*}

(T_1 \otimes \cdots \otimes T_m) \\
(X_1, X_2, \ldots, X_N) = (U_1, U_2, \ldots, U_N) \cdot T
$$

where

$$
T = T_{l_1} \otimes \cdots \otimes T_{l_m} \text{ where } N = l_1 \times \cdots \times l_m
$$

[BioglioGabryLandBelfiore’16]

Polarization conditions and error exponent for multi-kernel polar codes?
Arikan's Polar Codes

New Proof of Polarization

Error Exponents
Polarization principle

• Assume that the transformation matrix is given by

\[T = T_{l_1} \otimes \cdots \otimes T_{l_m} \]

• Let \((B_1, \ldots, B_m)\) be \(m\) random variables such that

\[B_j \sim \text{Unif}([1 : l_j]) \]

• Each channel \(W_i : U_i \rightarrow (Y_i^N, U_i^{i-1})\) by \(W_{b_1}, \ldots, b_m\)

• Corresponding mutual information denoted by \(I_{b_1, \ldots, b_m} = I_m\)
Polarization proof

The proof of polarization is two fold:

1) **Convergence**: The sequence $(I_m)_m$ is a bounded martingale and thus converges to I_∞

2) **Limit distribution**: The random variable I_∞ follows a Bernoulli(I_0) distribution
Polarization proof

The proof of polarization is two fold:

1) **Convergence**: The sequence \((I_m)_m\) is a bounded martingale and thus converges to \(I_\infty\)

2) **Limit distribution**: The random variable \(I_\infty\) follows a Bernoulli\((I_0)\) distribution

Proof of convergence:

- The sequence \((I_m)_m\) is bounded, \(\forall m \in \mathbb{N}, 0 \leq I_m \leq 1\)
- The sequence \((I_m)_m\) is a martingale w.r.t. \((B_1, \ldots, B_m)\)

\[
\forall m \in \mathbb{N}, \ E_{B_{m+1}}(I_{m+1}|B_1, \ldots, B_m) = I_m
\]

using the information conservation property

- The expected value of \(I_m\) is constant

\[
\forall m \in \mathbb{N}, \ E(I_m) = E(I_{m-1}) = \cdots = E(I_0) = I_0
\]

\((I_m)_m\) converges to a random variable \(I_\infty\) and \(E(I_\infty) = I_0\)
Limit distribution : sufficient condition on the kernels \((T_{l_1}, \ldots, T_{l_{m+1}})\)

If, for all kernels \((T_{l_1}, \ldots, T_{l_{m+1}})\), we have that

\[
\forall m > 0, \ \forall (b_1, \ldots, b_m, b_{m+1}) \in \bigotimes_{j=1}^{m+1} [1 : l_j] \\
|I_{b_1,\ldots,b_m,b_{m+1}} - I_{b_1,\ldots,b_m}| \geq I_{b_1,\ldots,b_m}^\alpha (1 - I_{b_1,\ldots,b_m})^\beta
\]

where \(\alpha, \beta > 1\), then \(I_\infty\) is a binary random variable.

This implies, that with probability 1

\[
|I_{m+1} - I_m| \geq I_m^\alpha (1 - I_m)^\beta
\]

which would imply, since \((I_m)_m\) is convergent, that

\[
I_\infty^\alpha (1 - I_\infty)^\beta = 0
\]

which yields that \(I_\infty = 0\) or \(I_\infty = 1\).
Example of kernels: T_2

Consider the kernel $T_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

- Let $I_0 = I(X; Y) = 1 - H(X|Y) = 1 - H_0$
- We need to prove that for some $\alpha, \beta > 1$
 \[
 |I(U_1; Y_1 Y_2) - I(X; Y)| \geq I(X; Y)^\alpha (1 - I(X; Y))^\beta
 \]
 \[
 |I(U_2; Y_1 Y_2|U_1) - I(X; Y)| \geq I(X; Y)^\alpha (1 - I(X; Y))^\beta,
 \]

- Amounts to proving that
 \[
 H(X_1 \oplus X_2|Y_1 Y_2) - H_0 \geq H_0^\beta (1 - H_0)^\alpha
 \]
Consider the kernel $T_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

- Let $I_0 = I(X; Y) = 1 - H(X|Y) = 1 - H_0$
- We need to prove that for some $\alpha, \beta > 1$

 $$|I(U_1; Y_1 Y_2) - I(X; Y)| \geq I(X; Y)^{\alpha}(1 - I(X; Y))^{\beta}$$
 $$|I(U_2; Y_1 Y_2|U_1) - I(X; Y)| \geq I(X; Y)^{\alpha}(1 - I(X; Y))^{\beta},$$

- Amounts to proving that

 $$H(X_1 \oplus X_2|Y_1 Y_2) - H_0 \geq H_0^{\beta}.(1 - H_0)^{\alpha}$$

Mrs gerber’s Lemma: $H(X_1 \oplus X_2|Y_1^2) \geq h_2 \left(h_2^{-1}(H_0) \ast h_2^{-1}(H_0) \right)$

