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Abstract— Earth observation through satellite images is crucial
to help economic activities as well as to monitor the impact
of human activities on ecosystems. Current satellite systems
are subjected to strong computational complexity constraints.
Thus, image compression is performed onboard with specifi-
cally tailored algorithms while image denoising is performed
on the ground. In this letter, we intend to address satellite
image compression and denoising with neural networks. The
first proposed approach uses a single neural architecture for
joint onboard compression and denoising. The second pro-
posed approach sequentially uses a first neural architecture
for onboard compression and a second one for on ground
denoising. For both approaches, the onboard architectures are
lightened as much as possible, following the procedure proposed
by Alves de Oliveira et al. (2021). The two approaches are shown
to outperform the current satellite imaging system and their
respective pros and cons are discussed.

Index Terms—Data compression, image denoising, neural
networks.

I. INTRODUCTION

EMOTE sensing data provide essential information that

helps in various applications, such as meteorology,
oceanography, geology, natural disaster management, biodiver-
sity conservation, cartography, and military surveillance [2].
The instruments embedded onboard new-generation satellites
enable the acquisition of images with ever-increasing spectral
and spatial resolutions. The counterparty is an increasing
amount of data to be processed onboard and transmitted to
the ground. Image compression is thus essential to maximize
the scientific return and to reduce transmission time [3].
The currently embedded compression algorithms, such as the
Consultative Committee for Space Data Systems (CCSDS)

Manuscript received August 2, 2021; revised November 30, 2021; accepted
January 20, 2022. Date of publication January 25, 2022; date of current version
February 9, 2022. This work was supported in part by the French Space
Agency (CNES), in part by Thales Alenia Space, and in part by the Institute
for Artificial and Natural Intelligence Toulouse (ANITI) under Agreement
ANR-19-PI3A-0004. (Corresponding author: Vinicius Alves de Oliveira.)

Vinicius Alves de Oliveira is with IRIT/INP-ENSEEIHT, University of
Toulouse, 31071 Toulouse, France, and also with the Telecommunications for
Space and Aeronautics (TESA) Laboratory, 31500 Toulouse, France (e-mail:
vinicius.oliveira@irit.fr).

Marie Chabert and Charly Poulliat are with IRIT/INP-ENSEEIHT, Univer-
sity of Toulouse, 31071 Toulouse, France.

Thomas Oberlin is with ISAE-SUPAERO, University of Toulouse, 31055
Toulouse, France.

Mickael Bruno and Christophe Latry are with CNES, 31400 Toulouse,
France.

Mikael Carlavan, Simon Henrot, and Frederic Falzon are with Thales Alenia
Space, 06150 Cannes, France.

Roberto Camarero is with ESA, 2201 Noordwijk, The Netherlands.

Digital Object Identifier 10.1109/LGRS.2022.3145992

compression standard 122.0-B-2 [4], has been designed to
reach a compromise between performance and computational
complexity, due to strong onboard constraints.

The acquired images are affected by an instrumental noise,
with well-known statistics and particularly a pixel-dependent
variance [5]. Thus, the French Space Agency (CNES) devel-
oped a variant of the CCSDS standard 122.0-B-2 [4] that
avoids coding the noise by performing a low-complexity
onboard hard-denoising. Moreover, onboard compression
introduces artifacts modeled as a structured colored noise [6].
Consequently, denoising becomes necessary to recover a
noise-free image from the noisy uncompressed image. Cur-
rently, denoising is carried out on the ground due to its
prohibitive complexity [7]. Denoising is one of the oldest
problems in image processing, for which numerous highly
efficient model-based algorithms have been proposed. Among
them, nonlocal filters are particularly efficient because they
exploit the similarities in textures or structures that can be
located in distant patches. The nonlocal Bayes (NL-Bayes)
algorithm [8] improves the nonlocal filter techniques by per-
forming Bayesian estimation through the estimation of the
covariance matrices of the patches. The NL-Bayes is adopted
in the satellite imaging system [7] due to its parameter setting
simplicity, its high performance and relatively high compu-
tation efficiency. Although the model-based image denoising
algorithms have demonstrated excellent performance, they
present two main disadvantages: they require the manual set-
ting of multiple parameters and they are designed for standard
additive noise models. However, the instrumental noise that
affects satellite images during acquisition is a nonstandard
semimultiplicative noise. Thus, in the CNES current satellite
imaging system, a variance stabilizing transform (VST) [9]
is used before the denoising algorithm that assumes noise
additivity. Note that compression noise is also nonstandard.
Compression artifacts removal thus requires some preprocess-
ing such as dequantization [10], [11] or, in the CNES satellite
imaging system, an instrumental noise restitution that restores
its statistics modified by compression [7].

