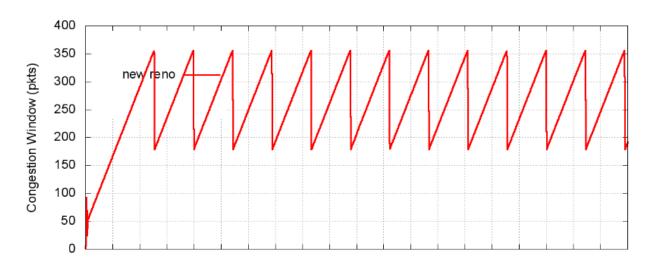
When Fuzzy Logic meets LEDBAT: FLOWER, a Fuzzy LOWER than Best-EffoRt Protocol


Si Quoc Viet TRANG

Objective

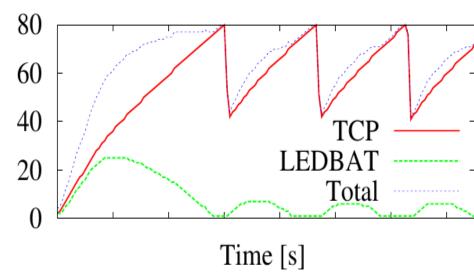
 TCP New Reno: AIMD (Addictive Increase/Multiplicative Decrease) congestion control → the sawtooth behavior results in the usage of ~75% of the link capacity

Over the satellite link, the capacity must be fully used to optimize

the cost of the link

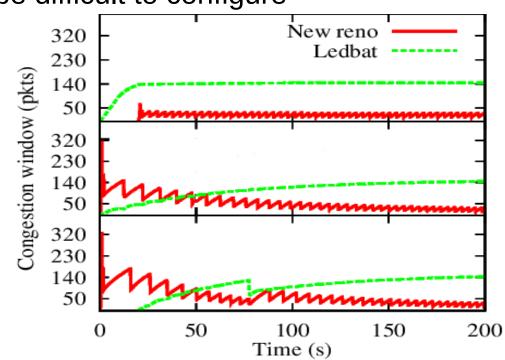
Objective

- Our objective is to grab this unused link capacity by studying algorithm and studying new protocols that enable a LBE service
- What does LBE mean?
 - Take the remaining capacity without disturbing commercial traffic
 - Example: background backup/update, P2P traffic, measuring or signaling traffic


LEDBAT overview

- Ledbat is the most commonly used LBE protocol
- Designed for data transfer with a priority « Less than Best Effort »

Sender window

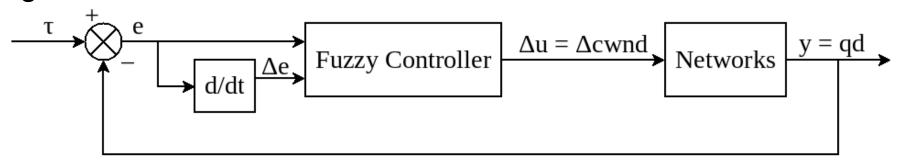

[packets]

- Reduces the rate when it detects that the delay is beyond a threshold (target queuing delay)
- Responds to congestion before standard TCP
- How does it perform over long delay link?
- Is LEDBAT a good candidate?

LEDBAT problems

- We have identified several problems
 - LEDBAT has been revealed to be difficult to configure
 - its tuning highly depends on the network condition
 - may become more aggressive than TCP in case of misconfiguration
 - might not be used safely over any networks
- "On the existence of optimal LEDBAT parameters" (ICC 2014)

Towards an adaptive LBE protocol


- Ledbat does not have an optimal configuration and needs to be tuned as a function of the network state
- Ledbat is not adaptive and only implements a P-type controller to control the sending rate as a function of the delay. Both parameters (target and gain) are fixed
- One possible solution would be to implement an adaptive functionality inside this P-type controller but such adaptation would require a fine grained analytical model

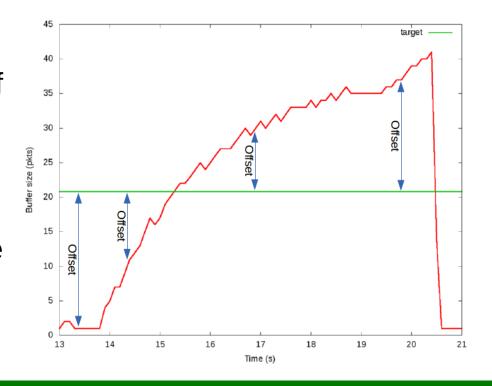
Towards an adaptive LBE protocol

- Our goal is to overtake this difficulty by using a fuzzy algorithm to perform such task
- Our proposal, named FLOWER:
 - Aims at proposing a novel LBE transport protocol based on a fuzzy logic algorithm
 - Aims at reacting better than Ledbat front to congestion event