An entropy inequality: $h_2(a \ast a) - h_2(a) \geq h_2^2(a) \cdot (1 - h_2(a)) \geq 0$

Yields the sufficient inequality with $\beta = 2$ and $\alpha = 1$
Arikan’s Polar Codes

New Proof of Polarization

Error Exponents
Error exponent and Bhattacharyya parameter

- For a given channel $W : X \rightarrow Y$, we define the Bhattacharyya parameter

$$Z(W) \triangleq \sum_{y \in Y} \sqrt{W(y|1)W(y|0)}.$$

- Link to mutual information

$$Z(W) = 0 \iff I(W) = 1,$$

and

$$Z(W) = 1 \iff I(W) = 0.$$

- Define a sequence of random Bhattacharyya parameters

$$Z_m \triangleq Z(W_{B_1,\ldots,B_m}) = \sum_{z \in Z} \sqrt{W_{B_1,\ldots,B_m}(z|1)W_{B_1,\ldots,B_m}(z|0)}.$$

A polar code has error exponent E iif ([KoradaSasogluUrbanke’10])

1. For all $\gamma \geq E$,

$$\lim_{m \rightarrow \infty} P(Z_m \geq 2^{-N\gamma}) = 1;$$

2. For all $0 < \gamma \leq E$

$$\lim_{m \rightarrow \infty} P(Z_m \leq 2^{-N\gamma}) = I_0.$$
Error exponents and partial distance

- Assume that a transformation matrix T_l writes as
 \[T_l = (t_1^\dagger, \ldots, t_i^\dagger, \ldots, t_l^\dagger)^\dagger \]

- Define the partial distances (D_1, \ldots, D_l) of a matrix T_l as
 \[D_i \triangleq \text{dist}(t_i, <t_{i+1}, \ldots, t_l>) \]
 where $<t_{i+1}, \ldots, t_l>$ is the linear code spanned by the remaining rows of T_l

The error exponent of a one kernel, T_l, polar code is given

\[
E_l \triangleq \frac{1}{l} \sum_{i=1}^{l} \log_l (D_i)
\]

Example: For $T_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $D_1 = 1$ and $D_2 = 2$, thus

\[
E_2 = \frac{1}{2}
\]
Error exponent for multi-kernel polar codes

- Assume in a multikernel construction $T = T_{l_1} \otimes \cdots \otimes T_{l_m}$
- Kernels are chosen from a pool of s distinct kernels, $l_j \in [1 : s]$
- Each kernel T_{l_j} appears with a frequency p_j
- Each kernel T_{l_j} has an associated error exponent E_{l_j}

The error exponent of a multi-kernel polar code is given by

$$ E = \sum_{j=1}^{s} \alpha_j \cdot E_{l_j} $$

where

$$ \alpha_j \triangleq \frac{p_j \log_2(l_j)}{\sum_{j'} p_{j'} \log_2(l_{j'})} \quad \text{and} \quad \sum_{j=1}^{s} \alpha_j = 1 $$

Weighted sum of the error exponents E_{l_j}
Idea of proof: indirect part (1)

- Key inequality: for all m, [KoradaSasogluUrbanke’10]
 $$\forall (b_1, \ldots, b_m), \quad Z_{m-1}^{D_{bm}} \leq Z_m \leq 2^{l_{m-b_m}} Z_{m-1}^{D_{bm}}$$

- To prove the indirect part: for all $\gamma \geq E$,
 $$\lim_{m \to \infty} \mathbb{P}(Z_m \geq 2^{-N\gamma}) = 1;$$
 we use the LHS of this inequality
 $$Z_m \geq Z_{m-1}^{D_{bm}} \geq Z_{m-2}^{D_{bm}} \cdot D_{bm-1} \geq \cdots \geq Z_0 \prod_{k=1}^{m} D_{bm}$$

- This yields
 $$Z_m \geq 2^{-N^{E+o(N)}}$$
 Thus,
 $$\lim_{m \to \infty} \mathbb{P}(Z_m \geq 2^{-N^E}) = 1;$$
Idea of proof : direct part (2)

- Key inequality : for all \(m \), [KoradaSasogluUrbanke’10]

\[
\forall (b_1, \ldots, b_m), \quad Z_{m-1}^{D_{b_m}} \leq Z_m \leq 2^{l_m - b_m} Z_{m-1}^{D_{b_m}}
\]

- Presence of \(2^{l_m - b_m} > 1 \) renders it challenging
- The sequence \((Z_m)_m\) converges to 0 exponentially in \(-N\)
- The probability of convergence to 0 is equal to \(I_0 \) (Bernoulli distribution)
- Annihilate the role of the constant \(2^{l_m - b_m} \) as \(N \) grows infinite
- Generalization, and little corrections, of the proof of [Sasoglu’12]
Conclusions

Thank you!

Questions?