Notably, convolutional neural networks (CNNs) have been
successful in many computer vision applications [12] such
as classification [13], object detection [14], [15], segmenta-
tion [16], lossy image compression [17], [18], denoising [19],
and compression artifacts removal [20]. Recently, end-to-
end CNNs [17], [18] were shown to outperform traditional
compression schemes regarding the rate-distortion tradeoff,
however, at the cost of high computational complexity. Based
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Fig. 1. Architecture of the variational autoencoder [18].

on the model proposed in [18], we presented in our pre-
vious paper [1] a satellite image compression variant with
reduced complexity and competitive performance. Further-
more, denoising CNNs can adapt to any nonstandard noise
statistical model as soon as it can be learned from a represen-
tative training dataset.

In this work, we take advantage of CNNs to address satellite
image compression and denoising. We aim to outperform the
current satellite imaging system [7] both in compression and
denoising without manual parameter setting, without a priori
knowledge on the noise statistical model and without tricky
procedures (like VST or instrumental noise restitution) to
fit the noise to a given model. Besides, we aim to propose
possible onboard denoising whereas it is currently mainly
performed on ground as a post-processing. We first propose
an onboard joint compression and denoising approach with
a single neural architecture based on [18]. Second, we pro-
pose a modular neural architecture, that performs sequentially
onboard compression based on [18] and on ground denoising
based on [21]. This sequential approach allows to lighten the
onboard computational load if required, especially since it is
compatible with every complexity reduction proposed in [1].
This letter addresses a hot topic since neural networks are
likely to run onboard the next generation imaging satellites.

The remaining of the letter is organized as follows.
Section II recalls the background regarding compression and
denoising with neural networks. Section III details the pro-
posed joint and sequential approaches. Section IV, devoted to
the experiments, compares the performance of both approaches
to that of the CNES satellite pipeline. Section V concludes the
letter.

II. BACKGROUND
A. Compression With Neural Networks

When devoted to lossy image compression, autoencoders
learn a representation with low entropy after quantization [17],
[18]. In this work, we focus on the reference architecture [18]
displayed on Fig. 1. It is composed of a main autoencoder and
a side autoencoder described below.

In the main autoencoder [see Fig. 1 (left)], an analysis
transform (G,) is applied to the input image I to produce a
learned representation y = G,(I). Then y is quantized at the
bottleneck, for further entropy coding, leading to the quantized
representation §. Afterward, the synthesis transform (Gjy) is
applied to the § to reconstruct the input image I = G (§).
The analysis and synthesis transforms are performed through
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multiple convolutional layers composed of filters followed
by nonlinear activation functions. N denotes the number
of filters in each layer, except in the last layer before the
bottleneck composed by M filters. Indeed, the so-called wide
bottleneck strategy advocates M > N [18]. Activation func-
tions called generalized divisive normalizations (GDNs) [resp.
inverse GDN (IGDN)] allow one to implement a local adaptive
normalization. The learned representation is multichannel and
nonlinear. The autoencoder parameters (the filter weights and
the GDN/IGDN parameters) as well as the probability dis-
tribution of the learned representation, the so-called entropy
model p;(§) (required for coding purpose), are jointly learned
through the minimization of a loss function that establishes
a tradeoff between the rate R(§) and the distortion D(I, T)
between the original image I and the reconstructed image iy
can be losslessly compressed using entropy coding algorithms,
such as arithmetic coding [22]. The rate accounts for the
expected code length of the compressed representation. The
distortion measure D stands for the image quality and usually
defaults to the mean square error (mse). The rate-distortion
criterion then writes as the weighted sum