Fuzzy LBE Controller

- The controller goal is to limit the queuing delay to a target delay τ by controlling the number of packets sent over the networks
- By measuring the one-way delay (OWD), the controller infers the current queuing delay
- By comparing the inferred queuing delay with the target delay, the controller adjusts the congestion window cwnd using fuzzy logic

How to control the queuing delay?


- Inputs:
 - Error:

$$e(k) = \tau - qd(k)$$

Change of error (gradient of error):

$$\Delta e(k) = e(k) - e(k-1)$$

- Output: change of cwnd ($\triangle cwnd(k)$)
- The inputs and the output are related by fuzzy rules

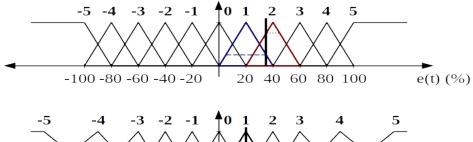
Linguistic variables / values

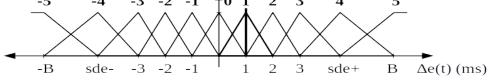
 e, Δe, Δcwnd are linguistic variables which take on linguistic values:

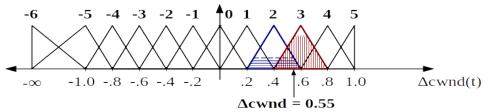
```
NVL, NL, NM, NS, NVS, Z, PVS, PS, PM, PL, PVL
(P: Positive; N: Negative; V: Very; L: Large; M: Medium; S: Small; Z: Zero)
```

- Example:
 - "e is NVL" means "e is negative very large"
- For a shorter description, we could use linguistic-numeric values:

$$NVL = -5$$
; $NL = -4$; ... $Z = 0$...; $PL = 4$; $VPL = 5$;


Rules


- We use the linguistic rules to express the expert's knowledge about how to control the process
- The general form of the linguistic rules is:
 - If premise Then consequent
- Examples:
 - If e is PVL and Δ e is Z then Δ cwnd is PVL
 - If e is NVL and Δ e is NVL then Δ cwnd is Z


Membership functions (MF)

• The controller uses membership functions to quantify the certainty that linguistic variables (e, Δe, Δcwnd) can be classified as linguistic values (NVL, NL, ..., PL, PVL)

MF and Rule Table

$$\begin{split} &e(t) \!=\! \tau \!-\! q(t) \\ & \Delta e(t) \!=\! e(t) \!-\! e(t \!-\! 1) \\ & \Delta cwnd(t) \!=\! \frac{\sum\limits_{i} b_{i} \, \mu_{premise(i)}}{\sum\limits_{i} \mu_{premise(i)}} \end{split}$$

Example:

$$\Delta cwnd = \frac{(0.2)(0.25) + (0.4)(0.75)}{0.25 + 0.75} = 0.55$$

Δcwnd		Δe										
		-5	-4	-3	-2	-1	0	1	2	3	4	5
e	-5	-5	-5	-5	-5	-5	-5	-4	-3	-2	-1	-6
	-4	-5	-5	-5	-5	-5	-4	-3	-2	-1	0	-6
	-3	-5	-5	-5	-5	-4	-3	-2	-1	0	1	-6
	-2	-5	-5	-5	-4	-3	-2	-1	0	1	2	-6
	-1	-5	-5	-4	-3	-2	-1	О	1	2	3	-6
	0	-5	-4	-3	-2	-1	0	1	2	3	4	-6
	1	-4	-3	-2	-1	0	1	2	3	4	5	-6
	2	-3	-2	-1	0	1	2	3	4	5	5	-6
	3	-2	-1	0	1	2	3	4	5	5	5	-6
	4	-1	0	1	2	3	4	5	5	5	5	-6
	5	О	1	2	3	4	5	5	5	5	5	-6