J =DM, 1)+ R@) (1)

where parameter 4 tunes the rate-distortion tradeoff. This loss
function is minimized through gradient descent with back-
propagation [12] on a representative image training set. The bit
rate is minimized if py(¥) is equal to the actual distribution of
the learned image representation. The side autoencoder [see
Fig. 1 (right)] estimates the hyper-parameters of the image
representation distribution [18]. This estimation is performed
individually for each image, during the learning process, and
during the operational phase. This model takes into account
possible spatial dependency in each input image representa-
tion. We have shown, in the specific case of satellite images,
that the representation coefficients can be beneficially modeled
as uncorrelated Laplacian variables [1]. Then, the computa-
tionally expensive side autoencoder [18] has been substituted
with the simple estimation of the Laplace distribution scale
parameter in [1].

B. Denoising With Neural Networks

CNNs have also shown high performance in image
denoising. Denoising CNN (DnCNN) adopted residual learn-
ing (RL) and batch normalization (BN) to improve the
denoising performance [19]. RL estimates the noise, which
is expected to be easier to learn than the denoised image [23].
BN facilitates training convergence [24]. The more recent
batch-renormalization denoising network (BRDNet) [25]
adopted RL similar to [19], batch renormalization (BRN) [26]
to deal with small mini-batch convergence issues and dilated
convolutions to afford lower complexity [27]. Indeed, networks
involving dilated convolution attain the same receptive field
as those involving conventional ones, with fewer layers and
thus fewer parameters. BRDNet combines two sub-networks
in parallel for improved denoising performance [21] (see
Fig. 2). BRDNet outperforms state-of-the-art denoising archi-
tectures [25], e.g., DnCNN [19], but also the fast and flexible
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Fig. 2.

denoising network (FFDNet) [28] and the image-restoration
CNN (IRCNN) [29]. At the end of the day, denoising-
dedicated architectures involves RL, BN, or BRN and are
significantly deep. The architectures dedicated to compression
artifacts removal [20] are quite similar, and, in particular,
involve RL. However, the compression-dedicated architectures
are significantly different: they do not involve RL nor BN and
are relatively shallow [17], [18]. This exemplifies the difficulty
of conceiving a unique architecture that jointly performs
compression and denoising.

III. COMBINING COMPRESSION AND DENOISING

Currently, as recalled in Section I, the compression is
performed onboard the satellite whereas the denoising is
performed on ground, because of its prohibitive computa-
tional cost [7]. However, the evolution of satellite comput-
ing capacities enables onboard denoising to be reasonably
envisioned [7]. This work adopts data-driven approaches for
satellite image compression and denoising, possibly both
performed onboard. The aim is to attain high performance
while dispensing with manual parameter setting, with a priori
knowledge of the noise model or with tricky intermedi-
ary steps (like VST or instrumental noise restitution). The
first proposed approach takes advantage of the compression-
dedicated architecture, proposed in [18] and adapted to satel-
lite in [1], to jointly perform compression and denoising
onboard. The second proposed approach sequentially com-
bines a compression-dedicated architecture and a denoising-
dedicated one. Thanks to its modular structure, this sequential
approach allows to choose the best architectures for com-
pression [18] and for denoising [25], respectively. Moreover,
this approach facilitates consideration of the onboard hardware
constraints since all the complexity-reductions proposed in [1]
can be applied to the compression-dedicated architecture in
this case. The question of computational complexity is less
crucial for the on ground denoising-dedicated architecture.
Finally, note that whether the joint or the sequential approach
are expected to suppress compression artifacts together with
instrumental noise [7]. In the following, I, denotes the noisy
image produced by the acquisition device. Indeed, the instru-
mental noise is dependent on the ideal noise-free image,
denoted as I,¢. The transmission is assumed not to introduce
additional degradations [30]. Realistic simulation of satellite
images provide both I, and I for the same scene, which
makes architecture training and validation possible. Note that
simulation is commonly used in remote sensing image neural
processing, in particular, due to the lack of raw data [31].
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A. Joint Compression and Denoising

The joint compression and denoising approach, denoted as
CD-H in the following, exploits the compression-dedicated
architecture displayed in Fig. 1 [18], with the number of
filters reduction proposed in [1]. The input is the noisy
acquired image (I,). In order to jointly perform denoising and
compression, the architecture parameters are learned through
the optimization of a specific loss function (different from the
one used in [18] and [1]): the rate R(¥) is the same but
the distortion D(Iy¢, G5[G,(I,)]) now measures the similarity
between the reconstructed image inf = G,[G,(I,)] and the
reference noise-free image I (instead of the input image).
The reconstructed image is thus expected to be denoised.

B. Sequential Compression and Denoising

The sequential compression and denoising approach exploits
two architectures: the compression-dedicated one detailed in
Section II-A (with two versions denoted, respectively, C-H
when featuring the hyperprior [18] and C-L when featuring
the Laplacian entropy model [1]), and the denoising-dedicated
architecture BRDNet, detailed in Section II-B [25], from
which we expect also compression artifact reduction.

C. Denoising as a Post-Processing After Joint Compression
and Denoising

Finally, the BRDNet denoising-dedicated architecture was
applied on ground to images that have already been jointly
compressed and denoised on board. This post-processing aims
at removing the remaining noise and the compression artifacts.

IV. EXPERIMENTS

To assess the relevance of the proposed approaches, experi-
ments were reconducted using Tensorflow. The CNES imaging
system [7] serves as a baseline for compression and denoising
performance.

A. Reference CNES Imaging System

In the CNES imaging system, the acquired noisy image
I, is compressed onboard the satellite using a customized
version [32] of the CCSDS 122.0-B-2 standard [4], denoted
as C-CNES in the following. The compressed noisy image
is then transmitted to an earth station, decompressed on
ground leading to I, and then denoised. After decompres-
sion, the instrumental noise, which has been modified by
the quantization during compression, is restored [7]. The
VST [9] is then applied to the denoised image to transform
the signal-dependent noise into an additive one. These opera-
tions increase the performance of the subsequent customized
NL-Bayes denoising algorithm [5], which strongly depends on
the noise model. Finally, the inverse VST is applied [9].

B. Experimental Setup

1) Datasets: Our training (resp. test) dataset is composed
of 112 (resp. 16) pairs of noise-free (Ir) and noisy (I,) 12-bit
simulated Pléiades panchromatic images (of size 586 x 586)
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covering various landscapes, provided by the CNES. The
instrumental noise is simulated according to [7]. For learning
the proposed compression-dedicated architectures, patches (of
size 256 x 256) randomly cropped from the noisy images
(I,) of the training dataset are put at the network input and
serve as a reference for the distortion derivation. For learning
the proposed joint compression and denoising architectures,
the patches at the input of the network are the same as before
whereas homologous patches cropped from the noise-free
image I¢ serve as the reference for distortion derivation. For
learning the denoising-dedicated architectures, that proceed
a post-processing after compression (resp. after joint com-
pression and denoising), patches of size 50 x 50, randomly
cropped from the noisy uncompressed images i, (resp.
denoised uncompressed images L) are put at the network
input whereas homologous patches cropped from I, serve
as the reference for the distortion derivation. Performance
assessment of these three types of architectures uses the
same configurations as for their respective learning, however,
considering full images of the test dataset, instead of patches.

2) Architecture Dimensioning: For CD-H and C-H, N =
64 and M = 320 for the main and side autoencoders (see
Fig. 1) according to the number of filter reduction proposed
in [1].The filter kernel size is 5 x 5. C-L uses the same
size main auto-encoder but the Laplacian entropy model [1]
instead of the side autoencoder. The convolutional layers of
the denoising-dedicated architecture are composed of 64 filters
with kernel size 3 x 3 [25].