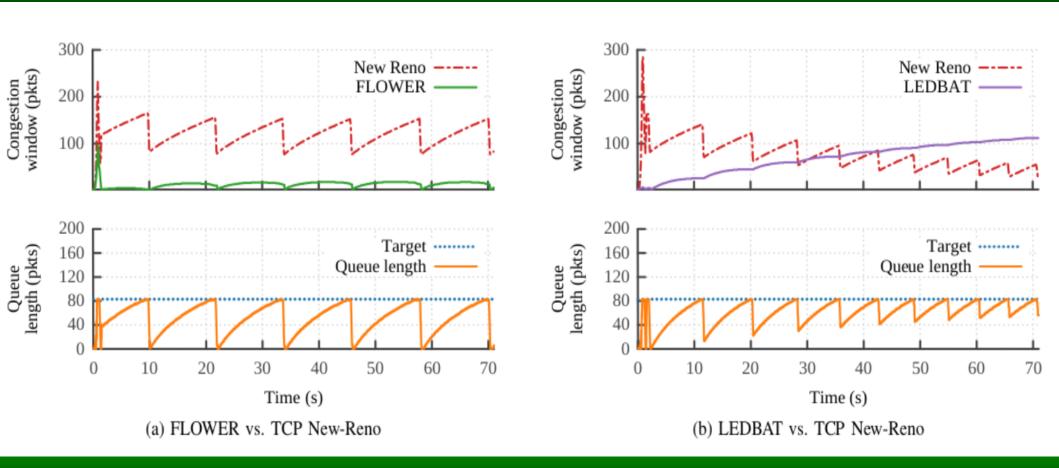
Legend

-6 = -NVVL, -5 = NVL, -4 = NL, -3 = NM, -2 = NS, -1 = NVS,

 $\mathbf{0} = \mathbf{Z}$,

1 = PVS, 2 = PS, 3 = PM, 4 = PL, 5 = PVL

(P: Positive, N: Negative, V: Very,

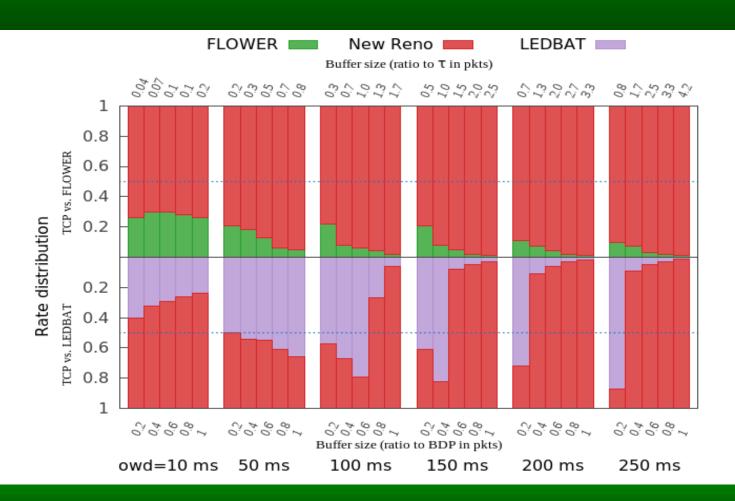

Z: Zero, S: Small, M: Medium, L: Large)

B: Buffer, **sde-**: smoothed negative Δe , **sde+**: smoothed positive Δe

Simulation 1

- 1 flows TCP v.s. 1 flows LBE
- TCP = New Reno
- LBE = {LEDBAT, FLOWER}
- C = 10 Mb/s
- Owd = 50 ms
- B = BDP
- Duration = 75 ms
- TCP and LBE flows start at the same time

1 LBE – 1 New Reno


Simulation 2

- 5 flows TCP v.s. 5 flows LBE
- TCP = New Reno
- LBE = {LEDBAT, FLOWER}
- C = 10 Mb/s
- Owd = {10, 50, 150, 200, 250} ms
- $B = \{0.2, 0.4, 0.6, 0.8, 1.0\} \times BDP$
- Duration = 1200 ms
- TCP flows start consecutively at the beginning
- LBE flows start randomly between 350 s and 450 s

Simulation 2

- For each scenario, the simulation runs 10 times
- Using "rate distribution" as metric.
- The final measured value is the mean of the 10 metric values.

5 LBE – 5 New Reno

Conclusion

- There is still a place on the network for LBE service
- LEDBAT tuning is very difficult and highly depends on the network condition
- Our proposition FLOWER is a promising alternative of LEDBAT