3) Training Parameters: For learning the compression-
dedicated and the joint compression and denoising architec-
tures, the batch size was set to 8 and up to 2 million iterations
were performed. For learning the denoising-dedicated architec-
ture, the batch size was set to 20 and up to 500000 iterations
were performed [25]. MSE was used as the distortion metric
for training.

C. Performance Analysis

1) In Terms of Subjective Image Quality: Fig. 3 provides an
example of the uncompressed and denoised image, obtained
with the CNES baseline and with the proposed approaches for
similar rates. Even if all the methods perform satisfactorily,
the image obtained with the joint compression and denois-
ing approach CD-H is visually the closest to the noise-free
reference whereas the sequential approach (C-H followed by
BRDNet) tends to produce a slightly smoothed image. Note
that the current CNES pipeline also adds noise in areas
where intensity is low, as is not the case for the proposed
approaches.
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Fig. 4. Rate-distortion curves (distortion measured in terms of PSNR (dB)
between the output image Ins and the noise-free image Int).

2) In Terms of Rate Distortion: The joint compression and
denoising architecture CD-H, the sequential compression and
denoising approach, C-H or C-L followed by BRDNet, and
the baseline, C-CNES followed by CNES-customized NL-
Bayes [5], are compared. Fig. 4 shows the rate-distortion
performance averaged over the test dataset. The distortion is
measured in terms of peak signal-to-noise ratio (PSNR) (dB)
between the output image Iy and the noise-free image Iy
These experiments show that the proposed joint compression
and denoising architecture CD-H outperforms the CNES base-
line over the considered bit range between 2 and 3.7 bits/pixel.
The advantage of the proposed joint compression and denois-
ing method reduces at higher rates. Note that this architecture
was also tested when replacing the hyperprior autoencoder by
the simpler uncorrelated Laplacian entropy model proposed
in [1], but without success. Indeed, although the learned
features are mostly Laplacian distributed, the assumption of
spatial independence is no longer valid. Note, however, that
the considered CD-H architecture [1] is an already highly
simplified architecture with respect to [18]. The sequential
compression and denoising approaches (C-H or C-L followed
by BRDNet) performs similarly and even better than the joint
compression and denoising approach (CD-H), particularly for
the highest bit rates. The approach that performs denois-
ing as a post-processing to joint compression and denoising
(CD-H followed by BRDNet), performs slightly better for rates
between 2.2 and 3.2 bits/pixel. Besides, for this bit rate range,
it outperforms all the other approaches whereas it performs
similarly as the sequential approaches at high rates. Finally,
note that, simply replacing NL-Bayes algorithm by BRDNet
architecture on ground, in the CNES satellite imaging system,
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leads to a gain in performance, without any modification
onboard.

3) In Terms of Complexity: The complexity of the onboard
embedded architecture, involved in CD-H, C-H, and C-L, has
been discussed in detail in [1]. Concerning the denoising-
dedicated architecture, we will focus on time complexity. It is
indeed the more critical criterion on ground since it determines
the pipeline throughput. BRDNet denoises in average 2.192 x
10° pixels/s on an NVIDIA Tesla V100 GPU with 32 GB
onboard memory, whereas the reference CNES-customized
NL-Bayes denoises on average 0.073 x 10° pixels/s on an
Intel i7-6700 HQ (2.6-3.5 GHz) CPU with 8 GB RAM [5].
Finally, BRDNet, benefiting from the GPU massively parallel
architecture, denoises approximately 30 times faster than the
CNES-customized NL-Bayes.

V. CONCLUSION

This letter proposed different learned approaches for satel-
lite image compression and denoising. On one side, the joint
approach performs compression and denoising with a single
architecture. One advantage is that intermediary steps existing
in the current CNES imaging system [7] can be eliminated.
This approach is of interest for commercial applications
since it provides noise-free images without on ground post-
processing. On the other side, the sequential approach allows
to consider a splitting compatible with all the architecture
simplifications designed for onboard compression [1]. The
proposed approaches were shown to outperform the CNES
baseline in terms of rate distortion, visual quality, and com-
putational time.
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